Lean on Bracing

Design and Construction
Design
* What is Lean-on-Bracing?
* Benefits of Lean-on-Bracing
* How to design a Lean-on-Bracing System

Construction & Research Results
* US 82 Underpass @ 9th Street
* US 82 Underpass @ 19th Street EB & WB
Design of Lean on Bracing

Research Report 1772-1
Critical Stage for Lateral Torsional Buckling
What is Lean-on-Bracing?
* Fewer cross frames - Significant Cost Savings
* Improved Fatigue Performance
* Reduced Construction Timeline
* Simplifies Future Inspections
Cross Frame layout for US 82 Underpass @ 19th Street WB

2/15/2012
Cross Frames

SECTION A-A

Top & Bottom Struts

SECTION B-B

Lean-on-Bracing
Lean-On-Bracing
Stiffness & Strength Requirements
\[
\frac{1}{\beta_b} + \frac{1}{\beta_g} + \frac{1}{\beta_{sec}} = \frac{1}{\beta_t}
\]

\(\beta_t\) = Torsional system brace stiffness
\(\beta_b\) = Brace stiffness
\(\beta_{sec}\) = Cross Section stiffness (web distortional stiffness)
\(\beta_g\) = In-plane girder stiffness
\[\beta_{ti} := \frac{1.2 \cdot L \cdot (Mu)^2}{C_{bb}^2 \cdot n \cdot I_{eff} \cdot E} \]

Ideal Total Stiffness

\[\beta_{t} := \frac{3.2 \cdot L}{C_{bb}^2 \cdot n \cdot I_{eff} \cdot E} \cdot \left(M_{dl} + M_{constl} \right)^2 \]

Required System Stiffness

Torsional System Brace Stiffness
\[\beta_{\text{sec}} := 0.5 \cdot 3.3 \cdot \frac{E}{h_j} \left(\frac{h}{h_j} \right)^2 \left[\frac{1.5 \cdot h_j \cdot t_w}{12} + \left(\frac{t_s \cdot b_s}{12} \right)^3 \right] \]
\[\beta_g := \frac{12 \cdot (n_g - 1)^2 \cdot S^2 \cdot E \cdot I_x}{n_g \cdot L^3} \]
\[\beta_{b1} := \frac{E \cdot S^2 \cdot h_b^2 \cdot A_b}{n_g \cdot L_d^3 + S^3 \cdot \left(\frac{n_g}{2} \right)^2} \]

Braces @ Mid-span

\[\beta_{b1} := \frac{E \cdot S^2 \cdot h_b^2 \cdot A_b}{n_g \cdot L_d^3 + S^3 \cdot (n_g - 1)^2} \]

Braces @ supports
\[\beta_{b2} := \frac{1}{\left(\frac{1}{\beta_t} - \frac{1}{\beta_g} - \frac{1}{\beta_{sec}} \right)} \]

\[A_b := \frac{\beta_{b2}}{\beta_{b1}} \]

Brace Area Required for Stiffness
\[\Phi_o := \frac{L_b}{500 \cdot h} \]

\[M_{br} = F_{br} \cdot h_b = \beta_t \cdot \Phi_o \]

\[F := \beta_t \cdot \frac{\Phi_o}{h_b} \]

Strength Requirements
\[F_d := \frac{n_g \cdot F \cdot L_d}{N_c \cdot S} \]
Force in Diagonal

\[F_s := (n_g - 1) \cdot \frac{F}{N_c} \]
Force in Struts @ Supports

\[F_s := \left(\frac{n_g}{N_c \cdot 2} \right) \cdot F \]
Force in Struts @ Mid-Span

Angle Forces
Construction of Lean on Bracing
US 82 Underpass at 9th Street
US 82 Underpass at 9th Street
US 82 Underpass at 9th Street
US 82 Underpass at 19th Street EB & WB
US 82 Underpass at 19th Street WB
US 82 Underpass at 19th Street WB
Deck Placement
Instrumentation & Live Load Testing
Cross Frame Instrumentation
Girder Instrumentation
Changes in Strain
Girder Rotations
Girder Deflections

Recorded Measurements
Mid-Span Cross Frame Forces

Predicted

Actual

$F_d = 26.4$ kips

$F_d = 14.3$ kips

$F_b = 12.1$ kips

$F_b = 4.1$ kips

$F_b = 3.6$ kips

$F_d = 10.9$ kips
Predicted

Actual

End Cross Frame Forces
Live Load Testing
<table>
<thead>
<tr>
<th>Load Test</th>
<th>X2-DT (kips)</th>
<th>Location (ft.)</th>
<th>X2-DB (kips)</th>
<th>Location (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staggered Ahead</td>
<td>0.7</td>
<td>350</td>
<td>-27.8</td>
<td>100</td>
</tr>
<tr>
<td>Staggered Back</td>
<td>0.45</td>
<td>220</td>
<td>8.26</td>
<td>220</td>
</tr>
<tr>
<td>Side-by-Side South</td>
<td>0.6</td>
<td>350</td>
<td>6.8</td>
<td>240</td>
</tr>
<tr>
<td>Side-by-Side North</td>
<td>0.6</td>
<td>140</td>
<td>8.9</td>
<td>120</td>
</tr>
<tr>
<td>End to End South</td>
<td>0.5</td>
<td>140</td>
<td>-25.7</td>
<td>120</td>
</tr>
<tr>
<td>End to End Central</td>
<td>-0.28</td>
<td>220</td>
<td>10.3</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Test</th>
<th>X3-DT (kips)</th>
<th>Location (ft.)</th>
<th>X3-DB (kips)</th>
<th>Location (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staggered Ahead</td>
<td>18.5</td>
<td>140</td>
<td>-11.2</td>
<td>140</td>
</tr>
<tr>
<td>Staggered Back</td>
<td>11.7</td>
<td>150</td>
<td>-3.6</td>
<td>150</td>
</tr>
<tr>
<td>Side-by-Side South</td>
<td>11.4</td>
<td>140</td>
<td>-3.4</td>
<td>140</td>
</tr>
<tr>
<td>Side-by-Side North</td>
<td>-15.3</td>
<td>140</td>
<td>13.8</td>
<td>140</td>
</tr>
<tr>
<td>End to End South</td>
<td>5.5</td>
<td>190</td>
<td>-5.6</td>
<td>180</td>
</tr>
<tr>
<td>End to End Central</td>
<td>-14</td>
<td>140</td>
<td>36.1</td>
<td>140</td>
</tr>
</tbody>
</table>
* Design of Lean-on-Bracing is not difficult
* Improves fatigue performance
* Significant cost savings
* Reduces construction time
* It is a conservative method of torsional bracing that works
Questions?
* Will Barnett, P.E.
* Todd Helwig, Ph.D., P.E.
* Anthony Battistini, M.S.E.