ITEM 345

ASPHALT STABILIZED BASE
(Plant Mix)

345.1. Description. This Item shall govern for the construction of a base course, subbase course or foundation course, each course being composed of a compacted mixture of aggregate and asphalt cement mixed hot in a mixing plant, in accordance with the details shown on the plans and the requirements herein.

345.2. Materials. The Contractor shall furnish materials to the project meeting the following requirements prior to mixing. Additional test requirements affecting the quality of individual materials, or the stabilized base, may be required when indicated on the plans.

(1) Aggregate.

(a) Description. The aggregate shall be composed of one or more virgin (not previously used in construction) aggregates and/or reclaimed asphalt pavement (RAP). Samples of each aggregate shall be submitted for approval in accordance with Item 6, "Control of Materials".

(b) Combined Materials. Where more than one virgin aggregate is used, test samples of each virgin aggregate will be proportionately combined prior to testing for Table 1 requirements, except for Los Angeles Abrasion, and crushed face requirements, unless otherwise shown on the plans.

(c) Quality. Virgin aggregate for Grades 1 through 3 shall meet the quality requirements shown in Table 1. Grade 4 aggregate shall meet the quality requirements shown on the plans. Aggregate contained in RAP will not be required to meet Table 1 requirements except as shown on the plans.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Test Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Abrasion**, percent, maximum</td>
<td>Tex-410-A</td>
<td>50</td>
</tr>
<tr>
<td>Wet Ball Mill Value***, maximum</td>
<td>Tex-116-E</td>
<td>50</td>
</tr>
<tr>
<td>Maximum increase Passing 425 ±m</td>
<td>Tex-101-E</td>
<td>20</td>
</tr>
<tr>
<td>Plasticity Index, maximum****</td>
<td>Tex-106-E</td>
<td>10</td>
</tr>
<tr>
<td>Liquid Limit, maximum****</td>
<td>Tex-104-E</td>
<td>40</td>
</tr>
<tr>
<td>Sand Equivalent Value, minimum</td>
<td>Tex-203-F</td>
<td>40</td>
</tr>
</tbody>
</table>

* Sampled during delivery to the plant, from the stockpile or from the cold feed, unless otherwise shown on the plans.
** Determined on individual materials when more than one material is to be used.
*** May be used in lieu of Los Angeles Abrasion when shown on the plans.
**** Sample preparation will be in accordance with Test Method Tex-101-E.

(d) Crushed Faces. When shown on the plans, virgin gravel shall be so crushed as to have a minimum of 60 percent of the particles retained on the 4.75 millimeter sieve with two or more mechanically induced crushed faces, as determined by Test Method Tex-460-A (Part I).

(e) Reclaimed Asphalt Pavement (RAP). RAP is defined as a salvaged, milled, pulverized,
broken or crushed asphaltic pavement. The RAP to be used in the mix shall be crushed or broken to the extent that 100 percent will pass the 50 millimeter sieve.

The stockpiled RAP shall not be contaminated by dirt or other objectionable materials. Unless otherwise shown on the plans, stockpiled, crushed RAP must have either a decantation of no more than five (5) percent, or a plasticity index of no more than ten (10), when tested in accordance with Test Method Tex-406-A, Part I, or Test Method Tex-106-E, respectively. This requirement applies to stockpiled RAP from which the asphalt has not been removed by extraction.

State-owned RAP sources that are designated on the plans will be available for use by the Contractor. Only RAP from state-owned sources will be allowed in mixes using more than 35 percent RAP, unless otherwise shown on the plans. When RAP sources are designated, either in stockpile or existing pavements, the approximate gradation, asphalt content, and asphalt cement properties of this material will be shown on the plans for material existing in pavements, or in a special provision "Local Material Sources for Reclaimed Asphaltic Pavement" for material in existing stockpiles.

Any Contractor-owned RAP that is to be used on this project shall remain the property of the Contractor while stockpiled and shall not be intermingled with state-owned RAP stockpiles. Any unused Contractor-owned RAP material shall be removed from the project site upon completion of the project.

Excess RAP removed from designated sources will remain the property of the State and will be delivered to stockpile locations shown on the plans.

(2) Asphaltic Material.

(a) Asphaltic Stabilized Mixture. Asphalt cement for the asphaltic stabilized mixture shall be of the grade shown on the plans or designated by the Engineer and shall meet the requirements of Item 300, "Asphalts, Oils and Emulsions". The Contractor shall notify the Engineer of the source of the asphaltic material prior to design of the asphaltic stabilized mixture. This source shall not be changed during the course of the project without the authorization of the Engineer. Should the source of asphaltic material be changed, the moisture resistance of the new material combination will be evaluated to verify that the requirements of Subarticle 345.3(1) are met.

(b) RAP Stabilized Mixture. When more than 35 percent RAP is used in the produced mixture, the asphalt in the RAP shall be restored to the properties indicated below. Restoration will be made by adding asphalt recycling agent and/or virgin asphalt cement meeting the requirements of Item 300, "Asphalts, Oils and Emulsions".

The mixture design will include recovery of asphalt from the RAP in accordance with Test Method Tex-211-F. The recovered asphalt shall be blended in the laboratory with the amount of asphalt cement and/or asphalt recycling agent selected for the project. The following tests shall be performed on the laboratory blend:

1. Viscosity, 60 °C, Pa·s - Test Method Tex-528-C
2. Thin Film Oven Aging Test - Test Method Tex-510-C
3. Viscosity, 60 °C, Pa·s, on residue from the Thin Film Oven Aging Test - Test Method Tex-528-C
4. Penetration at 25 °C, 100 g, 5 s, (0.1 mm)
 on the residue from the Thin Film Oven Aging Test - Test Method Tex-502-C
The viscosity in poises equivalent to the residue penetration at 25 °C shall be calculated as set forth in Test Method Tex-535-C. The viscosity index of the residue shall then be calculated as follows:

\[
\text{Residue Viscosity Index} = \frac{\text{Residue Viscosity, } \text{Pa} \cdot \text{s, equivalent to Penetration at } 25 \, ^\circ \text{C, (0.1 mm)}}{\text{Residue Viscosity, } 60 \, ^\circ \text{C, Pa} \cdot \text{s}}
\]

The aging index of the laboratory blended asphalt shall be determined as follows:

\[
\text{Aging Index} = \frac{\text{Residue Viscosity, } 60 \, ^\circ \text{C, Pa} \cdot \text{s}}{\text{Original Viscosity, } 60 \, ^\circ \text{C, Pa} \cdot \text{s}}
\]

The laboratory blended asphalt shall meet the following requirements:

- Residue Viscosity Index, maximum.......1500
- Aging Index, maximum................. 3.0

Samples of asphalt recovered from plant produced mix shall show the asphalt to meet the following requirement when tested in accordance with Test Methods Tex-211-F and Tex-502-C.

\[
\begin{array}{ll}
\text{Penetration, } 25 \, ^\circ \text{C} & \\
100 \, \text{g, 5 s, (0.1 mm)} & 30 \quad 55
\end{array}
\]

(c) Tack Coat. Asphaltic materials shown on the plans or approved by the Engineer shall meet the requirements of Item 300, "Asphalts, Oils and Emulsions".

(3) Additives. Additives to facilitate mixing and/or improve the quality of the asphaltic mixture or tack coat shall be used when noted on the plans or may be used with the authorization of the Engineer.

Unless otherwise shown on the plans, the Contractor may choose to use either lime or liquid antistripping agent to reduce the moisture susceptibility of the aggregate. The evaluation and addition of antistripping agent will be in accordance with Item 301, "Asphalt Antistripping Agents".

345.3. Asphalt Stabilized Mixtures. The asphalt stabilized mixtures shall consist of a uniform mixture of aggregate, hot asphalt cement, and additives if allowed or required.

An asphalt mixture design is a laboratory process which includes the determination of the quality of the asphalt and the aggregates, and the testing of the combined mixture.

(1) Mixture Design. The Contractor shall furnish the Engineer with representative samples of the materials to be used in production. Using these materials, the mix will be designed in accordance with Test Method Tex-126-E to conform with the requirements herein. The Engineer will furnish the mix design for the mixture. The Engineer may accept a design from the Contractor which was derived using these design procedures.
The second and subsequent mixture designs or partial designs for each grade of stabilized mixture which are necessitated by changes in the material or at the request of the Contractor will be charged to the Contractor when a rate is shown on the plans.

When properly proportioned, for the grade specified, the blend of aggregates shall produce an aggregate gradation which will conform to the limits of the master grading shown in Table 2. The gradation of the aggregate will be determined in accordance with Test Method Tex-200-F, Part I (Dry Sieve Analysis).

Unless otherwise shown on the plans, the mixture of aggregate, asphalt and additives proposed for use will be evaluated in the design stage for moisture susceptibility, in accordance with Item 301, "Asphalt Antistripping Agents". The Engineer may waive this test if a similar design, using the same ingredients, has proven satisfactory.

To substantiate the design, trial mixtures shall be produced and tested using all of the proposed project materials and equipment prior to any placement. The Engineer may waive trial mixtures if similar designs have proven satisfactory.

The mixture shall contain between 3.0 and 9.0 percent asphalt when designed in accordance with Test Method Tex-126-E. At optimum asphalt content, the design specimens shall have the following minimum strength when tested in accordance with Test Method Tex-126-E:

\[
\begin{array}{|c|c|}
\hline
\text{GRADE} & \text{STRENGTH, kPa} \\
\hline 1 & 345 \\
2 & 275 \\
3 & 205 \\
4^* & 205 \\
\hline
\end{array}
\]

* Unless a higher minimum strength is shown on the plans

(2) Grades. The aggregate gradation shall conform to the master grading limits shown in Table 2 for the grade of mix specified on the plans.

TABLE 2

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 mm</td>
<td>100</td>
<td>100</td>
<td>AS</td>
<td>SHOWN ON PLANS</td>
</tr>
<tr>
<td>37.5 mm</td>
<td>100</td>
<td>90-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.0 mm</td>
<td>90-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5 mm</td>
<td>45-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.75 mm</td>
<td>30-55</td>
<td>25-55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>425 µm</td>
<td>15-30</td>
<td>15-40</td>
<td>15-40</td>
<td></td>
</tr>
</tbody>
</table>
(3) **Tolerances.** Gradation approval may be based on stockpile samples if a single stockpile is used. If more than one stockpile is used, the mixture will be tested in accordance with Test Method Tex-210-F or Test Method Tex-228-F will be used in conjunction with combined cold feed belt samples tested in accordance with Test Method Tex-229-F. Other methods of proven accuracy may be used. The method of test will be determined by the Engineer. However, mixtures produced by weigh-batch plants and all mixtures containing RAP will be tested for gradation in accordance with Test Method Tex-210-F. The gradation of the aggregate shall not vary from the master grading limits for the specified grade except that a tolerance of two (2) percent is allowed on the sieve size for each mixture grade which shows 100 percent passing in Table 2.

The asphalt content shall not vary by more than 0.5 percent from that designated by the Engineer using Test Method Tex-210-F or Test Method Tex-228-F.

When disagreements concerning determination of specification compliance occur between allowed sampling and testing procedures, extracted aggregate testing shall take precedence over cold feed belt sampling.

If the mixture produced varies from the master grading limits and/or the asphalt content tolerance, adjustments shall be made by the Contractor until the mixture meets these requirements.

345.4. **Equipment.**

(1) **General.** All equipment for the handling of all materials, mixing, placing and compacting of the mixture shall be maintained in good repair and operating condition and subject to the approval of the Engineer. Any equipment found to be defective and potentially having a negative effect on the quality of the paving mixture will not be allowed.

(2) **Mixing Plants.** Mixing plants may be the weigh-batch type, the modified weigh-batch type, the drum-mix type, or the specialized recycling type. All plants shall be equipped with satisfactory conveyors, power units, mixing equipment, aggregate handling equipment, bins and dust collectors.

Automatic proportioning devices are required for all plants and shall be in accordance with Item 520, "Weighing and Measuring Equipment".

It shall be the Contractor's responsibility to provide safe and accurate means to enable inspection forces to take all required samples, to provide permanent means for checking the output of any specified metering device, and to perform calibration and mass checks as required by the Engineer. When cold feed belt sampling is to be used for gradation testing, occasional stoppage of the belt may be necessary unless other means of sampling are approved by the Engineer.

When using fuel oil heavier than Grade No. 2, or waste oil, the Contractor shall insure that the fuel delivered to the burner is at a viscosity of 100 SSU or less, when tested in accordance with Test Method Tex-534-C, to insure complete burning of the fuel. Higher viscosities will be allowed if recommended by the burner manufacturer. If necessary, the Contractor shall preheat the oil to maintain the required viscosity.

The Contractor shall provide means for obtaining a sample of the fuel, just prior to entry into the burner, in order to perform the viscosity test. The Contractor shall perform this test or provide a laboratory test report that will establish the temperature of the fuel necessary to meet the viscosity requirements. There shall be an in-line thermometer to check the temperature of the fuel delivered
to the burner.

Regardless of the burner fuel used, the burner or combination of burners and types of fuel used shall provide a complete burn of the fuel and not leave any fuel residue that will adhere to the heated aggregate or become mixed with the asphalt.

(a) Weigh-Batch Type.

Cold Aggregate Bin Unit and Proportioning Device. The cold aggregate bin unit shall be of sufficient size to store the amount of aggregate required to keep the plant in continuous operation and of proper design to prevent overflow of material from one bin to another. There shall be vertical partitions between each bin and on each end of the bins of sufficient height so that any overflow will be to the front and back and not allow overflow to the sides or between bins. Overflow that might occur shall not fall onto any feeder belt. The proportioning device shall provide a uniform and continuous flow of aggregate in the desired proportion to the dryer. Each aggregate shall be proportioned from a separate bin.

If RAP is used, a separate cold bin shall be required. The RAP feed system shall be equipped with a scalping screen to remove particles over 50 millimeters in size. The cold bin system shall supply the proper amount of RAP to the weigh box. RAP will not be allowed in the hot bins.

Dryer. The dryer shall continually agitate the aggregate during heating. The temperature shall be controlled so that the aggregate will not be damaged in the drying and heating operations. The dryer shall be of sufficient size to keep the plant in continuous operation.

Screening and Proportioning. The screening capacity and size of the hot aggregate bins shall be sufficient to screen and store the amount of aggregate required to properly operate the plant and keep the plant in continuous operation at full capacity. The hot bins shall be constructed so that oversize and overloaded material will be discarded through overflow chutes. Provisions shall be made to enable inspection forces to have easy and safe access to the proper location on the mixing plant where representative samples may be taken from the hot bins for testing. The plant shall be equipped with at least three hot bins. The aggregate shall be separated into the number of bins indicated on the plans or as directed by the Engineer.

Aggregate Weigh Box and Batching Scale. The aggregate weigh box and batching scales shall be of sufficient capacity to hold and weigh a complete batch of aggregate. The weigh box and scales shall conform to the requirements of Item 520, "Weighing and Measuring Equipment".

Asphaltic Material Measuring System. If an asphaltic material bucket and scales are used, they shall be of sufficient capacity to hold and weigh the necessary asphaltic material for one batch. The bucket and scales shall conform to the requirements of Item 520, "Weighing and Measuring Equipment".

If a pressure type flow meter is used to measure the asphaltic material, the requirements of Item 520, "Weighing and Measuring Equipment", shall apply. This system shall include an automatic temperature compensation device to insure a constant percent by mass of asphaltic material in the mixture.

Provisions of a permanent nature shall be made for checking the accuracy of the asphaltic material measuring device. The asphalt line to the measuring device shall be protected with a jacket of hot oil or other approved means to maintain the temperature of the line near the
temperature specified for the asphaltic material.

Mixer. The mixer shall be of the pugmill type and shall have a capacity of not less than 1350 kilograms (of natural-aggregate mixture) in a single batch, unless otherwise shown on the plans. Any mixer that has a tendency to segregate the aggregate or fails to secure a thorough and uniform mixture with the asphaltic material shall not be used. All mixers shall be provided with an automatic timer that will lock the discharge doors of the mixer for the required mixing period. The dump door or doors and the shaft seals of the mixer shall be tight enough to prevent spilling of aggregate or mixture from the pugmill.

Surge-Storage System and Scales. A surge-storage system may be used to minimize the production interruptions during the normal day's operations. A device such as a gob hopper or other device approved by the Engineer to prevent segregation in the surge-storage bin shall be used. The mixture shall be weighed upon discharge from the surge-storage system.

When a surge-storage system is used, scales shall be standard platform truck scales or other equipment such as weigh hopper (suspended) scales and shall conform to Item 520, "Weighing and Measuring Equipment". If truck scales are used, they shall be placed at a location approved by the Engineer. If other weighing equipment is used, the Engineer may require mass checks by truck scales for the basis of approval of the equipment.

Recording Device and Record Printer. The mixture shall be weighed for payment. If a surge-storage system is used, an automatic recording device and a digital record printer shall be provided to indicate the date, project identification number, vehicle identification, total mass of the load, tare mass of the vehicle, the mass of asphaltic mixture in each load and the number of loads for the day, unless otherwise indicated on the plans. When surge-storage is not used, batch mass will be used as the basis for payment and automatic recording devices and automatic digital record printers in accordance with Item 520, "Weighing and Measuring Equipment", shall be required.

(b) **Modified Weigh-Batch Type.**

General. This plant is similar to the weigh-batch type plant. The hot bin screens shall be removed and the aggregate controls placed at the cold feeds. The cold feed bins shall be the same as those required for the drum-mix type plant.

ColdAggregate Bin Unit and Feed System. The number of bins in the cold-aggregate bin unit shall be equal to or greater than the number of stockpiles of individual materials to be used.

The bins shall be of sufficient size to store the amount of aggregate required to keep the plant in continuous operation and of proper design to prevent overflow of material from one bin to another. There shall be vertical partitions between each bin and on each end of the bins of sufficient height so that any overflow will be to the front and back and not allow overflow to the sides or between bins. Overflow that might occur shall not fall onto any feeder belt. When required by the Engineer, an approved stationary scalping screen shall be placed on top of the field sand bin to eliminate roots and other objectionable material. The feed system shall provide a uniform and continuous flow of aggregate in the desired proportion to the dryer. The Contractor shall furnish a chart indicating the calibration of each cold bin in accordance with the manufacturer's recommendations or in a method acceptable to the Engineer.

If RAP is used, a separate cold bin shall be required. The RAP feed system shall be equipped with a scalping screen to remove particles over 50 millimeters in size. The cold bin system shall supply a uniform and proper amount of RAP to the mixture. The RAP shall be added
to the hot aggregate either prior to or at the weigh box. If added prior to the weigh box, the system shall include means acceptable to the Engineer to verify that the correct amount of RAP is continuously being fed.

Scalping Screen. A scalping screen shall be required after the cold feeds and ahead of the hot aggregate surge bins.

Dryer. The dryer shall continually agitate the aggregate during heating. The temperature shall be controlled so that the aggregate will not be damaged in the drying and heating operations. The dryer shall be of sufficient size to keep the plant in continuous operation.

Screening and Proportioning. The hot aggregate shall not be separated into sizes after being dried. There shall be one or more surge bins provided between the dryer and the weigh hopper. Surge bins shall be of sufficient size to hold enough combined aggregate for one complete batch of mixture.

Aggregate Weigh Box and Batching Scale. The aggregate weigh box and batching scales shall be of sufficient capacity to hold and weigh a complete batch of aggregate. The weigh box and scales shall conform to the requirements of Item 520, "Weighing and Measuring Equipment".

Asphaltic Material Measuring System. If an asphaltic material bucket and scales are used, they shall be of sufficient capacity to hold and weigh the necessary asphaltic material for one batch. The bucket and scales shall conform to the requirements of Item 520, "Weighing and Measuring Equipment".

If a pressure type flow meter is used to measure the asphaltic material, the requirements of Item 520, "Weighing and Measuring Equipment", shall apply. This system shall include an automatic temperature compensation device to insure a constant percent by mass of asphaltic material in the mixture.

Provisions of a permanent nature shall be made for checking the accuracy of the asphaltic material measuring device. The asphalt line to the measuring device shall be protected with a jacket of hot oil or other approved means to maintain the temperature of the line near the temperature specified for the asphaltic material.

Mixer. The mixer shall be of the pugmill type and shall have a capacity of not less than 1350 kilograms (of natural-aggregate mixture) in a single batch, unless otherwise shown on the plans. Any mixer that has a tendency to segregate the aggregate or fails to secure a thorough and uniform mixture with the asphaltic material shall not be used. All mixers shall be provided with an automatic timer that will lock the discharge doors of the mixer for the required mixing period. The dump door or doors and the shaft seals of the mixer shall be tight enough to prevent spilling of aggregate or mixture from the pugmill.

Surge-Storage System and Scales. A surge-storage system may be used to minimize the production interruptions during the normal day's operations. A device such as a gob hopper or other device approved by the Engineer to prevent segregation in the surge-storage bin shall be used. The mixture shall be weighed upon discharge from the surge-storage system.

When a surge-storage system is used, scales shall be standard platform truck scales or other equipment such as weigh hopper (suspended) scales and shall conform to Item 520, "Weighing and Measuring Equipment". If truck scales are used, they shall be placed at a location approved by the Engineer. If other weighing equipment is used, the Engineer may require mass checks by truck
scales for the basis of approval of the equipment.

Recording Device and Record Printer. The mixture shall be weighed for payment. If a surge-storage system is used, an automatic recording device and a digital record printer shall be provided to indicate the date, project identification number, vehicle identification, total mass of the load, tare mass of the vehicle, the mass of asphaltic mixture in each load and the number of loads for the day, unless otherwise indicated on the plans. When surge-storage is not used, batch mass will be used as the basis for payment and automatic recording devices and automatic digital record printers in accordance with Item 520, "Weighing and Measuring Equipment", shall be required.

(c) Drum-Mix Type.

General. The plant shall be adequately designed and constructed for the process of mixing aggregates and asphalt. The plant shall be equipped with satisfactory conveyors, power units, aggregate-handling equipment and feed controls.

Cold-Aggregate Bin Unit and Feed System. The number of bins in the cold-aggregate bin unit shall be equal to or greater than the number of stockpiles of individual materials to be used.

The bins shall be of sufficient size to store the amount of aggregate required to keep the plant in continuous operation and of proper design to prevent overflow of material from one bin to another. There shall be vertical partitions between each bin and on each end of the bins of sufficient height so that any overflow will be to the front and back and not allow overflow to the sides or between bins. Overflow that might occur shall not fall onto any feeder belt. When required by the Engineer, an approved stationary scalping screen shall be placed on top of the field sand bin to eliminate roots and other objectionable material. The feed system shall provide a uniform and continuous flow of aggregate in the desired proportion to the mixer. The Contractor shall furnish a chart indicating the calibration of each cold bin in accordance with the manufacturer's recommendations or in a method acceptable to the Engineer.

The system shall provide positive mass measurement of the combined cold-aggregate feed by use of belt scales or other approved devices. Provisions of a permanent nature shall be made for checking the accuracy of the measuring device as required by Item 520, "Weighing and Measuring Equipment". When a belt scale is used, mixture production shall be maintained so that the scale normally operates between 50 percent and 100 percent of its rated capacity. Belt scale operation below 50 percent of the rated capacity may be allowed by the Engineer if accuracy checks show the scale to meet the requirements of Item 520, "Weighing and Measuring Equipment", at the selected rate. It shall be satisfactorily demonstrated to the Engineer that mixture uniformity and quality have not been adversely affected.

If RAP is used, a separate cold bin shall be required. The RAP feed system shall be equipped with a scalping screen to remove particles over 50 millimeters in size prior to the weighing device. There shall be adequate cold bin controls to provide a uniform amount of RAP to the mixture.

When RAP is used, positive mass measurement of RAP shall be provided by the use of belt scales or other approved devices.

Scalping Screen. A scalping screen shall be required after the cold feeds and ahead of the combined aggregate belt scales.

Asphaltic Material Measuring System. An asphaltic material measuring device meeting
the requirements of Item 520, "Weighing and Measuring Equipment", shall be placed in the asphalt line leading to the mixer so that the cumulative amount of asphalt used can be accurately determined. Provisions of a permanent nature shall be made for checking the accuracy of the measuring device output. The asphalt line to the measuring device shall be protected with a jacket of hot oil or other approved means to maintain the temperature of the line near the temperature specified for the asphaltic material. The measuring system shall include an automatic temperature compensation device to maintain a constant percent by mass of asphaltic material in the mixture.

Synchronization Equipment for Feed-Control Systems. The asphaltic material feed-control shall be coupled with the total aggregate mass measuring device to automatically vary the asphalt-feed rate in order to maintain the required proportion.

Mixing System. The mixing system shall control the temperature so that the aggregate and asphalt will not be damaged in the drying, heating and mixing operations. A continuously recording thermometer shall be provided which will indicate the temperature of the mixture as it leaves the mixer.

Surge-Storage System and Scales. A surge-storage system shall be used to minimize the production interruptions during the normal day's operations. A device such as a gob hopper or other device approved by the Engineer to prevent segregation in the surge-storage bin shall be used. The mixture shall be weighed upon discharge from the surge-storage system.

Scales shall be standard platform truck scales or other equipment such as weigh hopper (suspended) scales and shall conform to Item 520, "Weighing and Measuring Equipment". If truck scales are used, they shall be placed at a location approved by the Engineer. If other weighing equipment is used, the Engineer may require mass checks by truck scales for the basis of approval of the equipment.

Recording Device and Record Printer. Automatic recording devices and automatic digital record printers shall be provided to indicate the date, project identification number, vehicle identification, total mass of the load, tare mass of the vehicle, the mass of asphaltic mixture in each load and the number of loads for the day in accordance with Item 520, "Weighing and Measuring Equipment", unless otherwise shown on the plans.

(d) Specialized Recycling Type.

General. Alternate methods of heating may be used which will not abnormally age the asphalt cement. This type of plant shall be capable of continually producing a minimum of 136 megagrams per hour of completed asphalt mixture that will meet all the requirements of this specification.

Cold-Aggregate Bin Unit and Feed System. The cold-aggregate feed system and controls shall meet all the requirements as listed under the drum-mix type plant.

Scalping Screen. A scalping screen shall be required after the cold feeds and ahead of the combined aggregate belt scales.

Dryer. The dryer shall continually agitate the RAP and aggregate during heating. The temperature shall be controlled so that the aggregate and asphalt will not be damaged in the drying and heating operations. The dryer shall be of sufficient size to keep the plant in continuous operation.

Asphalt Material Measuring System. An asphaltic material measuring device meeting the
requirements of Item 520, "Weighing and Measuring Equipment", shall be placed in the asphalt line leading to the mixer so that the cumulative amount of asphalt used can be accurately determined. Provisions of a permanent nature shall be made for checking the accuracy of the measuring device output. The asphalt line to the measuring device shall be protected with a jacket of hot oil or other approved means to maintain the temperature of the line near the temperature specified for the asphaltic material. The measuring system shall include an automatic temperature compensation device to maintain a constant percent by mass of asphaltic material in the mixture.

Synchronization Equipment for Feed-Control Systems. The asphaltic material feed-control shall be coupled with the total aggregate mass measuring device to automatically vary the asphalt-feed rate in order to maintain the required proportion.

Mixer. The mixer shall be of the continuous mechanical mixing type. Any mixer that has a tendency to segregate the mixture or fails to secure a thorough and uniform mixture shall not be used. A continuously recording thermometer shall be provided which will indicate the temperature of the mixture as it leaves the mixer.

Surge-Storage System and Scales. A surge-storage system shall be used to minimize the production interruptions during the normal day's operations. A device such as a gob hopper or other device approved by the Engineer to prevent segregation in the surge-storage bin shall be used. The mixture shall be weighed upon discharge from the surge-storage system.

Scales shall be standard platform truck scales or other equipment such as weigh hopper (suspended) scales and shall conform to Item 520, "Weighing and Measuring Equipment". If truck scales are used, they shall be placed at a location approved by the Engineer. If other weighing equipment is used, the Engineer may require mass checks by truck scales for the basis of approval of the equipment.

Recording Device and Record Printer. Automatic recording devices and automatic digital record printers shall be provided to indicate the date, project identification number, vehicle identification, total mass of the load, tare mass of the vehicle, the mass of asphaltic mixture in each load and the number of loads for the day in accordance with Item 520, "Weighing and Measuring Equipment", unless otherwise shown on the plans.

(3) **Asphaltic Material Heating Equipment.** Asphaltic material heating equipment shall be adequate to heat the required amount of asphaltic material to the desired temperature. The heating apparatus shall be equipped with a continuously recording thermometer with a 24-hour chart that will record the temperature of the asphaltic material at the location of highest temperature.

(4) **Spreading and Finishing Machine.** The spreading and finishing machine shall be approved by the Engineer and shall meet the requirements indicated below.

(a) **Screed Unit.** The spreading and finishing machine shall be equipped with a heated compacting screed. It shall produce a finished surface meeting the requirements of the typical cross sections and the surface tests.

Extensions added to the screed shall be provided with the same compacting action and heating capability as the main screed unit, except for use on variable depth tapered areas and/or as approved by the Engineer.

The spreading and finishing machine shall be equipped with an approved automatic dual longitudinal screed control system and automatic transverse screed control system. The
longitudinal controls shall be capable of operating from any longitudinal grade reference including a stringline, ski, mobile stringline, or matching shoe.

The Contractor shall furnish all equipment required for grade reference. It shall be maintained in good operating condition by personnel trained in the use of this type of equipment.

The grade reference used by the Contractor may be of any type approved by the Engineer. Control points, if required by the plans, shall be established for the finished profile in accordance with Item 5, "Control of the Work". These points shall be set at intervals not to exceed 15 meters. The Contractor shall set the grade reference from the control points. The grade reference shall have sufficient support so that the maximum deflection shall not exceed two (2) millimeters between supports.

(b) Tractor Unit. The tractor unit shall be equipped with a hydraulic hitch sufficient in design and capacity to maintain contact between the rear wheels of the hauling equipment and the pusher rollers of the finishing machine while the mixture is being unloaded.

No portion of the mass of hauling equipment, other than the connection, shall be supported by the asphalt paver. No vibrations or other motions of the loading equipment, which could have a detrimental effect on the riding quality of the completed pavement, shall be transmitted to the paver.

The use of any vehicle which requires dumping directly into the finishing machine and which the finishing machine cannot push or propel to obtain the desired lines and grades without resorting to hand finishing will not be allowed.

(5) Material Transfer Equipment. Equipment to transfer mixture from the hauling units or the roadbed to the spreading and finishing machine will be allowed unless otherwise shown on the plans. A specific type of material transfer equipment shall be required when shown on the plans.

(a) Windrow Pick-Up Equipment. Windrow pick-up equipment shall be constructed in such a manner that substantially all the mixture deposited on the roadbed is picked up and loaded into the spreading and finishing machine. The mixture shall not be contaminated with foreign material. The loading equipment shall be designed so that it does not interfere with the spreading and finishing machine in obtaining the required line, grade and surface without resorting to hand finishing.

(b) Material Feeding System. Material feeding systems shall be designed to provide a continuous flow of uniform mixture to the spreading and finishing machine. When use of a material feeding system is required on the plans, it shall meet the storage capacity, remixing capability, or other requirements shown on the plans.

(6) Motor Grader. The motor grader, when used, shall be a self-propelled power motor grader and shall be equipped with smooth tread pneumatic tired wheels, unless otherwise directed. It shall have a blade length of not less than 3.6 meters and a wheelbase of not less than 4.9 meters.

(7) Rollers. Rollers provided shall meet the requirements for their type as follows:

(a) Pneumatic-Tire Roller. The roller shall be an acceptable medium pneumatic tire roller conforming to the requirements of Item 213, "Rolling (Pneumatic Tire)", Type A, unless otherwise specified on the plans. Pneumatic-tire rollers used for compaction shall provide a minimum 550 kilopascals ground contact pressure. When used for kneading and sealing the surface only, they
shall provide a minimum of 380 kilopascals ground contact pressure.

(b) **Two-Axle Tandem Roller.** This roller shall be an acceptable self-propelled tandem roller weighing not less than 7.2 megagrams.

c) **Three-Wheel Roller.** This roller shall be an acceptable self-propelled three wheel roller weighing not less than 9.1 megagrams.

d) **Three-Axle Tandem Roller.** This roller shall be an acceptable self-propelled three axle roller weighing not less than 9.1 megagrams.

e) **Trench Roller.** This roller shall be an acceptable self-propelled trench roller equipped with a sprinkler for keeping the wheels wet and an adjustable road wheel so that the roller may be kept level during rolling. The drive wheel shall be not less than 500 millimeters wide. The roller under working conditions shall produce not less than 5803 kilograms per meter of roller width and be so geared that a speed of approximately three (3) kilometers per hour is obtained in low gear.

(f) **Vibratory Steel-Wheel Roller.** This roller shall have a minimum mass of 5.4 megagrams. The compactor shall be equipped with amplitude and frequency controls and shall be specifically designed to compact the material on which it is used.

(8) **Straightedges and Templates.** When directed by the Engineer, the Contractor shall provide acceptable 3-meter straightedges for surface testing. Satisfactory templates shall be provided as required by the Engineer.

(9) **Alternate Equipment.** When permitted by the Engineer, equipment other than that specified herein which will consistently produce satisfactory results may be used.

345.5. **Stockpiling, Storage and Mixing.**

(1) **Stockpiling of Aggregates.** Prior to stockpiling of aggregates, the area shall be cleaned of trash, weeds, grass and shall be relatively smooth and well drained. The stockpiling shall be done in a manner that will minimize aggregate degradation, segregation, mixing of one stockpile with another, and will not allow contamination with foreign material.

The plant shall have at least a two-day supply of aggregates on hand before production can begin and at least a two-day supply shall be maintained through the course of the project, unless otherwise approved by the Engineer.

No stockpile shall contain aggregate from more than one source.

Prior to starting RAP stockpiling operations, the Contractor shall develop and submit in writing to the Engineer an acceptable stockpile production procedure and management plan which will ensure that a homogeneous stockpile of RAP is available. Stockpiles of Contractor-owned RAP material shall be completely established at the plant site prior to submission of mixture design samples and shall be of sufficient quantity to meet the material requirements of the project for which they are prepared. When shown on the plans, plant site stockpiles composed of RAP from designated sources shall be of the minimum size shown on the plans prior to submission of mixture design samples.

When required by the Engineer, additional material shall not be added to stockpiles that have previously been sampled for approval.
Equipment of an acceptable size and type shall be furnished to work the stockpiles and prevent segregation and degradation of the aggregates.

(2) Storage and Heating of Asphaltic Materials. The asphaltic material storage capacity shall be ample to meet the requirements of the plant. Asphalt shall not be heated to a temperature in excess of that specified in Item 300, "Asphalts, Oils and Emulsions". All equipment used in the storage and handling of asphaltic material shall be kept in a clean condition at all times and shall be operated in such a manner that there will be no contamination with foreign matter.

(3) Feeding and Drying of Aggregate. The feeding of various sizes of aggregate and RAP, if applicable, to the dryer shall be done through the cold aggregate bins and the proportioning device in such a manner that a uniform and constant flow of materials in the required proportions will be maintained. The aggregate shall be dried and heated to the temperature necessary to produce a mixture having the specified temperature.

(4) Mixing and Storage.

(a) Weigh-Batch Plant. In introducing the batch into the mixer, all aggregate shall be introduced first and shall be mixed thoroughly for a minimum period of five seconds to uniformly distribute the various sizes throughout the batch before the asphaltic material is added. The asphaltic material shall then be added and the mixing continued for a wet mixing period of not less than 15 seconds. The mixing period shall be increased if, in the opinion of the Engineer, the mixture is not uniform or the aggregates are not properly coated.

Temporary storing or holding of the asphaltic mixture by the surge-storage system will be permitted during the normal day's operation. Overnight storage will not be permitted unless authorized in the plans or in writing by the Engineer. The mixture coming out of the surge-storage bin shall be of equal quality to that coming out of the mixer.

(b) Modified Weigh-Batch Plant. The mixing and storage requirements shall be the same as is required for a standard weigh-batch plant.

(c) Drum-Mix Plant. The amount of aggregate and asphaltic material entering the mixer and the rate of travel through the mixing unit shall be so coordinated that a uniform mixture of the specified grading and asphalt content will be produced.

Temporary storing or holding of the asphaltic mixture by the surge-storage system will be required during the normal day's operation. Overnight storage will not be permitted unless authorized on the plans or by the Engineer. The mixture coming out of the surge-storage bin shall be of equal quality to that coming out of the mixer.

(d) Specialized Recycling Plant. The mixing and storage requirements shall be the same as that stated for the drum-mix plant.

(e) Discharge Temperature. The Engineer will select the target discharge temperature of the mixture between 110 °C and 175 °C. The mixture, when discharged from the mixer, shall not vary from this selected temperature more than 15 °C, but in no case shall the temperature exceed 180 °C.

(f) Moisture Content. The mixture produced from each type of mixer shall have a moisture content not greater than one (1) percent by mass when discharged from the mixer, unless otherwise
shown on the plans and/or approved by the Engineer. The moisture content will be determined in accordance with Test Method Tex-212-F.

(g) RAP. If RAP is used, it shall be mixed and blended so that there is no evidence of unseparated particles in the mixture as it leaves the mixer.

345.6. Construction Methods.

(1) General. It shall be the responsibility of the Contractor to produce, transport, place and compact the specified paving mixture in accordance with the requirements herein.

The asphaltic mixture, when placed with a spreading and finishing machine, or the tack coat shall not be placed when the air temperature is below 10 °C and is falling, but it may be placed when the air temperature is above 5 °C and is rising.

The asphaltic mixture, when placed with a motor grader, shall not be placed when the air temperature is below 15 °C and is falling, but may be placed when the air temperature is above 10 °C and is rising.

The air temperature will be taken in the shade away from artificial heat.

It is further provided that the tack coat or asphaltic mixture shall be placed only when the humidity, general weather conditions and temperature and moisture condition of the base, in the opinion of the Engineer, are suitable.

If, after being discharged from the mixer and prior to placing, the temperature of the asphaltic mixture is 10 °C or more below the selected discharge temperature established by the Engineer, all or any part of the load may be rejected and payment will not be made for the rejected material.

(2) Tack Coat. The surface upon which the tack coat is to be placed shall be cleaned thoroughly to the satisfaction of the Engineer. The surface shall be given a uniform application of tack coat using asphaltic materials of this specification. This tack coat shall be applied, as directed by the Engineer, with an approved sprayer at a rate not to exceed 0.45 liter residual asphalt per square meter of surface. Where the mixture will adhere to the surface on which it is to be placed without the use of a tack coat, the tack coat may be eliminated by the Engineer. All contact surfaces of curbs and structures and all joints shall be painted with a thin uniform application of tack coat. During the application of tack coat, care shall be taken to prevent splattering of adjacent pavement, curb and gutter and structures. The tack coat shall be rolled with a pneumatic tire roller when directed by the Engineer.

(3) Transporting. The asphaltic mixture shall be hauled to the work site in tight vehicles previously cleaned of all foreign material. The dispatching of the vehicles shall be arranged so that all material delivered is placed and all rolling completed during daylight hours unless otherwise shown on the plans. In cool weather or for long hauls, covering and insulating of the truck bodies may be required. If necessary, to prevent the mixture from adhering to the body, the inside of the truck may be given a light coating of release agent satisfactory to the Engineer.

(4) Placing.

(a) The asphaltic mixture shall be dumped and spread on the approved prepared surface with the spreading and finishing machine. When properly compacted, the finished pavement shall
be smooth, of uniform texture and density and shall meet the requirements of the typical cross sections and the surface tests. In addition, the placing of the asphaltic mixture shall be done without tearing, shoving, gouging or segregating the mixture.

Unloading into the finishing machine shall be controlled so that bouncing or jarring the spreading and finishing machine shall not occur and the required lines and grades shall be obtained without resorting to hand finishing, except as shown under Subarticle 345.6.(4)(d).

Unless otherwise shown on the plans, dumping of the asphaltic mixture in a windrow and then placing the mixture in the finishing machine with windrow pick-up equipment will be permitted. The windrow pick-up equipment shall be operated in such a manner that substantially all the mixture deposited on the roadbed is picked up and loaded into the finishing machine without contamination by foreign material. The windrow pick-up equipment will be so operated that the finishing machine will obtain the required line, grade and surface without resorting to hand finishing. Any operation of the windrow pick-up equipment resulting in the accumulation and subsequent shedding of accumulated material into the asphaltic mixture will not be permitted.

(b) When approved by the Engineer, level-up courses may be spread with a motor grader.

c) The spreading and finishing machine shall be operated at a uniform forward speed consistent with the plant production rate, hauling capability, and roller train capacity to result in a continuous operation. The speed shall be slow enough that stopping between trucks is not ordinarily required. If, in the opinion of the Engineer, sporadic delivery of material is adversely affecting the mat, the Engineer may require paving operations to cease until acceptable methods are provided to minimize starting and stopping of the paver.

The hopper flow gates of the spreading and finishing machine shall be adjusted to provide an adequate and consistent flow of material. These shall result in enough material being delivered to the augers so that they are operating approximately 85 percent of the time or more. The augers shall provide means to supply adequate flow of material to the center of the paver. Augers shall supply an adequate flow of material for the full width of the mat, as approved by the Engineer. Augers should be kept approximately one-half to three-quarters full of mixture at all times during the paving operation.

d) When the asphaltic mixture is placed in a narrow strip along the edge of an existing pavement, or used to level up small areas of an existing pavement, or placed in small irregular areas where the use of a finishing machine is not practical, the finishing machine may be eliminated when authorized by the Engineer.

(e) If a pattern of surface irregularities or segregation is detected, the Contractor shall make an investigation into the causes and immediately take the necessary corrective action. With the approval of the Engineer, placement may continue for no more than one full production day from the time the Contractor is first notified and while corrective actions are being taken. If the problem still exists after that time, paving shall cease until the Contractor further investigates the causes and the Engineer approves further corrective action to be taken.

(5) Compacting.

(a) The pavement shall be compacted thoroughly and uniformly with the necessary rollers to obtain the compaction and cross section of the finished paving mixture meeting the requirements of the plans and specifications.
When rolling with the three-wheel, tandem or vibratory rollers, rolling shall start by first rolling the joint with the adjacent pavement and then continue by rolling longitudinally at the sides and proceed toward the center of the pavement, overlapping on successive trips by at least 0.3 meter, unless otherwise directed by the Engineer. Alternate trips of the roller shall be slightly different in length. On super-elevated curves, rolling shall begin at the low side and progress toward the high side, unless otherwise directed by the Engineer.

When rolling with vibratory steel-wheel rollers, equipment operation shall be in accordance with Item 217, "Rolling (Vibratory)" and the manufacturer's recommendations, unless otherwise directed by the Engineer. Vibratory rollers shall not be left vibrating while not rolling or when changing directions. Unless otherwise shown on the plans or approved by the Engineer, vibratory rollers shall not be allowed in the vibrating mode on mats with a plan depth of less than 40 millimeters.

The motion of the rollers shall be slow enough to avoid other than normal initial displacement of the mixture. If any displacement occurs, it shall be corrected to the satisfaction of the Engineer. The roller shall not be allowed to stand on pavement which has not been fully compacted. To prevent adhesion of the surface mixture to the steel-wheel rollers, the wheels shall be kept thoroughly moistened with water, but an excess of water will not be permitted. Necessary precautions shall be taken to prevent the dropping of diesel, gasoline, oil, grease or other foreign matter on the pavement, either when the rollers are in operation or when standing.

The edges of the pavement along curbs, headers and similar structures, and all places not accessible to the roller, or in such positions as will not allow thorough compaction with the rollers, shall be thoroughly compacted with lightly oiled tamps.

Rolling with a trench roller will be required on widened areas, in trenches and other limited areas where satisfactory compaction cannot be obtained with the approved rollers.

In-Place Compaction Control. In-place compaction control is required for all mixtures. Unless otherwise shown on the plans, density control shall be required.

(a) Density Control. The material shall be placed and compacted to a minimum density as determined by Test Method Tex-126-E or as specified on the plans. The gyratory density shall be determined from material sampled from the mixing plant and molded in accordance with Test Method Tex-126-E. Procedures and methods outlined in Test Method Tex-126-E shall also be used in determining the actual in-place density, unless determined otherwise by the Engineer. The field specimens utilized for the in-place density testing may be either cores or sections of asphalt stabilized base tested according to Test Method Tex-207-F. The nuclear-density gauge or other methods of determining in-place compaction which correlate satisfactorily with those results obtained through the use of Test Method Tex-126-E may be used.

Unless otherwise shown on the plans, the Contractor shall be responsible for obtaining the required roadway specimens at his expense and in a manner and at locations selected by the Engineer.

The Contractor shall be responsible for determining the number and type of rollers to be used to obtain the required density. The rollers shall be operated in accordance with the requirements of this specification and as approved by the Engineer.

If the in-place density falls 0.1 to 1.0 percentage points below the minimum density from Test Method Tex-126-E, the Contractor shall investigate the causes and make the necessary
corrections. Production may proceed for not more than one full day while corrections to the
construction operations or mixture are being made to obtain the minimum density. If the minimum
density is not obtained after one day, production shall cease. The Contractor shall further
investigate the cause. At that point a test strip as described below shall be required.

If the in-place density is more than 1.0 percent below the minimum density, production shall
cease immediately and a test strip as described below shall be required.

In either case, the Contractor shall only be allowed to place a test section of one lane width,
not to exceed 300 meters in length, to demonstrate that the minimum density can be obtained. This
procedure will continue until a test section meeting the minimum density requirement is produced.
Only two (2) test sections per day will be allowed. When a test section producing satisfactory
density is placed, full production may then resume.

Increasing the asphalt content of the mixture in order to increase in-place density shall not be
allowed.

The Contractor is encouraged to perform supplemental compaction testing for his own
information.

(b) Ordinary Compaction Control. When the requirement of density control has been
removed by plans note, one (1) three-wheel roller, one (1) pneumatic-tire roller, and one (1) tandem
roller shall be furnished for each compaction operation except as provided below or approved by
the Engineer. The use of a tandem roller may be waived by the Engineer when the surface is
already adequately smooth and further steel-wheel rolling is shown to be ineffective. With
approval of the Engineer, the Contractor may substitute a vibratory roller for the three-wheel roller
and/or the tandem roller. Use of at least one (1) pneumatic-tire roller is required. Additional or
heavier rollers shall be furnished if required by the Engineer.

Rolling patterns shall be established by the Contractor as outlined in Test Method Tex-207-F,
Part IV, to achieve the maximum compaction, unless otherwise directed by the Engineer. The
selected rolling pattern shall be followed unless changes in the mixture or placement conditions
occur which affect compaction. When changes in the mixture or placement conditions occur, a new
rolling pattern shall be established.

(c) Compaction Cessation Temperature. Regardless of the method required for in-place
compaction control, all rolling for compaction shall be completed before the mixture temperature
drops below 80°C.

(7) Surface Finish. The compacted material shall conform to the typical cross sections, lines
and grades shown on the plans, and as directed by the Engineer, and shall have a smooth surface.

The surface shall be tested with a 3-meter straightedge at locations selected by the Engineer.

The variation of the surface from the testing edge shall not exceed three (3) millimeters
between any two (2) contacts, when measured longitudinally or transversely.

(8) Opening to Traffic. The completed asphalt stabilized base course shall be opened to
traffic when directed by the Engineer. The Contractor's attention is directed to the fact that all
construction traffic allowed on the pavement open to the public will be subject to the State laws
governing traffic on highways.
If the surface ravels, flushes, ruts or deteriorates in any manner prior to final acceptance of the work, it will be the Contractor's responsibility to correct this condition at his expense, to the satisfaction of the Engineer and in conformance with the requirements of this specification.

345.7. Measurement. The quantity of asphalt stabilized base will be measured by the composite mass method.

Asphalt stabilized base will be measured by the megagram of the composite "Asphalt Stabilized Base" of the grade actually used in the completed and accepted work in accordance with the plans and specifications for the project. The composite asphalt stabilized base mixture is hereby defined as the asphalt, aggregate, RAP and additives as noted in the plans and/or approved by the Engineer.

If mixing is done by a drum-mix plant or specialized recycling plant, measurement will be made on scales as specified herein.

If mixing is done by a weigh-batch plant or modified weigh-batch plant, measurement will be determined on the batch scales unless surge-storage is used. Records of the number of batches, batch design and the mass of the composite "Asphalt Stabilized Base" shall be kept. Where surge-storage is used, measurement of the material taken from the surge-storage bin will be made on truck scales or suspended hopper scales.

345.8. Payment.

(1) The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for the "Asphalt Stabilized Base" of the grade specified.

The payment based on the unit bid price shall be full compensation for quarrying, furnishing all materials, additives, freight involved, for all heating, mixing, hauling, cleaning the existing base course or pavement, tack coat, placing, rolling and finishing asphalt stabilized mixture, transporting RAP from designated sources, transporting any excess RAP to locations shown on the plans, and for all manipulations, labor, tools, equipment and incidentals necessary to complete the work.

(2) All templates, straightedges, core drilling equipment, scales and other weighing and measuring devices necessary for the proper construction, measuring and checking of the work shall be furnished, operated and maintained by the Contractor at his expense.

(3) State-owned RAP from sources designated on the plans will be available, at no cost, to the Contractor.