SPECIAL SPECIFICATION

5732

Water and Wastewater Utilities

1. **Description.** Furnish and install all exterior water mains, drain lines, and any and all distribution lines connected to the various structures as shown on the drawings.

2. **Materials.** Furnish the materials designated on the drawings and in the details for each particular system in accordance with all material requirements of the City of Austin Standard Products Lists and the attached or referenced City of Austin Special Specification Items.

3. **Construction Methods.** Install each system in accordance with the construction methods detailed in the drawings and the City of Austin Standard Details and as described in the attached or referenced City of Austin Special Specification Items.

 Follow all environment protection measures in accordance with standard TxDOT methods and as detailed on the drawings. For this Contract street cut permits will not be required within State right of way.

 Encase all pipes crossing under roadways in the type and size of encasement pipe indicated on the drawings. Extend casings extend a minimum of 3 ft. beyond each curb or edge of shoulder.

 Where non-metallic pipe is installed longitudinally, install a durable metal wire or other means of pipe detection approved by the Engineer.

 Provide surveying services for construction of the project, and provide “cut sheets” to the City of Austin and TxDOT (a requirement of City of Austin Special Specification Item SS510S, entitled “Pipe.”)

 If directed by the Engineer, perform connections to existing lines or reconnection of services at night or on the weekend.

A. **Testing.** Test each system as outlined in the appropriate City of Austin Special Specification Items. Retesting charges will be deducted from payments to the Contractor for any test that fails to meet the required Standards described in the attached City of Austin Special Specification Items.
B. Disinfection of Potable Water Lines. Disinfect all potable waterlines as described in Section S510S.3 (29) of the City of Austin Special Specification Item SS510S, entitled “Pipe.”

C. De-chlorination of Water. De-chlorinate water flushed from waterlines.

D. Safety. Exercise precautions for the safety of workers and the public at all times, and comply with applicable provisions of all Federal and State safety laws and regulations.

E. Warranty Agreement. Execute a warranty agreement between the City of Austin and Contractor to cover this Item of work including a maintenance bond for not less than 10% of this Item’s cost for a one-year warranty period beginning with the date that the line is officially placed in service.

The cost of the warranty agreement will not be paid for directly, but will be subsidiary pertinent Items.

4. Measurement. This Item will be measured as follows:

A. Jacking or Boring Pipe. Pipe of the type, size, and class specified will be measured by the foot of pipe. The measured length will be computed between the ends of the pipe along the central axis as installed. (City of Austin Special Specification Item SS501S “Jacking and Boring Pipe”)

B. Frames, Grates, Rings, and Covers. Manhole covers will be measured by each unit, all sizes. (City of Austin Special Specification Item SS503S “Frames, Grates, Rings and Covers”)

C. Concrete Encasement and Encasement Pipe. Encasement of pipes of all types, sizes, and classes will be measured by the foot of concrete encasement or encasement pipe. Measurement will be made between the ends of the encasement along the centerline of the pipe as installed. Encasement pipe installed by Jacking or Boring will be measured as “Jacking or Boring Pipe.” (City of Austin Special Specification Item SS505S “Concrete Encasement and Encasement Pipe”)

D. Manholes. Manholes will be measured as listed. (City of Austin Special Specification Item SS506)

1. “Manhole(Adjust to Grade)” will be measured by the vertical linear foot or by the cubic yard for the indicated structure.

2. “Manhole(Structural Lining)” will be measured by the vertical linear foot for the indicated structure.

3. “Manhole(Vent Shaft Walls)” will be measured by the cubic yard for the indicated structure.

4. “Manhole(Wrapid Seal)” will be measured by the square foot of material installed for the indicated structure.

5. “Manhole(PVC Liner)” will be measured by the square foot of material installed for the indicated structure.
6. “Manhole(FRP Louvers)” will be measured by the each.

7. “Manhole(Cover)” will be measured by the each.

8. “Manhole(Abandon Existing)” will be measured by the vertical linear foot for the indicated structure.

9. “Abandon Existing Augmentation Water System” will be measured by the cubic yard for the indicated structure.

E. **Excavation Safety Systems.** “Trench Excavation Safety Protection” will be measured by the foot through manholes and other appurtenances along the centerline of trench conforming to the Contractor’s Excavation Safety System Plan. This method of measurement will apply to any and all protective systems, including but not limited to tieback or braced sheeting, tieback or braced soldier piles and lagging, slurry walls, soil nails, rock bolts, shoring, trench boxes, and sloping or benching as used to provide a “Trench Excavation Safety Protective” system in accordance with the Excavation Safety System Plan. (City of Austin Special Specification Item SS509S)

F. **Pipe.** Pipe of the various types, sizes, and classes specified on the drawings or Contract will be measured by the foot as listed. (City of Austin Special Specification Item SS510S “Pipe”)

Parallel lines will be measured individually.

Pipe of the diameter and type specified will be measured by the foot along the centerline of the pipe. The measurement for “Pipe” will include the length of fittings, valves, or other items included in the Contract. Other items will not include manholes or junction boxes.

Where manholes or junction boxes are included in lines of pipe, that length of pipe tying into the structure wall will be included for measurement, but no other portion of the structure length or width will be included.

Where the pipe ties into an existing pipe, measurement of “Pipe” will be made from the visible end of the existing pipe or the outside surface of the fitting flange to which the “Pipe” connects.

Abandoned pipe of the type and disposition specified will be measured by the foot.

1. “Pipe (Abandon)(Waterline)(Size)(In Place)”
3. “Pipe (Abandon)(Wastewater)(In Place)”

G. **Wet Connections.** This Item will be measured by each unit according to the size of the main that is in service.

H. **Ductile Iron Fittings.** This Item will be measured by the ton. (City of Austin Special Specification Item SS510S “Pipe”)
I. **Pressure Taps.** This Item will be measured as each according to the size tap made and the size main tapped.

J. **Valves.** Valves of the type and size, as specified, will be measured by each unit, all depths, and shown on the plans and in City of Austin Special Specification Item SS511S, “Water Valves.”

K. **Fire Hydrants.** Fire Hydrants will be measured per each, all depths. Blue reflective delineator for identifying location of newly installed fire hydrants shall be considered as subsidiary to fire hydrants as specified on the drawings and in City of Austin Special Specification Item SS511S, “Water Valves.”

L. **Drain Valve Assembly.** Drain valve assemblies will be measured per each “Drain Valve Assembly,” all depths. Blue reflective delineator for identifying location of newly installed fire hydrants shall be considered as subsidiary to fire hydrants as specified on the drawings and in City of Austin Special Specification Item SS511S, “Water Valves.”

M. **Manual and Automatic Air Release Assemblies.** Manual and automatic air release assemblies will be measured as “Air-Vacuum Release Valve” per each unit, all depths, of the size and type as specified on the drawings and in City of Austin Special Specification Item SS511S, “Water Valves.”

N. **Concrete Retards.** “Concrete Retards” will be measured by the cubic yard or by each, per plan dimensions. (City of Austin Special Specification Item SS593S entitled “Concrete Retards” and City of Austin Standard Detail Number 593S-1 “Concrete Retard”)

O. **Concrete removal, excavation and backfill, riprap, pipe, headwalls, wingwalls, collars and apron slabs.** These Items will not be measured under this Item but will be considered subsidiary to the other Items.

5. **Payment.** The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit bid prices for the items described below. This price is full compensation for all staking and engineering work, testing, disinfection, furnishing, and installing all materials, accessories, and incidentals necessary to complete the work prescribed in this specification and as detailed on the drawings. This payment is also full compensation for all excavation and backfilling, all freight, loading, unloading, handling of materials, labor, tools and equipment and incidentals necessary to complete the work.

A. **Jacking or Boring Pipe** will be paid at the unit price bid for “Jacking or Boring Pipe,” of the type, size, and class specified. This price is full compensation for furnishing, preparing, hauling, and installing required materials, encasement pipe, bulkhead, for grouting and for labor, tools, equipment and incidentals necessary to complete work, including excavation, backfilling and disposal of surplus material. (City of Austin Special Specification Item SS501S entitled “Jacking or Boring Pipe”)

B. **Frames, grates, rings and covers** will be paid at the unit price bid for “Frames, Grates, Rings and Covers,” of the type specified. This price is full compensation for furnishing frames, rings, and covers and for all other materials, tools, equipment, and incidentals
required to install. (City of Austin Special Specification Item SS503S “Frames, Grates, Rings and Covers”)

C. Concrete Encasement and Encasement Pipe will be paid at the unit price bid for “Concrete Encasement and Encasement Pipe” of the diameter and type specified. This price is full compensation for furnishing all materials, pipe for all preparation, hauling, installation, and for all labor, tools, equipment and incidentals necessary to complete the work, including bench excavation and disposal of surplus material. (City of Austin Special Specification Item SS505S entitled “Concrete Encasement and Encasement Pipe”). Encasement pipe installed by jacking or boring will be paid as “Jacking or Boring Pipe.”

D. Manholes will be measured as provided under “Measurement” and paid at the unit price bid for “Manhole(Adjust to Grade),” “Manhole(Vent Shaft Walls),” “Manhole(Wrapid Seal),” “Manhole(PVC Liner),” “Manhole(FRP Louvers),” “Manhole(Cover),” which will include full compensation for furnishing all concrete, reinforcing steel, brick, mortar, castings, frames, grates, rings and covers, and for all other materials, tools, equipment and incidentals required to complete the work installed to finish grade. (City of Austin Special Specification Item SS506, “Manholes”) Structural Lining will be will be paid at the unit price bid for “Manholes(Structural Lining)” which will include surface preparation, environmental adjustments, lining application, and curing, as required.

Abandonment of existing manholes will be paid as “Manhole(Abandon Existing)” and will include removal and disposal of cone section and plugging of the existing line.

Abandonment of the existing augmentation water system tank will be paid as “Abandon Existing Augmentation Water System” and include dewatering and backfilling the tank with flowable fill.

E. Excavation Safety Systems will be paid as “Trench Excavation Safety Protection” only for trenches that exceed a depth of 5 ft. Excavation Safety Systems for all other excavations will be incidental to other work on the project.

Trench excavation safety protection will be paid at unit price bid for “Trench Excavation Safety Protection.” This price is full compensation to include all components of the trench protection system, which can include, but are not limited to designing, sloping or benching, special clearing, excavation necessary to implement the installation safely, dewatering, maintaining, replacing, repairing, and removing the Trench Excavation Safety Protection. No payment will be made for trench excavation safety protection or special shoring made necessary by the Contractor’s selection of an optional design or sequence of work that creates the need for the trench excavation safety protection or special shoring. (City of Austin Special Specification Item SS509S “Excavation Safety Systems.”)

F. Pipe work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid at the unit price bid for “Pipe,” of the diameter and type specified and “Pipe(Abandon)” of the type and disposition specified.
Excavation and backfill are included as pipe installation and will not be measured as such, but shall be subsidiary to the unit price bid for constructing pipe. The price is full compensation for project traffic control, surveying for construction, cut sheets, clearing, all bedding materials, fittings, (except for cast iron or ductile iron fittings, which are paid separately), caps, bulkheads, joints, wyes, vertical stacks, clean-outs, connections, plugs, lugs, pipe coatings, connection to the existing system, repair of existing pipe, laying of pipe, testing, disinfection, de-chlorination of water flushed from water lines, removal/disposal of existing pipe scheduled for abandonment, excavation, embankment, backfilling, cleanup, disposal of surplus or unusable excavated material, permanent seeding and all labor, tools, and incidentals necessary to complete the work.

Payment shall also represent full compensation for removal and replacement of pavement, curb, drainage structures, driveways, pavement and any other improvements damaged during construction. No separate payment will be made for concrete blocking, thrust blocks, welded joints and harnessed joints required for thrust restraint. No separate payment will be made for any necessary temporary wastewater by-pass pumping. (City of Austin Special Specification Item SS510S entitled “Pipe”)

G. Wet Connections will be paid at the unit price bid for “Wet Connections.” The price is full compensation for all work required to make connection and place the pipe in service.

H. Ductile Iron Fittings will be paid at the unit price bid for “Ductile Iron Fittings.” Bolts, glands, and gaskets will not be paid separately, but shall be considered subsidiary to this Item.

I. Pressure taps will be paid at the unit price bid for “Pressure Taps,” of the size tap made and the size main tapped. The price is full compensation for furnishing all necessary materials, including tapping sleeve and valve, making the tap, testing, and placing the connection in service.

J. Valves will be paid at the unit price bid for “Valves,” for the type and size specified. This price is full compensation for furnishing all materials, handling, placing, concrete bearing pads, labor, tools, equipment, and incidentals including, valve stem casing and cover, excavation, setting and adjusting to proper grade and anchoring in place. Salvage of existing valves and their delivery to a storage site directed by the Engineer shall be considered subsidiary to “Valves” and will not be paid directly. Valve debris caps that are used for protection during construction shall be considered subsidiary to the “Valve” bid item.

K. Fire Hydrants will be paid at the unit price bid for “Fire Hydrants” or “Salvage Existing Fire Hydrants.”

This price is full compensation for the fire hydrant, all fittings, between the main line and the fire hydrant, setting adjusting to grade, anchoring in place, installation of blue reflectorized buttons, other appurtenances necessary for proper operation; all labor, tools, equipment, and incidentals necessary to complete the work described on the drawings and specified in City of Austin Special Specification Item SS511S “Water Valves,” but will not include pipe and valve between the main line.
Salvage of existing fire hydrants valves will include their delivery to a storage site as directed by the Engineer.

L. Drain Valve Assembly will be paid at the unit price bid for “Drain Valve Assembly.” This price is full compensation for furnishing and installing all materials, labor, tools, equipment, and incidentals necessary to complete the work described on the drawings and in City of Austin Special Specification Item SS511S “Water Valves” and for fittings between the mainline and the drain valve setting adjusting to grade, anchoring in place, and other appurtenances necessary for proper operation; but shall not include pipe and valve between the main line and the drain valve.

M. Manual and Automatic Air release assemblies will be measured as defined in “Measurement” and paid at the unit price bid for “Air-Vacuum Release Valve.” This price is full compensation for furnishing and installing all materials, labor, tools, equipment, and incidentals necessary to complete the work and will include the main line tap or outlet, all pipe, valves, fittings, box or vault and cover, and other appurtenances necessary for proper operation.

N. Concrete retards will be paid at the unit price bid for “Concrete Retards,” per plan dimensions complete in place, for the type specified. This price is full compensation for all excavation; reinforcing steel; furnishing, hauling, and placing all materials required in the construction; disposal of excavated material; and all manipulation, labor tools, equipment and incidentals necessary to complete the work. (City of Austin Special Specification Item SS593S “Concrete Retards” and City of Austin Standard Detail Number 593S-1 “Concrete Retard”)

Cross Reference Materials

<table>
<thead>
<tr>
<th>City of Austin Special Specification Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS501S</td>
<td>Jacking or Boring Pipe</td>
</tr>
<tr>
<td>SS503S</td>
<td>Frames, Grates, Rings and Covers</td>
</tr>
<tr>
<td>SS505S</td>
<td>Concrete Encasement and Encasement Pipe</td>
</tr>
<tr>
<td>SS506</td>
<td>Manholes</td>
</tr>
<tr>
<td>SS509S</td>
<td>Excavation Safety Systems</td>
</tr>
<tr>
<td>SS510</td>
<td>Pipe</td>
</tr>
<tr>
<td>SS511S</td>
<td>Water Valves</td>
</tr>
<tr>
<td>SS593S</td>
<td>P.C. Concrete Retards</td>
</tr>
</tbody>
</table>
SS501S
Jacking or Boring Pipe

501S.1 Description
This item shall govern furnishing and installing of encasement pipe by methods of jacking or boring as indicated on the Drawings and in conformity with this specification. This item shall also include, but not be limited to other constructions activities such as traffic control measures, excavation, removal of all materials encountered in jacking or boring pipe operations, disposal of all material not required in the work, grouting, bulkhead installation, backfilling and re-vegetation.

This specification is applicable for projects or work involving either inch-pound or SI units. Within the text and accompanying tables, the inch-pound units are given preference followed by SI units shown within parentheses.

501S.2 Submittals
The submittal requirements for this specification item shall include:

A. Shop drawings identifying proposed jacking or boring method complete in assembled position
B. Excavation Safety Plan including pits, trenches and sheeting or bracing if necessary,
C. Design for jacking or boring head,
D. Installation of jacking or boring supports or back stop,
E. Arrangement and position of jacks and pipe guides, and
F. Grouting plan,

501S.3 Materials

A. Pipe
Carrier pipe and encasement pipe shall conform to Standard Specification Item Nos. 505S, "Concrete Encasement and Encasement Pipe" and 510, "Pipe" and shall be size, type materials, thickness and class indicated on the Drawings, unless otherwise specified.

B. Grout
Grout for void areas shall consist of 1 part Portland cement and 4 parts fine, clean sand mixed with water.
501S.4 Construction Methods

A. General

The Contractor is responsible for:

1. Adequacy of jacking and boring operations,
2. Installation of support systems as indicated on the Drawings,
3. Provision of encasement and carrier pipe, and
4. Execution of work involving the jacking operation, the wet or dry method of boring and the installation of encasement pipe simultaneously.

The Contractor shall have sole responsibility for the safety of the jacking and boring operations and for persons engaged in the work. The Contractor's attention is directed to the Construction Industry Occupational Safety and Health Administration (OSHA) Standards (29 FR 1926/1920) as published in U.S. Department of Labor publication OSHA 2207, latest revision, with particular attention to Subpart S. The Contractor shall conform to the requirements in accordance with Standard Specification Item 509S, "Excavation Safety System" and shall provide an appropriate Trench Safety Plan.

When the grade of the pipe at the jacking or boring end is below the ground surface, suitable pits or trenches shall be excavated to provide sufficient room to conduct the jacking or boring operations and for placement of end joints of the pipe. In order to provide a safe and stable work area, the excavated area shall be securely sheeted and braced to prevent earth caving in accordance with the Trench Safety Plan.

The location of the work pit and associated traffic control measures required for the jacking or boring operations shall conform to the requirements of the City of Austin Transportation Criteria Manual and TxDOT Manual on Uniform Traffic Control Devices.

Where installation of pipe is required under railroad embankments, highways, streets, or other facilities by jacking or boring methods, construction shall be undertaken in such a manner that it will not interfere with operation of any railroad, street, highway, utility or other facility and shall not weaken or damage any embankment or structure. All appropriate permits shall be acquired prior to the initiation of the work.

During construction operations, and until the work pits are backfilled and fill material compacted, traffic barricades and warning lights to safeguard traffic and pedestrians shall be furnished and maintained by the Contractor. The Contractor shall submit the proposed pit location and traffic control plan for review by the Engineer or designated representative. The Review by the Engineer or designated representative, however, will not relieve the Contractor from his responsibility to obtain specified results in a safe, workmanlike manner.
When grade of pipe at jacking or boring end is below ground surface, suitable pits or trenches shall be excavated for the purpose of conducting the jacking or boring operations and for joining pipe. Work shall be securely sheeted and braced as indicated on the Excavation Safety Plan to prevent earth caving and to provide a safe and stable work area.

The pipe shall be jacked or bored from the low or downstream end, if possible. Minor lateral or vertical variation in the final position of pipe from line and grade established by Engineer or designated representative will be permitted at the discretion of Engineer or designated representative provided that such variation is regular and occurs only in one direction and that the final grade of the flow line conforms to the specified direction.

When conforming to details indicated on the drawings, but the bottom of the work pit is unstable or excessively wet or the installation of water and wastewater pipe will result in less than 30 inches (750 mm) of cover, the Contractor shall notify the Engineer or designated representative. The Engineer or designated representative may require the Contractor to install a concrete seal, cradle, cap or encasement or other appropriate action.

Immediately after jacking or boring is complete and the encasement pipe is accurately positioned and approved for line and grade, the clear space between the pipe and the surrounding excavated material shall be completely filled by pressure grouting for entire length of installation.

After placement of the carrier pipe is complete, the ends of the encasement pipe shall be bulkheaded with brick, concrete blocks or stones of sufficient mass to prevent the intrusion of backfill, etc. into the encasement pipe. The bulkhead shall also be provided with sufficient number and placement of weep holes to facilitate the escape of the contents of carrier pipe should failure occur.

As soon as possible after the carrier pipe(s) and bulkheads are completed, the work pits or trenches, which are excavated to facilitate these operations, shall be backfilled. The backfill in the street ROW shall be compacted to not less than 95 percent of the maximum density conforming to TxDOT Test Method Tex-114-E, “Laboratory Compaction Characteristics & Moisture-Density Relationship of Subgrade & Embankment Soil”. Field density measurements will be made in accordance with TxDOT Test Method Tex-115-E, “Field Method for Determination of In-Place Density of Soils and Base Materials”.

Where the characteristics of soil, size or size of proposed pipe dictate that tunneling is more satisfactory than jacking or boring, a tunneling method may be submitted for acceptance by Engineer or designated representative. Tunneling shall conform to Standard Specification Item No. 502S, “Tunneling”.

10-109 5732
06-09
B. Jacking

Heavy duty jacks suitable for forcing the pipe through the embankment shall be provided. In operating the jacks, an even pressure shall be applied to all jacks used so that the pressure will be applied to the pipe uniformly around the ring of the pipe. A suitable jacking frame or back stop shall be provided. The pipe to be jacked shall be set on guides properly braced together, to support the section of the pipe and to direct it in the proper line and grade. The complete jacking assembly shall be placed in order to line up with the direction and grade of the pipe. In general, the embankment material shall be excavated just ahead of the pipe, the material removed through the pipe and the pipe forced through embankment by jacking, into the space thus provided.

The excavation for the underside of the pipe, for at least 1/3 of the circumference of the pipe, shall conform to the contour and grade of the pipe. A clearance of no more than 2 inches (50 mm) may be provided for the upper half of the pipe. This clearance shall be tapered to zero at the point where excavation conforms to contour of pipe.

The distance that excavation shall extend beyond the end of the pipe depends on the character of material encountered, but it shall not exceed 2 feet (0.6 meter) in any case. This distance shall be decreased, when directed by the Engineer or designated representative, if the character of the material being excavated makes it desirable to keep the advance closer to the end of the pipe.

The Contractor may use a cutting edge of steel plate around head end of the pipe extending a short distance beyond the end of pipe with inside angles or lugs to keep cutting edge from slipping back onto the pipe.

When jacking of the pipe is begun, all operations shall be carried on without interruption, insofar as practical, to prevent the pipe from becoming firmly set in the embankment.

Any pipe damaged in jacking operations shall be removed and replaced by the Contractor at its entire expense.

C. Boring

The boring shall proceed from a work pit provided for the boring equipment and workmen. Excavation for the work pits and the installation of shoring shall be as outlined in the Trench Safety Plan. The location of the pit shall be approved by the Engineer or designated representative. The boring shall be done mechanically using either a pilot hole or the augur method.

In the pilot hole method an approximate 2 inch (50 mm) pilot hole shall be bored the entire length of the crossing and shall be checked for line and grade on the opposite end of the bore from the work pit. This pilot hole shall serve as the centerline of the larger diameter hole to be bored.
When the augur method is used, a steel encasement pipe of the appropriate diameter equipped with a cutter head to mechanically perform the excavation shall be used. Augurs shall be of sufficient diameter to convey the excavated material to the work pit.

Excavated material will be removed from the working pit and disposed of properly. The use of water or other fluids in connection with the boring operation will be permitted only to the extent to lubricate cuttings. Water jetting will not be permitted.

In unstable soil formations, a gel-forming colloidal drilling fluid, that consists of at least 10 percent of high grade carefully processed bentonite, may be used to consolidate the drill cuttings, seal the walls of the hole and furnish lubrication to facilitate removal of the cuttings from the bore.

D. Tunneling

Where the characteristics of the soil, the size of the proposed pipe, or the use of monolithic sewer would make the use of tunneling more satisfactory than jacking or boring; or when indicated on the drawings, a tunneling method may be used, with the approval of the Engineer or designated representative. The tunneling shall be in accordance with City of Austin Special Specification 502S, “Tunneling”.

E. Joints

If reinforced concrete pipe is used, the joints shall be in accordance with TxDOT Specification Item 464, “Reinforced Concrete Pipe”.

501S.5 Measurement and Payment

Work performed and materials furnished as prescribed by this item will be measured in accordance with the Section entitled, "Measurement" and paid for by appropriate bid item identified in the Section entitled "Payment" of the Special Specification entitled "Water and Wastewater Utilities" and the contract.

End

<table>
<thead>
<tr>
<th>SPECIFIC Cross Reference Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification Item 501S, "Jacking or Boring Pipe"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City of Austin Standard Specification Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Item No. 502S</td>
</tr>
<tr>
<td>Item No. 505S</td>
</tr>
<tr>
<td>Item No. 509S</td>
</tr>
<tr>
<td>Item No. 510</td>
</tr>
</tbody>
</table>
TxDOT Standard Specifications For Construction And
Maintenance Of Highways, Streets, And Bridges

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 464</td>
<td>Reinforced Concrete Pipe</td>
</tr>
</tbody>
</table>

TxDOT Testing Procedures

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tex-114-E</td>
<td>Laboratory Compaction Characteristics & Moisture Density Relationship of Subgrade & Embankment Soil</td>
</tr>
<tr>
<td>Tex-115-E</td>
<td>Field Method for Determination of In-Place Density of Soils and Base Materials</td>
</tr>
</tbody>
</table>

TxDOT Manual on Uniform Traffic Control Devices (MUTCD)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUTCD Part VI</td>
<td>Traffic Controls for Street and Highway Construction, Maintenance, Utility and Incident Management Operations</td>
</tr>
<tr>
<td>MUTCD Section 6C</td>
<td>Channelizing Devices</td>
</tr>
<tr>
<td>MUTCD Section 6C-8</td>
<td>Barricade Design</td>
</tr>
<tr>
<td>MUTCD Section 6C-9</td>
<td>Barricade Application</td>
</tr>
<tr>
<td>MUTCD Section 6E</td>
<td>Lighting Devices</td>
</tr>
<tr>
<td>MUTCD Section 6F</td>
<td>Control of Traffic Through Work Areas</td>
</tr>
</tbody>
</table>

City of Austin Transportation Criteria Manual

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 8</td>
<td>Traffic Control</td>
</tr>
<tr>
<td>Section 8.5.5.E</td>
<td>Typical Applications/Bore Pits</td>
</tr>
</tbody>
</table>

RELATED Cross Reference Materials

| Specification Item 501S, "Jacking or Boring Pipe"

City of Austin Standard Details

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detail 501S-1</td>
<td>Encasement Detail w/ Casing Spacers</td>
</tr>
</tbody>
</table>

TxDOT Standard Specifications

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 476</td>
<td>Jacking, Boring or Tunneling Pipe</td>
</tr>
<tr>
<td>Item 502</td>
<td>Barricades, Signs and Traffic Handling</td>
</tr>
</tbody>
</table>
503S.1 Description

This item shall govern furnishing and installation of frames, grates, rings and covers for inlets, manholes and other structures indicated on the Drawings.

This specification is applicable for projects or work involving either inch-pound or SI units. Within the text, the inch-pound units are given preference followed by SI units shown within parentheses.

503S.2 Submittals

The submittal requirements of this specification item include manufacturer, model number, description, painting requirements and characteristics of frames, grates, rings, covers, height adjustment insert and nuts and bolts required for completion of the work.

503S.3 Materials

The Contractor shall submit descriptive information and evidence that the materials and equipment the Contractor proposes for incorporation in the Work is the kind and quality that satisfies the specified functions and quality. The City of Austin Water and Wastewater Utility Standard Products Lists (SPLs) form a part of these Specifications. Contractors may, when appropriate, elect to use products from the SPLs; however, submittal to the Engineer or designated representative is still required. If the Contractor elects to use any materials from these lists, each product shall be completely and clearly identified by its corresponding SPL number when making the product submittal.

The purpose of the SPLs is to expedite the review by the Engineer of Contractor product submittals. The SPL’s should not be interpreted as being a pre-approved list of products necessarily meeting the requirements for a given construction Project. Items contained in the SPL cannot be substituted for items that are shown on the Drawings, called for in the specifications, or specified in the Bidding Requirements, Contract Forms and Conditions of Contract, unless approved by the Engineer. The Standard Product List current at the time of plan approval will govern.

A. Welded Steel

Welded steel grates and frames shall conform to the number; size, dimensions and details indicated on the Drawings and shall be welded into an assembly in accordance with those details. Steel shall conform to the requirements of ASTM A 36/A 36M, “Specification for Structural Steel”.

14-109 5732
06-09
B. Castings

Castings, whether Carbon-Steel, Gray Cast Iron or Ductile Iron shall conform to the shape and dimensions indicated on the Drawings and shall be clean substantial castings, free from sand or blowholes or other defects. Surfaces of the castings shall be free from burnt on sand and shall be reasonably smooth. Runners, risers, fins and other cast on pieces shall be removed from the castings and such areas ground smooth. Bearing surfaces between manhole rings and covers or grates and frames shall be cast or machined with such precision that uniform bearing shall be provided throughout the perimeter area of contact. Pairs of machined castings shall be matchmarked to facilitate subsequent identification at installation with the exception of water and wastewater manhole and valve castings. These manhole and valve castings shall be fabricated with such draft, tolerances, bolt hole spacing, etc., that all rings and covers of a particular type or class are interchangeable and match-marking will not be required.

Steel castings shall conform to ASTM A 27/27M, “Specifications for Steel Castings, Carbon, for General Application”. Grade 70-36 (480-250) shall be furnished unless otherwise specified on the Drawings.

C. Manhole Cover Riser Rings

Height-adjustment inserts for wastewater manhole rings, which are used for raising standard manhole covers, shall be those models listed in Water and Wastewater Standard Products List item QPL WW-330.

D. Nuts and Bolts

Nuts and bolts shall be hex head 5/8” x 2.5” (16 mm x 63.5 mm) #11 National Coarse Thread, Type 316 stainless steel. For bolted manhole covers, a thin film of an approved "Anti-freeze" compound, approved by the Engineer or designated representative, shall be applied to all bolts.

E. Mortar

Unless otherwise specified or approved by the Engineer or designated representative, the mortar for bedding castings shall consist of one (1) part Portland cement and three (3) parts sand and sufficient water to provide the desired consistency. The gradation of the fine aggregate shall meet the requirements for Grade No. 1, Item No. 403, "Concrete for Structures".
503S.4 Construction Methods

Frames, grates, rings and covers shall be constructed of the specified materials in accordance with the details indicated on the Drawings or in the City of Austin Standard Details. The Frames, grates, rings and covers shall be placed carefully to the lines or grades indicated on the Drawings or as directed by the Engineer or designated representative.

All welding shall conform to the requirements of the ANSI/AWS Structural Welding Code D1.1. Welded frames, grates, rings and covers shall be given 1 coat of a commercial grade red lead oil paint and 2 coats of commercial grade aluminum paint. All coats shall be a minimum of 1.5 mils (0.4 mm), dry.

Painting of gray iron castings will not be required, except when used in conjunction with structural steel shapes.

503S.5 Measurement and Payment

Work performed and materials furnished as prescribed by this item will be measured in accordance with the Section entitled, "Measurement" and paid for by appropriate bid item identified in the Section entitled "Payment" of the Special Specification entitled "Water and Wastewater Utilities" and the contract.

<table>
<thead>
<tr>
<th>SPECIFIED Cross Reference Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Specification Item Number 503S, "Frames, Grates, Rings and Covers"</td>
</tr>
</tbody>
</table>

City of Austin Standard Specifications

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 403S</td>
<td>Concrete for Structures</td>
</tr>
</tbody>
</table>

City of Austin Water and Wastewater Standard Products List

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPL WW-330</td>
<td>Manhole Cover Riser Rings for raising City of Austin Standard Manhole Covers</td>
</tr>
</tbody>
</table>

American Society for Testing Materials (ASTM)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A36/A36M</td>
<td>Specification for Structural Steel</td>
</tr>
<tr>
<td>A27/A27M</td>
<td>Specification for Steel Castings, Carbon, for General Application</td>
</tr>
<tr>
<td>A48</td>
<td>Specification for Gray Iron Castings</td>
</tr>
<tr>
<td>A536</td>
<td>Specification for Ductile Iron Castings</td>
</tr>
<tr>
<td>ANSI/AWS Designation</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Code D.1.1</td>
<td>Structural Welding Code</td>
</tr>
</tbody>
</table>

RELATED Cross Reference Materials

<table>
<thead>
<tr>
<th>Standard Specification Item Number 503S, "Frames, Grates, Rings and Covers"</th>
</tr>
</thead>
</table>

City of Austin Standard Specifications

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 504S</td>
<td>Adjusting Structures</td>
</tr>
<tr>
<td>Item No. 510</td>
<td>Pipe</td>
</tr>
</tbody>
</table>

City of Austin Standard Details

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 503S-1</td>
<td>457mm (18") Cover and Frame</td>
</tr>
<tr>
<td>No. 503S-2S</td>
<td>Storm Sewer Manhole Ring and 610 mm (24") Cover</td>
</tr>
<tr>
<td>No. 503S-2W</td>
<td>Sanitary Sewer Manhole Ring and 610 mm (24") Cover</td>
</tr>
<tr>
<td>No. 503S-3S</td>
<td>Bolted Storm Sewer Manhole Ring and 610 mm (24") Cover</td>
</tr>
<tr>
<td>No. 503S-3W</td>
<td>Bolted Sanitary Sewer Manhole Ring and 610 mm (24") Cover</td>
</tr>
<tr>
<td>No. 503S-4S</td>
<td>Storm Sewer Manhole Ring and 813 mm (32") Cover</td>
</tr>
<tr>
<td>No. 503S-4W</td>
<td>Sanitary Sewer Manhole Ring and 813 mm (32") Cover</td>
</tr>
<tr>
<td>No. 503S-5S</td>
<td>Bolted Storm Sewer Manhole Ring and 813 mm (32") Cover</td>
</tr>
<tr>
<td>No. 503S-5W</td>
<td>Watertight Manhole Ring and 813 mm (32") Cover</td>
</tr>
<tr>
<td>No. 506S-2</td>
<td>Major Manhole Adjustment</td>
</tr>
<tr>
<td>No. 506S-11</td>
<td>Storm Sewer Manhole Details</td>
</tr>
</tbody>
</table>

TxDOT Specifications

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 421</td>
<td>Portland Cement Concrete</td>
</tr>
</tbody>
</table>
SS505S
Concrete Encasement and Encasement Pipe

505S.1 Description

This item shall govern the furnishing of materials and the methods of constructing a Portland cement concrete encasement or encasement pipe in a trench.

This specification is applicable for projects or work involving either inch-pound or SI units. Within the text and accompanying tables, the inch-pound units are given preference followed by SI units shown within parentheses.

505S.2 Submittals

The submittal requirements of this specification item include:

A. Type, of pipe, construction methods and sequence,
B. Aggregate types, gradations and physical characteristics for the Portland cement concrete mix,
C. Proposed proportioning of materials for the mortar mix.

505S.3 Materials

A. Portland Cement Concrete

The Portland cement concrete shall conform to Class D Concrete, Item No. 403S, "Concrete for Structures".

B. Pipe

Portland Cement concrete pipe shall conform to ASTM C-76, Class III or better.

Corrugated Metal Pipe (CMP) shall conform to Section 510.2 (8) (o) of the City of Austin Standard Specification Item No. 510, "Pipe".

Steel Pipe shall conform to ASTM A134 with a minimum thickness of 3/8 inch (9.5 mm) for pipe with a diameter of 16 inches (400 mm) and greater.

C. Grout

Grout shall consist of not less than 6 sacks Portland cement per cubic yard (335 kilograms Portland cement per cubic meter) and clean washed sand mixed with water. The grout shall have a consistency such that the grout will flow into and completely fill all voids. If allowed by the Engineer or designated representative, an air entraining admixture may be added to facilitate placement.
505S.4 Construction Methods

When indicated on the Drawings or acceptable to Engineer or designated representative, concrete encasement shall be placed to protect the pipe. Pipe or bedding shall not be placed where:

(a) the top of the pipe would have less than 30 inches (750 mm) of cover from finish grade,
(b) the ground water invades the trench, or
(c) the trench bottom is of unstable material.

If either of these conditions is encountered, the Engineer or designated representative shall be notified and may direct the Contractor to:

(a) encase the pipe with concrete,
(b) change pipe material, or
(c) use a higher strength class of pipe.

Concrete encasement shall extend from 6 inches (150 mm) below to 6 inches (150 mm) above the outer projections of the pipe over the entire width of the trench in accordance with the City of Austin Standard Detail 501S-1,” Encasement Detail w/ Casing Spacers”.

The ends of the encasement pipe shall be bulkheaded (Standard Specification Item No. 507S) with concrete blocks, bricks or stones, dry-stacked without mortar, sufficient to prevent the intrusion of trench backfill material into the encasement, but fitted loosely enough to facilitate the escape of water from the encasement should carrier pipe leakage or failure occur.

505S.5 Measurement and Payment

Work performed and materials furnished as prescribed by this item will be measured in accordance with the Section entitled, "Measurement" and paid for by appropriate bid item identified in the Section entitled "Payment" of the Special Specification entitled "Water and Wastewater Utilities" and the contract.

End
City of Austin Standard Details

Designation	**Description**
Detail 501S-1 | Encasement Detail w/ Casing Spacers

American Society for Testing and Materials (ASTM)

Designation	**Description**
A-134 | Specification for Pipe, Steel, Electric-Fusion (Arc)-Welded (Sizes NPS 16 and Over)
C-76/C-76M | Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe

RELATED Cross Reference Materials

|---|

TdDOT Specifications

Designation	**Description**
Item 421 | Portland Cement Concrete
Section 421.9 | Quality of Concrete
Section 421.2(8) | Mortar and Grout

City of Austin Standard Specification Items

Designation	**Description**
Item No. 501S | Jacking or Boring Pipe
Item No. 502S | Tunneling
Item No. 506 Manholes | Concrete pipe
Section 510.2(8)(c) | Steel Pipe
Section 510.2(8)(m) | Concrete Retards
SS506
Manholes

506.1 Description

This item governs construction of pre-cast and cast-in-place wastewater manholes, storm water manholes, storm water junction boxes and cast-in-place wastewater junction boxes, complete in place, including excavation, installation, backfilling and surface restoration; required items including rings, covers, coatings, and appurtenances; and incidental work such as pumping and drainage necessary to complete the work Contractor-performed acceptance testing is required for wastewater manholes.

506.2 Qualifications

Applicators of coatings to the interior surfaces of wastewater manholes, as specified in 506.4.R and 506.5.J, shall be listed on Standard Products List WW-511.

506.3 Project Submittals

A. Products and Materials

The Contractor shall submit descriptive information and evidence that the materials the Contractor proposes for incorporation in the Work are of the kind and quality that satisfy the requirements in the Contract Documents. The City of Austin Water Utility Standard Products Lists are considered a part of the Specifications for the Work. The Contractor shall use products from the SPLs for all water and wastewater construction unless alternative products are shown on the Drawings; called for in the specifications; or specified in the Bidding Requirements, Contract Forms and Conditions of the Contract.

The products included in the Standard Products Lists current at the time of plan approval shall govern; unless a specific product or products on the lists have subsequently been removed from those SPLs because of quality or performance issues. Products and materials that are not covered by SPLs shall meet the requirements in the contract documents.

Submittals for the products and materials covered by this specification shall include manufacturer catalog sheets, technical data sheets, shop drawings, product or material test results, requirements listed below, and any other information needed to adequately describe the product or material. For products covered by SPLs, the submittal shall include a copy of the applicable SPL with the proposed product identified. An SPL by itself is not considered an adequate submittal.

The submittal requirements of this specification item include:

1. For pre-cast manholes and junction boxes: shop drawings for each structure showing, at a minimum, the Project and Contractor's name; manufacturer's name and plant location; applicable specifications; list of materials (such as adjusting rings, boots,
gaskets, and pre-cast sections) by type and quantity; elevation view showing
diameter or size, ring and cover size and elevation, ring type (bolted or unbolted,
flared top or flared bottom) wall thickness, elevations of transitions from large
diameter sections to smaller diameter sections, base width and thickness, total depth,
size of openings, reinforcement, and length of each pre-cast section; structure
identification number and station location; pipe line identification; pipe material and
size; pipe flowline elevations; plan view showing azimuthal orientation (based on
360 degrees clockwise) of the pipes relative to the outflow pipe; technical data sheets
covering pipe-to-manhole or pipe-to-junction box connectors, and gaskets

2. For cast-in-place manholes and junction boxes: formwork drawings sealed by a
registered Professional Engineer licensed in the State of Texas with documented
experience in formwork design for wall pours that exceed 4 feet in height and slabs
that are not ground supported

3. For hydraulic cement concrete; mix components and proportions, material sources,
materials test results

4. For mortar: mix components and proportions, material sources, materials test results

5. For non-shrink grout: technical data sheet indicating ASTM type and containing
instructions on surface preparation, mixing, placing, and curing procedures

6. For wastewater manhole coatings and linings: technical data sheets that include
instructions on surface preparation, mixing, placing, and curing procedures

B. Acceptance Test Records

Submission of acceptance test records is required for wastewater manholes and shall include
as a minimum the following items:

- Name of the manhole manufacturer
- Interior surface coating type and application method
- Model and manufacturer of vacuum tester
- Date tested/date re-tested
- Indication of whether test passed or failed and statement of corrective action
taken if test failed
- Test Method Used
- Location/station of manhole
- Type of base: Precast/cast-in-place
- Type of repairs made to the joints

The test records shall also be included as part of the Project records turned in with the
acceptance package.
506.4 Materials

A. Concrete

All cast-in-place concrete shall conform to City of Austin Standard Specification Item No. 403S, "Concrete for Structures". Cast in place concrete shall be Class A or as specified on the Drawings. Concrete used in precast concrete manhole base sections, riser sections and appurtenances shall conform to the requirements of Texas Department of Transportation Item 421, Hydraulic Cement Concrete. Concrete for backfill of over-excavated areas shall be City of Austin Class A, Class J (City of Austin Standard Specification Item 403S, Concrete For Structures) or Controlled Low Strength Material (City of Austin Standard Specification Item 402S) as indicated on the Drawings.

B. Mortar

Mortar shall be composed of one part Portland cement, one part masonry cement (or 1/4 part hydrated lime), and sand equal to 2-1/2 to 3 times the sum of the volumes of the cements and lime used. The sand shall meet the requirements for "Fine Aggregate" as given in Standard Specification Item No. 403S "Concrete For Structures". Mortar shall not be used for any purpose on the inside of wastewater manholes.

C. Grout

Grout shall be the non-shrink type conforming to ASTM C 1107, Packaged, Dry, Hydraulic Cement Grout (Nonshrink), Grade C. Grout shall be used as packaged, with the mixed ingredients requiring only the addition of water.

D. Reinforcement

The reinforcing steel shall conform to the requirements of Standard Specification Item No. 406S, "Reinforcing Steel". Secondary, non-structural steel in cast-in-place stormwater manholes may be replaced by collated fibrillated polypropylene fibers, if approved by the Engineer or designated representative.

E. Brick

The brick for ring adjustment courses and for stormwater manholes shall be of first quality, sound, hard burned, perfectly shaped brick conforming to the requirements of ASTM C 62, Grade SW, or concrete brick meeting the requirements of ASTM C 55, Grade N-1.

F. Rings and Covers

Rings and covers shall conform to the requirements of City of Austin Standard Specification Item No. 503S, “Frames, Grates, Rings and Covers”.

1. Replacement Rings and Covers, 24 in Diameter Lids
This ring and cover shall be used for the replacement of broken rings and covers, minor manhole adjustment, or as otherwise directed by the Engineer or designated representative.

2. Rings and Covers, 32 in. Diameter Lids

This ring and cover shall be used for all new manhole construction, except as otherwise directed by the Engineer or designated representative.

G. Bulkheads

Bulkheads shall meet the requirements of City of Austin Standard Specification Item No. 507S “Bulkheads”

H. Precast Base Sections, Riser Sections, Flat-top Slabs and Cones

Precast concrete base sections, riser sections, flat-top slabs, and cones shall conform to the requirements of ASTM C 478. The width of the invert shall be specifically sized for the connecting pipes. Inverts shall be “U” shaped channels with a minimum depth of three fourths of the diameter of the largest connecting pipe up to 24 inches in diameter. For manholes connecting to pipes larger than 24 inches in diameter, the channel depth shall be at least equal to the largest pipe diameter. Changes in flow direction in the inverts of manholes shall be made by constructing smooth, long-radius sweeps to minimize splashing, turbulence, and eddies. The manhole invert grade shall 1) be a continuation of the inlet and outlet pipe grades carried through to the centerline of the manhole, or 2) have a minimum slope of 2.5 percent between the inlet and outlet pipe inverts, or 3) have a minimum difference of 0.10 feet between the inlet and outlet pipe inverts, whichever provides the maximum difference in invert elevation between the inlet and outlet pipes. Where wastewater lines enter a manhole above the flowline of the outlet, the invert shall be filleted to prevent splashing and solids deposition.

Joints for wastewater base sections, riser sections, and cones shall conform to the requirements of ASTM C 443. Additionally, joint dimensions for 48-inch inside diameter wastewater manhole sections and cones shall comply with City of Austin Standard No. 506S-13, “Wedge Seal Joint Detail, Precast Manhole Section”. Joint dimensions for wastewater manhole sections and cones larger than 48-inch inside diameter shall comply with City of Austin Standard No. 506S-12, “O-Ring Joint Detail Precast Manhole Section” or City of Austin Standard No. 506S-13, “Wedge Seal Joint Detail, Precast Manhole Section”. Precast bases for 48 inch inside diameter manholes shall have preformed inverts. Inserts acceptable to the Engineer or designated representative shall be embedded in the concrete wall of the manhole sections to facilitate handling; however, through-wall holes for lifting will not be permitted.

I. Precast Junction Boxes

Precast junction boxes shall be allowed only where indicated on the Drawings or acceptable to the Engineer or designated representative.

J. Pipe-to-Manhole and Pipe-to-Junction-Box Connectors
Resilient connectors, ring waterstops, and seals at connections of wastewater pipes to pre-cast and cast-in-place manholes and junction boxes shall be watertight, flexible, resilient and non-corrosive, conforming to ASTM C 923. Metallic mechanical devices for securing the connectors, ring waterstops, and seals in place shall be Type 304 stainless steel.

K. Precast Flat-Slab Transition/Junction Box Lids

Precast slab transitions and lids shall be designed to safely resist pressures resulting from loads which might result from any combination of forces imposed by an HS-20 loading as defined by the American Association of State Highway and Transportation Officials (AASHTO). The joints of precast slab transitions and of lids for wastewater applications shall conform to the requirements of ASTM C443.

L. Precast-Prefabricated Tee Manholes

Tee manholes shall be allowed only where indicated on the Drawings or as directed by the Engineer or designated representative. The main pipe section shall conform to the requirements of City of Austin Standard Specification Item No. 510, “Pipe”. The vertical manhole portion (tee) above the main pipe shall conform to the requirements of the precast components.

The manhole tee shall have a minimum inside diameter of 48 inches and shall rise vertically centered or tangent to the main pipe, as indicated on the Drawings or as directed by the Engineer or designated representative. An access hole less than 48-inches in diameter shall be cut into the main pipe to allow a ledge for support of access ladders. Unless otherwise specified on the Drawings, the main pipe portion of the tee manhole shall be paid subsidiary to the unit tee manhole price.

M. Precast Grade Rings

Rings shall be reinforced Class A concrete.

1. Precast Grade Rings, 24-1/2 inches Inside Diameter

This adjustment ring shall be used only for adjusting existing manholes with 24-inch diameter lids and for Wastewater Access Device. Inside to outside diameter dimension of ring shall be 6 inches with a thickness of 3 inches to 6 inches.

2. Precast Grade Rings, 35 inches Inside Diameter

This adjustment ring shall be used for all new manhole construction with 32 inch diameter lids. Inside to outside diameter dimension of ring shall be 6 inches with a thickness of 2 inches to 6 inches.

N. High Density Polyethylene Grade Rings

Plastic grade (adjusting) rings shall be injection molded from high density polyethylene identified according to ASTM D4976. Reprocessable and recyclable ethylene plastic materials are allowed. Manufacturers of HDPE adjusting rings shall be listed on SPL WW-703.

O. Controlled Low Strength Material
Controlled low strength material (CLSM) shall meet Standard Specification Item 402S, Controlled Low Strength Material.

P. Cement Stabilized Sand

Cement stabilized sand for bedding or backfilling shall contain 2 bags of Portland cement per cubic yard. The sand shall meet the requirements for "Fine Aggregate" in Standard Specification Item 403S, Concrete for Structures.

Q. Waterproofing Joint Materials

O-rings and wedge seals for the joints of all wastewater manholes, and for stormwater manholes when indicated on the Drawings, shall conform to the requirements of ASTM C443. Cold applied preformed plastic gaskets for stormwater manholes shall be as specified in City of Austin Standard Specification Item No. 510, “Pipe”. Plastic seals wrapped around manholes at joints, and hydrophillic waterstops installed in joints, shall be listed on SPL WW-146A. PVC waterstops installed in joints and waterproofing compounds applied to the exterior surfaces of manholes and junction boxes shall be as specified in the Contract Documents.

R. Interior Surface Coatings for Wastewater Manholes

Interior surface coatings for wastewater manholes shall be either: as specified on the Drawings, as designated in writing by the Engineer or designated representative, or as included on SPL WW-511, which lists acceptable products, uses and applicators.

S. Structural Lining Systems for Wastewater Manholes

Structural lining systems for wastewater manholes shall be either: as specified on the Drawings, as designated in writing by the Engineer or designated representative, or as included on SPL WW-511A.

T. Wrapid Seal

Use AWU Standards Products List Item #WW146A, or approved equivalent.

U. FRP Louvers

Use Universal Pultrusion FRP Louvers 4'-3”W x 2’-0”H, or approved equivalent.

V. PVC Liner

Use Ameron T-Lock, or approved equivalent.

506.5 Construction

A. General

A minimum horizontal separation of 12 inches shall be maintained between adjacent pipes inside and outside a manhole or junction box. Pipe ends within the base section or junction box walls shall not be relied upon to support overlying manhole dead and
live load weights. All wastewater branch connections to new or existing mains shall be made at manholes, with the branch pipe crown installed at an elevation no lower than the elevation of the effluent pipe crown. Changes in flow direction in the inverts shall be made by constructing smooth, long-radius sweeps to minimize splashing, turbulence, and eddies. Where wastewater lines enter the manhole up to 24 inches above the flowline of the outlet, the invert shall be sloped upward in a U-shaped channel three-fourths of the diameter of the incoming pipe to receive the flow, thus preventing splashing or solids deposition. A drop pipe shall be provided for a wastewater pipe entering a manhole whenever the invert cannot be constructed to prevent splashing and solids deposition. Construction of extensions to existing systems shall require placement of bulkheads at locations indicated or directed by the Engineer or designated representative. Unless otherwise indicated on the Drawings, stormwater manholes shall have eccentric cones and wastewater manholes shall have concentric cones, except on manholes over large mains where an eccentric cone shall be situated to provide access to an invert ledge. Eccentric cones may be used where conflicts with other utilities dictate. Flat-slab tops may be used only where clearance problems are encountered or where specified on the Drawings. Cast-in-place wastewater junction boxes shall be allowed only where indicated on the Drawings or where accepted by the Engineer or designated representative.

B. Foundation Support

Manholes shall be founded at the established elevations on uniformly stable subgrade. Unstable subgrade shall be over-excavated a minimum of 12 inches and replaced with a material acceptable to the Engineer or designated representative. Precast base units shall be founded and leveled on a 6-inch thick layer of coarse aggregate bedding. A pipe section with a prefabricated tee manhole and half the length of the adjoining pipe sections on each side shall be founded on a minimum of 6 inch thick layer of unreinforced Class A concrete (City of Austin Standard Specification Item No. 403S, “Concrete For Structures). The cast-in-place concrete cradle shall be placed against undisturbed trench walls up to the pipe's springline.

C. Cast-in-Place Concrete

Structural concrete work shall conform to Standard Specification Item No. 410S, Concrete for Structures. Forms shall be used for all slabs that are not ground supported and for all vertical surfaces above the foundation level. Formwork shall be designed according to American Concrete Institute ACI 347, Guide to Formwork for Concrete. Outside forms on vertical surfaces may be omitted where concrete can be cast against the surrounding earthen material that can be trimmed to a smooth vertical face.

D. Manhole Bases

Pre-cast bases shall conform to requirements in 506.4.H.

Cast-in-place bases shall have a minimum thickness of 12 inches at the invert flowline. The widths of all manhole inverts shall be specifically sized for the connecting pipes. Inverts shall be “U” shaped channels with a minimum depth of
three-fourths of the largest connecting pipe diameter for pipes up to 24 inches diameter. For manholes connecting to pipes greater than 24 inches in diameter, the channel depth shall be at least equal to the largest pipe diameter. The manhole invert grade shall 1) be a continuation of the inlet and outlet pipe grades carried through to the centerline of the manhole, or 2) have a minimum slope of 2.5 percent between the inlet and outlet pipe inverts, or 3) have a minimum difference of 0.10 feet between the inlet and outlet pipe inverts, whichever provides the maximum difference in invert elevation between the inlet and outlet pipes. Changes in flow direction in the inverts of manholes shall be made by constructing smooth, large-radius sweeps to prevent splashing, turbulence, and eddies. The lowermost riser section may be set in the Portland cement concrete, while still plastic, after which the base shall be cured a minimum of 24 hours prior to proceeding with construction of the manhole up to 12 feet in depth. The base shall be cured an additional 24 hours prior to continuing construction above the 12-foot level.

Wastewater manholes having cast-in-place bases may be constructed over existing wastewater pipes and the top half of the pipe removed to facilitate invert construction, except where the existing pipe is PVC, in which case, the entire pipe shall be removed from inside the manhole. The manhole floor shall rise outwardly from the springline elevation of the pipe, approximately one inch for each 12 inch of run (8 percent slope). The floors of stormwater manholes, also, shall rise outwardly from the springline elevation of the pipe, approximately one inch for each 12 inches of run (8 percent slope).

Wastewater manholes with lines larger than 18 inches shall require pre-cast bases; manholes constructed over in-service mains however, may be built on cast-in-place bases if the flow cannot be interrupted.

E. Pipe Connections to Manholes and Junctions Boxes

Wastewater pipe connections to manholes and junction boxes shall be made using flexible, resilient, and non-corrosive watertight boot connectors or ring waterstops acceptable to the Engineer and conforming to the requirements of ASTM C-923. Any voids in the annular space between the pipe and boot connector or ring waterstop and the inside of the manhole wall shall be filled with non-shrink grout to prevent solids collection.

F. Pipe Connections to Existing Manholes and Junction Boxes

Wastewater pipe connections to existing manholes and junction boxes shall be made by removing the wall section by coring or alternative method approved by the Engineer or designated representative; installing flexible, resilient, and non-corrosive boot connectors or ring waterstops acceptable to the Engineer or designated representative and conforming to the requirements of ASTM C-923; filling any voids in the annular space between the pipe and boot connector or ring waterstop and the inside of the manhole or junction box wall with non-shrink grout; rebuilding the invert to conform to Section 506.5.D; rehabilitating the interior walls with structural lining material listed on SPL WW-511A, and coating the interior of the manhole with material listed on SPL WW-511.
G. Waterproofing

PVC waterstops, hydrophillic waterstops, joint wrapping, and waterproofing compounds shall be installed as specified. Material wrapped around manholes at joints shall be listed on SPL WW-146A regardless of whether installation of the material is required by the Contract for waterproofing or is volunteered by the Contractor for ensuring acceptance of the manhole joints.

H. Backfilling

Backfilling of manholes shall conform to the density requirements of City of Austin Standard Specification Item No. 510, Pipe. Manhole construction in roadways may be staged to facilitate pavement base construction. Manholes constructed to interim elevations to facilitate interim construction shall be covered with steel plates that conform to the requirements of City of Austin Standard 804S-4, sheets 5, 6 and 7, Steel Plating. Steel plates on wastewater manholes shall be set in mortar to minimize inflow of storm water runoff. Manholes shall be completed to finish elevation prior to placement of the roadway's finish surface except on pavement reconstruction projects, where castings may be adjusted after paving is completed. The excavation for completion of manhole construction shall be backfilled in accordance with City of Austin Standards for Trench Repair.

I. Height Adjustment of Manholes

1. General

All adjustments shall be completed prior to the placement of the final roadway surface, except on pavement reconstruction projects, where castings may be adjusted after paving is completed.

Brick shall not be used in making height adjustments to wastewater manholes. Mortar shall not be used for any purpose on the inside of wastewater manholes.

Manhole components to be reused shall be carefully removed and the contact areas shall be cleaned of all mortar, concrete, grease and sealing compounds. Any items broken in the process of removal and cleaning shall be replaced in kind by the Contractor at its expense.

If the adjustment involves lowering the top of a manhole, a sufficient depth of precast concrete rings or brick courses shall be removed to permit reconstruction. Existing mortar shall be cleaned from the top surface remaining in place and from all brick or concrete rings to be reused and the manhole rebuilt to the required elevation. The manhole ring and cover shall then be installed with the top surface conforming to the proposed grade.

If the adjustment involves raising the elevation of the top of the manhole in accordance with Minor Manhole Height Adjustment 29-109 5732 06-09, the top of brick or concrete ring shall be cleaned and built up vertically to the new elevation, using new or
After rings and covers are set to grade, the inside and outside of the precast concrete grade rings shall be wiped with non-shrink grout to form a durable surface and water-tight joints. The grouted surface shall be smooth and even with the manhole cone section. Grout shall not be placed when the atmospheric temperature is at or below 40°F. If a sudden drop in temperature below 40°F occurs or temperatures below 40°F are predicted, the grouted surfaces shall be protected against freezing for at least 24 hours.

2. Minor Manhole Height Adjustment (New and Existing Manholes)

Minor manhole height adjustments shall be performed as indicated on City of Austin Standard 506S-4, “Minor Manhole Height Adjustment”, and shall consist of adding precast reinforced concrete rings to adjust new and existing manholes to final grade. Brick shall not be used in making height adjustments to wastewater manholes.

If the adjustment involves raising the elevation of the top of the manhole, the top of brick or concrete ring shall be cleaned and built up vertically to the new elevation, using new or salvaged concrete rings or bricks and the ring and cover installed with the top surface conforming to the proposed grade.

For new manhole construction, the maximum allowable throat or chimney height, including the depth of the ring casting, shall be limited to 21 inches of vertical face on the interior surface. For adjustments of existing manholes that fall within the limits of overlay and street reconstruction projects, the maximum vertical allowable height, including the depth of the ring casting, shall be limited to 27 inches of vertical face on the interior surface. All other existing manholes shall have a maximum allowable throat or chimney height adjustment, including the depth of the ring casting, of 12 inches of vertical face on the interior surface. Any adjustment that will exceed these requirements shall be accomplished as indicated on City of Austin Standard 506S-2, Major Manhole Height Adjustment and as described below. Manholes not located in paved areas shall have bolted covers. Manholes located within paved areas (street right of way only) shall be standard non-bolted unless otherwise noted on the drawings.

3. Major Manhole Height Adjustment (Existing Manholes Only)

Any adjustment that exceeds the requirements of Minor Manhole Adjustments, shall be accomplished as indicated on City of Austin Standard 506S-2, Major Manhole Height Adjustment, and shall consist of any combination of removing the concrete rings, and/or the manhole cone section, and/or the straight riser section of the manhole in order to bring the manhole to final grade. Major manhole adjustments shall apply only to existing manholes. Manholes not located in paved areas shall have bolted covers. Manholes located within paved areas (street right of way only) shall be standard non-bolted unless otherwise noted on the drawings.
The interior surfaces of all Portland cement concrete wastewater manholes and junction boxes shall be coated with products specified either on the Drawings, designated in writing by the Engineer or representative, or listed on SPL WW-511. Product selection shall conform to usage described in that SPL. Surface preparation shall follow the product manufacturer's recommended procedures contained in technical data sheets unless otherwise specified in the contract documents. The Contractor shall measure the coating thickness according to ASTM D 6132, Nondestructive Measurement of Dry Film Thickness of Applied Organic Coatings Over Concrete Using an Ultrasonic Gage. Thickness measures shall be made at locations designated by the Engineer or designated representative. All thickness measurements shall be witnessed by the Engineer or designated representative.

K. Structural Linings of Existing Wastewater Manholes

The interior surfaces of existing wastewater manholes and junction boxes at locations shown in the Drawings or as designated by the Engineer shall be strengthened by application of structural lining systems either as specified on the Drawings, directed in writing by the Engineer or designated representative, or listed on SPL WW-511A. Selection of products for coating the interior of existing manholes shall be based on the condition of the manholes. Surface preparation shall follow the product manufacturer's recommended procedures contained in technical data sheets unless otherwise specified in the contract documents.

L. Abandonment of Existing Manholes

Manholes designated on the Drawings for abandonment, shall be removed to a level not less than four feet below grade. Two-foot long sections of the inlet and outlet pipes shall be cut and removed on the outside of the manhole, the ends of the remaining pipe and the pipe sections penetrating the manhole wall shall be securely plugged, and the structure filled with material in accordance with Standard 506S-15 or as directed by the Engineer or designated representative.

506.6 Acceptance Testing of Wastewater Manholes

Manholes shall be tested separately and independently of the wastewater lines.

A. Test by the Vacuum Method

A vacuum test shall be performed by the Contractor prior to backfilling those manholes that fall within the right-of-way that require detouring of vehicular traffic. A second vacuum test will not be required after backfilling and compaction is complete unless there is evidence that the manhole has been damaged or disturbed subsequent to the initial vacuum test.

For manhole installations which do not require detouring of vehicular traffic, the vacuum method is recommended and may be used by the Contractor prior to backfilling the manhole to insure proper installation so that defects may be located and repaired; however, a vacuum test shall be performed after backfilling, and
compaction are complete. Testing after backfill and compaction are complete will be the basis for acceptance of the manhole.

1. Equipment
 a) The manhole vacuum tester shall be a device approved for use by the Engineer or designated representative.
 b) Pipe sealing plugs shall have a load resisting capacity equal to or greater than that required for the size of the connected pipe to be sealed.

2. Procedures - applicable to new 48-inch diameter manholes
 a) Manhole section interiors shall be carefully inspected; units found to have through-wall lift holes, or any penetration of the interior surface by inserts provided to facilitate handling, will not be accepted. Coating shall be applied after the testing unless coating is applied before installation or unless it is applied at the factory. All lift holes and exterior joints shall be plugged with an acceptable non-shrink grout. No grout shall be placed in horizontal joints. Tests shall be performed before grouting the invert or around pipe penetrations and before coating the interior surfaces of the manhole or junction box.
 b) After cleaning the interior surfaces of the manhole, the Contractor shall place and inflate pneumatic plugs in all of the connecting pipes to isolate the manhole; sealing pressure within the plugs shall be as recommended by the plug manufacturer. Plugs and the ends of pipes connected by flexible boots shall be blocked to prevent their movement during the vacuum test.
 c). The vacuum test head shall be placed on the top of the cone section or, inside of the top of the manhole cone section, and the compression seal band inflated to the pressure recommended by its manufacturer. The vacuum pump shall be connected to the outlet port with the valve open. When a vacuum of 10 inches of mercury (-5 psig) has been attained, the valve shall be closed and the time noted. Tampering with the test equipment will not be allowed.
 d) The manhole shall have passed the test if the vacuum does not drop below 9 inches of mercury (-4.5 psig) within 3 minutes of the time the valve was closed. The actual vacuum shall be recorded at the end of the 3 minutes during which the valve was closed.
 e). When the standard vacuum test cannot be performed because of design or material constraints (examples: T-Type manholes, T-Lock Liners, or other reasons acceptable to the Engineer or designated representative), testing of individual joints shall be performed as directed by the Engineer or designated representative.

B. Test by the Exfiltration Method

At the discretion of the Engineer or designated representative, the Contractor may substitute the Exfiltration Method of testing for the Vacuum test described in Section 506.6. A above. This method may only be used when ground water is not present. If ground water is present a Vacuum Test shall be used unless otherwise
directed by the Engineer or designated representative. All backfilling and compaction shall be completed prior to the commencement of testing.

The procedures for the test shall include the following:

1. Manhole section interiors shall be carefully inspected; units found to have through-wall lift holes, or any penetration of the interior surface by inserts provided to facilitate handling, will not be accepted. Coating shall be applied after the testing unless coating is applied before field assembly, or at the factory. All lift holes and exterior joints shall be plugged with an acceptable non-shrink grout. No grout shall be placed in horizontal joints. Tests shall be performed before grouting the invert or around pipe penetrations and before coating the interior surfaces of the manhole or junction box.

2. After cleaning the interior surface of the manhole, the Contractor shall place and inflate pneumatic plugs in all of the connecting pipes to isolate the manhole; sealing pressure within the plugs shall be as recommended by the plug manufacturer.

3. Concrete manholes shall be filled with water or otherwise thoroughly wetted for a period of 24 hours prior to testing.

4. At the start of the test, the manhole shall be filled to the top with water. The test time shall be 1 hour. The Construction Inspector must be present for observation during the entire time of the test. Permissible loss of water in the 1-hour test time is 0.025 gallons per diameter foot, per foot of manhole depth. For a 4-foot diameter manhole, this quantity converts to a maximum permissible drop in the water level (from the top of the manhole cone) of 0.05 inches per foot of manhole depth or 0.5 inches for a 10-foot deep manhole.

C. Failure to Pass the Test - Records of Tests

If the manhole fails to pass the initial test method as described in (A) Test by the Vacuum Method and, if allowed, (B) Test by the Exfiltration Method, or if visible groundwater leakage into the manhole is observed, the Contractor shall locate the leak, if necessary by disassembly of the manhole. The Contractor shall check the gaskets and replace them if necessary. The Contractor may re-lubricate the joints and re-assemble the manhole, or the Contractor may install an acceptable exterior joint sealing product (see City of Austin Standard Products List Item SPL WW-146A) on all joints and then retest the manhole. If any manhole fails the vacuum and/or exfiltration test twice, the Contractor shall consider replacing that manhole.

If the Contractor chooses to attempt to repair that manhole, the manhole must be retested until it passes. In no case shall cold applied preformed plastic gaskets be used for repair. Records of all manhole testing shall be made available to the Engineer or designated representative at the close of each working day, or as otherwise directed by the Engineer or designated representative. Any damaged or visually defective products, or any products out of acceptable tolerance shall be removed from the site.
D. Inspection.

The Engineer or designated representative shall make a visual inspection of each manhole after it has passed the testing requirements and is considered to be in its final condition. The inspection shall determine the completeness of the manhole; any defects shall be corrected to the satisfaction of Engineer or designated representative.

506.7 Measurement and Payment

Work performed and materials furnished as prescribed by this item will be measured in accordance with the Section entitled, "Measurement" and paid for by appropriate bid item identified in the Section entitled "Payment" of the Special Specification entitled "Water and Wastewater Utilities" and the contract.

End

SPECIFIC Cross Reference Materials

<table>
<thead>
<tr>
<th>Standard Specification Item No. 506, "Manholes"</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Austin Standard Specifications</td>
</tr>
<tr>
<td>Designation</td>
</tr>
<tr>
<td>Item 403S</td>
</tr>
<tr>
<td>Item 406S</td>
</tr>
<tr>
<td>Item 402S</td>
</tr>
<tr>
<td>Item 410S</td>
</tr>
<tr>
<td>Item 503S</td>
</tr>
<tr>
<td>Item 504S</td>
</tr>
<tr>
<td>Item 507S</td>
</tr>
<tr>
<td>Item 510</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Texas Department of Transportation Standard Specifications For Construction and Maintenance of Highways, Streets and Bridges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
</tr>
<tr>
<td>Item 421</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City of Austin Utilities Criteria Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
</tr>
<tr>
<td>Section 2.8.0</td>
</tr>
<tr>
<td>Subsection 2.8.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City of Austin Water Utility Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
</tr>
<tr>
<td>SPL WW-146A</td>
</tr>
<tr>
<td>SPL WW-511</td>
</tr>
<tr>
<td>SPL WW-511A</td>
</tr>
<tr>
<td>SPL WW-703</td>
</tr>
</tbody>
</table>
City of Austin Standards

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>506S-2</td>
<td>Major Manhole Height Adjustment</td>
</tr>
<tr>
<td>506S-4</td>
<td>Minor Manhole Height Adjustment</td>
</tr>
<tr>
<td>506S-15</td>
<td>Abandoned Manhole</td>
</tr>
<tr>
<td>506S-12</td>
<td>O-Ring Joint Detail, Precast Manhole Section Adjustment</td>
</tr>
<tr>
<td>506S-13</td>
<td>Wedge Seal Joint Detail, Precast Manhole Section</td>
</tr>
<tr>
<td>506S-15</td>
<td>Abandoned Manhole</td>
</tr>
<tr>
<td>804S-4, 5, 6, 7 of 9</td>
<td>Steel Plating</td>
</tr>
</tbody>
</table>

City of Austin Standard Contract

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00300U</td>
<td>Bid Form (Unit Prices)</td>
</tr>
</tbody>
</table>

American Society for Testing and Materials (ASTM)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C 55</td>
<td>Specification for Concrete Building Brick</td>
</tr>
<tr>
<td>ASTM C 62</td>
<td>Specification for Building Brick Solid Masonry Units Made From Clay of Shale</td>
</tr>
<tr>
<td>ASTM C478/C478M</td>
<td>Standard Specification for Precast Concrete Manhole</td>
</tr>
<tr>
<td>ASTM C443/C443M</td>
<td>Specification for Joints for Circular Concrete Sewer and Culvert Pipe, Using Rubber Gaskets</td>
</tr>
<tr>
<td>ASTM C923/C923M</td>
<td>Specification for Resilient Connectors Between Reinforced Concrete Manhole Structures Pipes</td>
</tr>
<tr>
<td>ASTM C1107</td>
<td>Specification for Packaged Dry, Hydraulic-Cement Grout (Nonshrink)</td>
</tr>
<tr>
<td>ASTM D6132</td>
<td>Specification for Polyethylene Plastics Molding and Extrusion Materials</td>
</tr>
<tr>
<td>D4976</td>
<td>Test Method for Nondestructive Measurement of Dry Film Thickness of Applied Organic Coating Over Concrete Using an Ultrasonic Gage</td>
</tr>
</tbody>
</table>

American Concrete Institute

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 347</td>
<td>Guide to Formwork for Concrete</td>
</tr>
</tbody>
</table>

RELATED Cross Reference Materials

| Standard Specification Item No. 506, "Manholes" |

City of Austin Utilities Criteria Manual

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2</td>
<td>Water and Wastewater Design Criteria</td>
</tr>
</tbody>
</table>

City of Austin Standards

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1100S-1 Casting Adjustments
503S-4S Storm Sewer Manhole Ring and 32” Cover
503S-4W Sanitary Sewer Manhole Ring and 32” Cover
503S-5S Bolted Storm Sewer Manhole Ring and 32” Cover

|--|---|

City of Austin Standards (Continued)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>503S-5W</td>
<td>Watertight Manhole Ring and 32” Cover (W&WW)</td>
</tr>
<tr>
<td>506S-1</td>
<td>Manhole Invert Plan</td>
</tr>
<tr>
<td>506S-5</td>
<td>Typical Box Manhole 30” and Larger Pipe</td>
</tr>
<tr>
<td>506S-7</td>
<td>Precast Manhole with Drop Inlet on Cast in Place Foundation</td>
</tr>
<tr>
<td>506S-8</td>
<td>Precast Manhole with Drop Inlet on Precast Base</td>
</tr>
<tr>
<td>506S-9</td>
<td>Precast Manhole On Cast-In-Place Foundation</td>
</tr>
<tr>
<td>506S-10</td>
<td>Wastewater Manhole on Precast Base</td>
</tr>
<tr>
<td>506S-11</td>
<td>Storm Sewer Manhole Details</td>
</tr>
</tbody>
</table>

American Association of State Highway and Transportation Officials (AASHTO)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M306</td>
<td>Standard Specifications for Drainage Structure Castings</td>
</tr>
</tbody>
</table>
509S.1 Description

This item shall govern the designing, furnishing, installing, maintaining and removing or abandoning of temporary Excavation Safety Systems consisting of trench shields, aluminum hydraulic shoring, timber shoring, trench jacks, tieback or braced sheeting, tieback slurry walls, soil nailing, rock bolting, tieback or braced soldier piles and lagging, and other systems for protecting workers in excavations. This item shall also govern the designing and constructing of sloping and benching systems for protecting workers in excavations.

At a minimum, the Excavation Safety Systems shall conform to United States Department of Labor Rules 29 CFR, Occupational Safety and Health Administration, Part 1926 Safety and Health Regulations for Construction, Subpart P, Excavation (hereinafter called OSHA).

This specification is applicable for projects or work involving either inch-pound or SI units. Within the text, the inch-pound units are given preference followed by SI units shown within parentheses.

509S.2 Definitions

"Competent Person" shall mean one who is capable of identifying existing and predictable hazards in the surroundings, or working conditions which are unsanitary, hazardous, or dangerous to employees, and who has authorization to take prompt corrective measures to eliminate them. The competent person shall be capable of interpreting the manufacturer’s data sheets and interpreting and implementing the Excavation Safety System Plan.

An "Excavation" shall mean any man-made cut, cavity, trench, or depression in an earth surface, formed by earth removal. The Contractor shall provide an Excavation Safety System for all excavations except when 1) the excavation is in stable rock as determined by the Texas-licensed Professional Engineer who prepared the Contractor’s Excavation Safety System Plan or 2) the excavation is less than 5 feet (1.52 m) in depth and examination of the ground by the Contractor’s competent person provides no indication of a potential cave-in.

"Trench" (trench excavation) shall mean any narrow excavation (in relation to its length) made below the surface of the ground. In general, the depth shall be greater than the width, but the width of a trench (measured at the bottom) shall not be greater than 15 feet (4.56 m). Excavation Safety Systems for such trenches shall be defined as "Trench Excavation Safety Protective Systems".

If the Contractor installs or constructs forms or other structures in an excavation such that the dimension measured from the forms or structures to the sides of the excavation is reduced to 15 feet (4.6 m) or less (measured at the bottom of the excavation), those excavations shall also be defined as a Trench if workers must enter it. Excavation Safety Systems
Systems for such trenches shall also be defined as "Trench Excavation Safety Protective Systems".

509S.3 Excavation Safety System Submittals

A. The Notice to Proceed with construction may be issued by the Department before the Contractor has submitted the necessary Excavation Safety Plan(s); however, excavation shall not proceed until the Department has received the Contractor's Excavation Safety Plan(s) for the Project.

B. Prior to Starting Excavation

Prior to starting any Excavation, the Contractor shall submit to the Department:

1. A certificate indicating that the Contractor’s Competent Person(s) has completed training in an excavation safety program based on OSHA regulations within the past 5 years.

2. Manufacturer’s tabulated data or other tabulated data for Excavation Safety Systems consisting of pre-engineered protective systems such as trench shields, aluminum hydraulic shoring, timber shoring, pneumatic shoring, or trench jacks, or benching or sloping or other protective systems that are not designed specifically for the Project.

 Manufacturer’s tabulated data shall meet the requirements in OSHA and shall describe the specific equipment to be used on the Project. Tabulated data must bear the seal of the licensed professional engineer who approved the data. Manufacturer's tabulated data shall be an attachment to the Contractor's Excavation Safety System Plan described below.

509S.4 Excavation Safety System Plan

The Contractor shall prepare an Excavation Safety System Plan (hereafter called the "Plan") specifically for the Project. The Contractor shall retain a Texas-licensed Professional Engineer to prepare the Plan. On City-funded projects, the Contractor must follow qualifications-based procedures to procure the required Professional Engineering services, according to Chapter 2254 of the Texas Government Code.

The Contractor shall be responsible for obtaining geotechnical information necessary for design of the Excavation Safety System. If geotechnical information for design of the Project has been acquired by the Department or designated representative, it shall be provided to the Contractor for information purposes subject to the provisions of City of Austin Standard Contract Section 00220, "Geotechnical Data."

A. The Plan for Excavation Safety Systems consisting of pre-engineered protective systems such as trench shields, aluminum hydraulic shoring, timber shoring, pneumatic shoring, or trench jacks, or benching or sloping or other protective systems that are not designed specifically for the Project shall include:
1. Detailed Drawings of the Excavation Safety System(s) that will provide worker protection conforming to OSHA. The Drawings shall note the required load carrying capacity, dimensions, materials, and other physical properties or characteristics in sufficient detail to describe thoroughly and completely the Excavation Safety System(s).

2. Drawings, notes, or tables clearly detailing the specific areas of the Project in which each Excavation Safety System shall be used, the permissible size of the excavation, the length of time that the excavation shall remain open, the means of egress from the excavation, the location of material storage sites in relation to the excavation, the methods for placing/compacting bedding/backfill within the safety of the system, any excavation safety equipment restrictions and subsequent removal of the system.

4. A Certificate of Insurance of the Excavation Safety System Engineer's Professional Liability Insurance coverage. For City-funded projects, coverage meeting the requirements of Standard Contact Documents Section 00810 shall be provided. For privately funded projects the coverage shall be at least $1,000,000.

B. The Plan for Excavation Safety Systems consisting of tieback or braced sheeting, tieback or braced soldier piles and lagging, slurry walls, soil nailing, rock bolting or other protective systems that are designed specifically for the Project shall include:

1. Detailed Drawings of the Excavation Safety System(s) that will provide worker protection conforming to OSHA. The Drawings shall note the design assumptions, design criteria, factors of safety, applicable codes, dimensions, components, types of materials, and other physical properties or characteristics in sufficient detail to describe thoroughly and completely the Excavation Safety System(s).

2. Detailed technical specifications for the Excavation Safety System addressing the properties of the materials, construction means and methods, quality control and quality assurance testing, performance monitoring, and monitoring of adjacent features, as appropriate.

3. Drawings that clearly detail the specific areas of the Project in which each type of system shall be used and showing the plan and elevation (vertical profile) views.

4. Drawings, notes or tables clearly detailing the length of time that the excavation shall remain open, the means of egress from the excavation, the location of material storage sites in relation to the excavation, the methods for placing/compacting bedding/backfill within the safety of the system, any excavation safety equipment restrictions and subsequent removal or abandonment of the system or parts thereof.

6. A Certificate of Insurance of the Excavation Safety System Engineer's Professional Liability Insurance coverage. For City-funded projects, coverage meeting the requirements of Standard Contract Documents Section 00810 shall be provided. For privately funded projects the coverage shall be at least $1,000,000.
509S.5 Excavation Safety System Submittal Review

Review of the Excavation Safety System submittal conducted by the Department or designated representative shall only relate to conformance with the requirements herein. The Department's failure to note exceptions to the submittal shall not relieve the Contractor of any or all responsibility or liability for the adequacy of the Excavation Safety System. The Contractor shall remain solely and completely responsible for all Excavation Safety Systems and for the associated means, methods, procedures, and materials.

509S.6 Contractor’s Responsibility

The Contractor shall be responsible for implementing the Excavation Safety System Plan and for confirming that the Excavation Safety System(s) used on the Project meets the requirements of the Plan.

The Contractor’s Competent Person(s) shall be on the Project whenever workers are in an excavation meeting the definitions of a Trench given in 509S.2.

509S.7 Construction Methods

The Contractor's Competent Person(s) shall maintain a copy of appropriate OSHA regulations onsite and shall implement OSHA excavation safety regulations at the work site. The Contractor shall perform all excavation in a safe manner and shall maintain the Excavation Safety Systems to prevent death or injury to personnel or damage to structures, utilities or property in or near excavation.

If evidence of possible cave-ins or earthen slides is apparent or an installed Excavation Safety System is damaged, the Contractor shall immediately cease work in the excavation, evacuate personnel from any potentially hazardous areas and notify the Department. Personnel shall not be allowed to re-enter the excavation until necessary repairs or replacements are completed and are inspected and approved by the Contractor's Competent Person(s). Repair and replacement of damaged Excavation Safety System shall be at the Contractor's sole expense.

509S.8 Changed Conditions

When changed conditions require modifications to the Excavation Safety System, the Contractor shall provide to the Department or designated representative a new design or an alternate Excavation Safety System Plan that is proposed by the Contractor's Excavation Safety System Engineer to address the changed conditions. Copies of the new design or alternate system shall be provided to the Department or designated representative in accordance with the requirements of section 509S.3, "Excavation Safety System Plan Submittals". A copy of the most current Excavation Safety System Plan shall be maintained on site and made available to inspection and enforcement officials at all times.
Any changes to the Excavation Safety System Plan that are initiated by the Contractor for operational efficiency or as a result of changed conditions, that could be reasonably anticipated, will not be cause for contract time extension or cost adjustment. When changes to the Excavation Safety System Plan are necessitated by severe and uncharacteristic natural conditions or other conditions not reasonably within the control of the Contractor, the Contractor may make a written request to the Department for a Change Order to address the anticipated work. The Contractor shall notify the Department in writing within 24 hours of the occurrence of changed conditions that the Contractor anticipates the submittal of a claim for additional compensation. Under 'Changed Conditions" the work deemed immediately necessary by the Contractor to protect the safety of workers and public, equipment or materials may only be accomplished until the Department or designated representative has a reasonable opportunity to investigate the Contractor's written request for a Change Order and respond in writing to the request.

509S.9 Measurement and Payment

Work performed and materials furnished as prescribed by this item will be measured in accordance with the Section entitled, "Measurement" and paid for by appropriate bid item identified in the Section entitled "Payment" of the Special Specification entitled "Water and Wastewater Utilities" and the contract.

END
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101S</td>
<td>Preparing Right of Way</td>
</tr>
<tr>
<td>102S</td>
<td>Clearing and Grubbing</td>
</tr>
<tr>
<td>110S</td>
<td>Street Excavation</td>
</tr>
<tr>
<td>111S</td>
<td>Excavation</td>
</tr>
<tr>
<td>130S</td>
<td>Borrow</td>
</tr>
<tr>
<td>132S</td>
<td>Embankment</td>
</tr>
<tr>
<td>201S</td>
<td>Subgrade Preparation</td>
</tr>
<tr>
<td>402S</td>
<td>Controlled Low Strength Material</td>
</tr>
<tr>
<td>501S</td>
<td>Jacking or Boring Pipe</td>
</tr>
<tr>
<td>502S</td>
<td>Tunneling</td>
</tr>
<tr>
<td>503S</td>
<td>Frames, Grates, Rings and Covers</td>
</tr>
<tr>
<td>504S</td>
<td>Adjusting Structures</td>
</tr>
<tr>
<td>505S</td>
<td>Concrete Encasement and Encasement Pipe</td>
</tr>
<tr>
<td>506</td>
<td>Manholes</td>
</tr>
<tr>
<td>507S</td>
<td>Bulkheads</td>
</tr>
<tr>
<td>510</td>
<td>Pipe</td>
</tr>
<tr>
<td>511S</td>
<td>Water Valves</td>
</tr>
<tr>
<td>593S</td>
<td>Concrete Retards</td>
</tr>
<tr>
<td>594S</td>
<td>Gabions and Revet Mattresses</td>
</tr>
</tbody>
</table>
Pipe

510.1 Description
This item governs the furnishing and installing of all pipe and/or materials for constructing pipe mains, sewers, laterals, stubs, inlet leads, service connections and culverts, including all applicable Work such as excavating, bedding, jointing, backfilling materials, tests, concrete trench cap, concrete cap and encasement, etc., prescribed under this item in accordance with the provisions of the Edwards Aquifer Protection Ordinance, when applicable, and City of Austin Utility Criteria Manual, Section 5, "Working in Public Rights-of-Way". The pipe shall be of the sizes, types, class and dimensions indicated or as designated by the Engineer and shall include all joints or connections to new or existing mains, pipes, sewers, manholes, inlets, structures, etc., as may be required to complete the Work in accordance with specifications and published standard practices of the trade associations for the material specified and to the lines and grades indicated. This item shall include any pumping, bailing, and drainage when indicated or applicable. Unless otherwise provided, this item shall consist of the removal and disposition of trees, stumps and other obstructions, old structures or portions thereof such as house foundations, old sewers, masonry or concrete walls, the plugging of the ends of abandoned piped utilities cut and left in place and the restoration of existing utilities damaged in the process of excavation, cutting and restoration of pavement and base courses, the furnishing and placing of select bedding, backfilling and cement or lime stabilized backfill, the hauling and disposition of surplus materials, bridging of trenches and other provisions for maintenance of traffic or access as indicated.

510.2 Materials
The Contractor shall submit descriptive information and evidence that the materials and equipment the Contractor proposes for incorporation into the Work are of the kind and quality that satisfies the specified functions and quality. Austin Water Utility Standard Products Lists (SPL) form a part of the Specifications. Contractors may, when appropriate, elect to use products from the SPL; however, submittal to the Engineer is still required. Should the Contractor elect to use any materials from these lists, each product shall be completely and clearly identified by its corresponding SPL number when making the product submittal. This will expedite the review process in which the Engineer decides whether the products meet the Contract requirements and the specific use foreseen by the Engineer in the design of this engineered Project. The purpose of the SPL’s is to expedite review, by the Engineer of Contractor product submittals. The SPL’s shall not be considered as being a pre-approved list of products necessarily meeting the requirements of the Project. Items contained in the SPL cannot be substituted for items shown on the Drawings, or called for in the specifications, or specified in the Bidding Requirements, Contract Forms and Conditions of Contract, unless approved by the Engineer. The Standard Product List current at the time of plan approval will govern.

(1) Concrete
Concrete shall conform to Item No. 403S, "Concrete for Structures".

(2) Coarse Aggregate

Coarse aggregate shall conform to Item No. 403S, "Concrete for Structures" or one of the following:

(a) Pipe Bedding Stone

Pipe bedding stone shall be clean gravel, crushed gravel or crushed limestone, free of mud, clay, vegetation or other debris, conforming to ASTM C 33 for stone quality. Size gradation shall conform to ASTM C-33 No. 57 or No. 67 or the following Table:

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>% RETAINED BY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2"</td>
<td>0</td>
</tr>
<tr>
<td>1"</td>
<td>0-10</td>
</tr>
<tr>
<td>1/2"</td>
<td>40-85</td>
</tr>
<tr>
<td>#4</td>
<td>90-100</td>
</tr>
<tr>
<td>#8</td>
<td>95-100</td>
</tr>
</tbody>
</table>

(b) Foundation Rock

Foundation rock shall be well graded coarse aggregate ranging in size from 2 to 8 inches.

(c) Flexible Base

Flexible base shall conform to Item No. 210S, "Flexible Base".

(3) Fine Aggregate

(a) Concrete and Mortar Sand

Fine aggregate shall conform to Item No. 403S, "Concrete for Structures".

(b) Bedding Sand

Sand for use as pipe bedding shall be clean, granular and homogeneous material composed mainly of mineral matter, free of mud, silt, clay lumps or clods, vegetation or debris. The material removed by decantation TxDOT Test Method Tex-406-A, plus the weight of any clay lumps, shall not exceed 4.5 percent by weight.

The resistivity shall not be less than 3000 ohms-cm as determined by TxDOT Test Method Tex-129-E. Size gradation of sand for bedding shall be as follows:
(c) Stone Screenings

Stone screenings shall be free of mud, clay, vegetation or other debris, and shall conform to the following Table:

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>% RETAINED BY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4"</td>
<td>0</td>
</tr>
<tr>
<td>#60</td>
<td>75-100</td>
</tr>
<tr>
<td>#100</td>
<td>95-100</td>
</tr>
</tbody>
</table>

All screenings shall be the result of a rock crushing operation.

(4) Controlled Low Strength Material

Controlled Low Strength Material (CLSM) shall conform to Item 402S, "Controlled Low Strength Material.

(5) Pea Gravel

Pea gravel bedding shall be clean washed material, hard and insoluble in water, free of mud, clay, silt, vegetation or other debris. Stone quality shall meet ASTM C 33. Size gradation shall be as follows:

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>% RETAINED BY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>95 to 100</td>
</tr>
<tr>
<td>No. 8</td>
<td>80 to 100</td>
</tr>
<tr>
<td>No. 16</td>
<td>50 to 85</td>
</tr>
<tr>
<td>No. 30</td>
<td>25 to 60</td>
</tr>
<tr>
<td>No. 50</td>
<td>10 to 30</td>
</tr>
<tr>
<td>No. 100</td>
<td>2 to 10</td>
</tr>
</tbody>
</table>

(6) Select Backfill or Borrow

This material shall consist of borrow or suitable material excavated from the trench. It shall be free of stones or rocks over 8 inches and shall have a plasticity index of less than 20. The moisture content at the time of
compaction shall be within 2 percent of optimum as determined by TxDOT Test Method Tex-114-E. Sandy loam borrow will not be allowed unless shown on the Drawings or authorized by the Engineer.

All suitable materials from excavation operations not required for backfilling the trench may be placed in embankments, if applicable. All unsuitable materials that cannot be made suitable shall be considered surplus excavated materials as described in 510.3(13). The Contractor may, if approved by the engineer, modify unsuitable materials to make them suitable for use. Modification may include drying, removal or crushing of over-size material, and lime or cement treatment.

(7) Cement Stabilized Backfill

When indicated or directed by the Engineer, all backfill shall be with cement-stabilized backfill rather than the usual materials. Unless otherwise indicated, cement stabilized backfill material shall consist of a mixture of the dry constituents described for Class J Concrete. The cement and aggregates shall be thoroughly dry mixed with no water added to the mixture except as may be directed by the Engineer.

(8) Pipe

General

Fire line leads and fire hydrant leads shall be ductile iron. Domestic water services shall not be supplied from fire service leads, unless the domestic and fire connections are on separately valved branches with an approved backflow prevention device in the fire service branch. All wastewater force mains shall be constructed of ductile iron pipe Pressure Class 250 minimum for pipe greater than 12-inch size and Pressure Class 350 for pipe 12-inch size and smaller. Wastewater pipe shall be in accordance with Austin Water Utility’s Standard Products List SPL WW-534 and shall have a corrosion resistant interior lining acceptable to the Department.

All water pipe within utility easements on private property shall be Ductile Iron Pipe, Pressure Class 350 minimum for pipe 12-inch size and smaller and Pressure Class 250 minimum for pipe greater than 12-inch size wrapped as indicated. For sizes over 24 inches, Concrete Pressure Pipe, steel cylinder type, conforming to the requirements of AWWA C-301 will be acceptable.

There may be no service connections to Concrete Pressure Pipe installed in utility easements on private property. Approved service clamps or saddles shall be used when tapping ductile iron pipe 12 inch size and smaller. All service tubing (3/4 inch thru 2 inches) installed in utility easements on private property shall be 150 psi annealed seamless Type K copper tubing with no sweat or soldered joints.
All reclaimed water mains shall be constructed of ductile iron pipe, Pressure Class 350 minimum for pipe 12-inch size and smaller and Pressure Class 250 for pipe greater than 12-inch size. For mains 12-inch size and smaller, PVC pipe, conforming to the requirements of AWWA C-900, DR 14 shall be acceptable. Reclaimed water pipe shall be manufactured purple, painted purple, or wrapped in purple polyethylene film wrap.

Manufacturers of pipe larger than 24-inch diameter shall have a quality control program consisting of one or more of the following: 1) a quality management system certified by the American National Standards Institute (ANSI) or National Sanitation Foundation (NSF) to comply with ISO 9001:2000, 2) a quality control program approved by the Department prior to submittal of bids for the PROJECT, or 3) an independent, third party quality control testing and inspection firm for testing and inspecting pipe produced for the PROJECT and approved by the Department prior to submittal of bids for the PROJECT. All such quality control programs shall be paid for by the manufacturer. It is the intent of this requirement that the manufacturer will document all appropriate tests and inspections with sampling and inspection criteria, frequency of testing and inspection, date of testing and inspection and date on which every piece was manufactured. Required testing and inspection, including that by an independent, third party, shall be performed full-time during production of pipe for the PROJECT. When requested by the Department, the manufacturer will provide copies of test data and results and inspection reports with the shipment of pipe for the PROJECT. Test data and results and inspection reports shall be traceable to specific pipe lots or pieces. Department approval of the manufacturer’s quality control program will expire after three years, at which time the manufacturer must present a current quality control program for approval in order to retain listing on the applicable SPL.

The quality of materials, the process of manufacture and the finished pipe shall be subject to inspection and approval by the Engineer at the pipe manufacturing plant and at the project site prior to and during installation. Plant inspections shall be conducted at the discretion of the City Representative. Only manufacturers having a quality control program of the type described above will be considered as approved providers of products as listed in the Standard Products List (SPL).

All water distribution pipe and fittings shall be listed in the Fire Protection Equipment Directory published by the Underwriter's Laboratories, Inc., or shall be Factory Mutual approved for fire service. All water pipe and related products shall be registered by the National Sanitation Foundation as having been certified to meet NSF/ANSI Standard 61.

(a) Reserved

(b) Iron Pipe
Iron pipe shall be ductile iron pipe meeting all requirements of standards as follows:

- For push-on and mechanical joint pipe: AWWA C-151
- For flanged pipe: AWWA C-115

Barrels shall have a nominal thickness required by Table 1 of AWWA C-115, which thickness corresponds to Special Class 53 in sizes through 54 inch, and Class 350 in 60 and 64-inch sizes. Flanges shall be ductile iron (gray iron is not acceptable); they shall be as shown in ANSI/AWWA C115/A21.15 and shall conform to dimensions shown in Table 2 and Figure 1 of AWWA C115. These flanges are the same in all respects as flanges shown in ANSI/AWWA C110/A21.10 for fittings and are standard for all flanges used with pipe, valve, and equipment units in the City of Austin water distribution and wastewater force main systems. Flanges shall be fabricated and attached to the pipe barrels by U.S. fabricators using flanges and pipe barrels of U.S. manufacture. If fabrication is to be other than the pipe barrel manufacturer, a complete product submittal and approval by the Austin Water Utility will be required. Additionally, such fabricator shall furnish certification that each fabricated joint has been satisfactorily tested hydrostatically at a minimum pressure of 300 psi.

-Linings and Coating:

Interior surfaces of all iron potable or reclaimed water pipe shall be cement-mortar lined and seal coated as required by AWWA C104. Interior surfaces of all iron wastewater line and force main pipe shall be coated with a non-corrosive lining material as indicated on Austin Water Utility’s Standard Products List SPL WW-534. Pipe exteriors shall be coated as required by the applicable pipe specification. The type and brand of interior lining shall be clearly marked on the outside of the pipe and fittings. Except as authorized by the Engineer, only one type and brand of pipe lining shall be used on a given project.

Except as described above for flanged pipe (Thickness Class 53) and where not otherwise indicated, ductile iron pipe shall be minimum Class 250 as defined by ANSI/AWWA C150/A21.50-current; all ductile iron pipe and flanges shall meet the following minimum physical requirements:

Grade 60-42-10:
- Minimum tensile strength: 60,000 psi (414 mPa).
- Minimum yield strength: 42,000 psi (290 mPa).
- Minimum elongation: 10 percent.

The flanges for AWWA C115 pipe may be also be made from:
Grade 70-50-05:
- Minimum tensile strength: 70,000 psi (483 MPa).
- Minimum yield strength: 50,000 psi (345 MPa).
- Minimum elongation: 5 percent.

1. Ductile Iron Fittings:

Fittings shall be push-on, flanged or mechanical joint as indicated or approved and shall meet all requirements of standards as follows:

- Sizes 4 inch through 24 inch: AWWA C-110 or AWWA C-153
- Sizes larger than 24 inch: AWWA C-110.

- Lining and Coating:
 Interior surfaces or all iron potable/reclaimed water pipe fittings shall be lined with cement-mortar and seal coated as required by AWWA C104. Interior surfaces of all iron wastewater and force main fittings shall be coated with a non-corrosive lining material acceptable to Department. Fitting exteriors shall be coated as required by the applicable pipe specification.

2. Joint Materials

Gaskets for mechanical joints shall conform to ANSI/AWWA A21.11/C-111.

Joining of slip joint iron pipe shall, without exception, be accomplished with the natural or synthetic rubber gaskets of the manufacturer of that particular pipe being used. A joint lubricant shall be used and applicable recommendations of the manufacturer shall be followed.

Gaskets for flanged joints shall be continuous full face gaskets, of 1/8 inch minimum thickness of natural or synthetic rubber, cloth-reinforced rubber or neoprene material, preferably of deformed cross section design and shall meet all applicable requirements of ANSI/AWWA A21.11/C-111 for gaskets. They shall be manufactured by, or satisfy all recommendations of, the manufacturer of the pipe/fittings being used and be fabricated for use with Class 125 ANSI B16.1 flanges.

Tee-head bolts, nuts and washers for mechanical joints shall be high strength, low alloy, corrosion resistant steel stock equal to "CORTEN A" having UNC Class 2 rolled threads or alloyed ductile iron conforming to ASTM A 536; either shall be fabricated in accordance with ANSI/AWWA A21.11/C-111.
Hex head bolts and nuts shall satisfy the chemical and mechanical requirements of ASTM A449 SAE Grade 5 plain, and shall be fabricated in accordance with ASTM B 18.2 with UNC Class 2 rolled threads.

Either Tee-Head or Hex-Head bolts, nuts and washers as required, shall be protected with bonded fluoro-polymer corrosion resistant coating where specifically required by the Engineer.

All threaded fasteners shall be marked with a readily visible symbol cast, forged or stamped on each nut and bolt, which will identify the fastener material and grade. The producer and the supplier shall provide adequate literature to facilitate such identification; painted markings are not acceptable.

3. Polyethylene Film Wrap

All iron pipe, fittings and accessories shall be wrapped with standard 8 mil (minimum) low density polyethylene film or 4-mil (minimum) cross laminated high-density polyethylene conforming to AWWA C-105, with all edges overlapped and taped securely with duct tape to provide a continuous wrap to prevent contact between the piping and the surrounding backfill. Repair all punctures of the polyethylene, including those caused in the placement of bedding aggregates, with duct tape to restore the continuous protective wrap before backfilling. Polyethylene film wrap for reclaimed water pipe shall be purple.

4. Marking

Each pipe joint and fitting shall be marked as required by the applicable AWWA specification. This includes in all cases: Manufacturer's identification, Country where cast, year of casting, and "DUCTILE" or "DI". Barrels of flanged pipe shall show thickness class; others shall show pressure class. The flanges of pipe sections shall be stamped with the fabricators identification; fittings shall show pressure rating, the nominal diameter of openings and the number of degrees for bends. Painted markings are not acceptable.

5. Warning Tape

Warning tape for identifying restrained joint pipe and fittings shall be yellow and shall have black lettering at least 2 inches high that reads "Restrained Joint / Junta de Restriction" at intervals not exceeding 24 inches. The warning tape shall be polypropylene having a minimum thickness of 2 mils, a minimum width of 3 inches, and adhesive backing on the side opposite the lettering.

(c) Concrete

1. General
Pipe shall confor to ASTM C 76 for Circular Pipe. Concrete pipe smaller than 12 inches in diameter shall conform to ASTM C 14, Extra Strength. All pipe shall be machine made or cast by a process which will provide uniform placement of the concrete in the form and compaction by mechanical devices, which will assure a dense concrete. Concrete shall be mixed in a central batch plant or other approved batching facility from which the quality and uniformity of the concrete can be assured. Transit mixed concrete shall not be acceptable for use in precast pipe. The pipe shall be Class III or the class indicated. Storm sewer pipe shall be of the tongue and groove or 0-ring joint design. Wastewater pipe shall be of the 0-ring joint design; it shall be acceptably lined for corrosion protection.

2. Marking

Each joint of pipe shall be marked with the pipe class, the date of manufacture, the manufacturer's name or trade mark, diameter of pipe and orientation, if required.

Pipe marking shall be waterproof and conform to ASTM C 76.

3. Minimum Age for Shipment

Pipe shall be considered ready for shipment when it conforms to the tests specified in ASTM C 76.

4. Joint Materials

When constructing storm sewers, the Contractor shall have the option of making joints with either of the following materials:

a. Mortar

Mortar for joints shall meet the requirements set forth below in "Mortar".

b. Cold Applied Preformed Plastic Gaskets

Cold Applied Plastic Gaskets shall be suitable for sealing joints of tongue and groove concrete pipe. The gasket sealing the joint shall be produced from blends of refined hydrocarbon resins and plasticizing compounds reinforced with inert mineral filler and shall contain no solvents, irritating fumes or obnoxious odors. The gasket joint sealer shall not depend on oxidizing, evaporating or chemical action for its adhesive or cohesive strength and shall be supplied in extruded rope form of suitable cross section. The size of the plastic gasket joint sealer shall be in accordance with the manufacturer's recommendations and sufficient to obtain squeeze-out around the joint. The gasket joint sealer shall be protected by a suitable removable wrapper.
that may be removed longitudinally without disturbing the joint sealer to facilitate application.

The chemical composition of the gasket joint sealing compound as shipped shall meet the following requirements:

<table>
<thead>
<tr>
<th>Composition (% by weight)</th>
<th>Test Method</th>
<th>Typical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitumen (petroleum plastic content)</td>
<td>ASTM D 4</td>
<td>50-70</td>
</tr>
<tr>
<td>Ash-inert Mineral Water</td>
<td>Tex-526-C</td>
<td>30-50</td>
</tr>
<tr>
<td>Volatile Matter (at 325 F)</td>
<td>Tex-506-C</td>
<td>2.0 Maximum</td>
</tr>
</tbody>
</table>

The gasket joint sealing compound when immersed for 30 days at ambient room temperature separately in 5 percent solution of caustic potash, a mixture of 5 percent hydrochloric acid, a 5 percent solution of sulfuric acid and a saturated H₂S solution shall show no visible deterioration.

The physical properties of the gasket joint sealing compound as shipped shall meet the following requirements:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Typical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity at 77 F</td>
<td>ASTM D 71</td>
<td>Minimum: 1.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum: 1.35</td>
</tr>
<tr>
<td>Ductility at 77F (cm) Minimum</td>
<td>Tex-503-C</td>
<td>5.0</td>
</tr>
<tr>
<td>Softening point</td>
<td>Tex-505-C</td>
<td>275 F</td>
</tr>
<tr>
<td>Penetration:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 F (300 g) 60 sec</td>
<td>Tex-502-C</td>
<td>75</td>
</tr>
<tr>
<td>77 F (150 g) 5 sec</td>
<td>Tex-502-C</td>
<td>50</td>
</tr>
<tr>
<td>115 F (150 g) 5 sec</td>
<td>Tex-502-C</td>
<td>150</td>
</tr>
<tr>
<td>Flashpoint C.O.C. F</td>
<td>Tex-504-C</td>
<td>600 F</td>
</tr>
<tr>
<td>Fire Point C.O.C. F</td>
<td>Tex-504-C</td>
<td>625 F</td>
</tr>
</tbody>
</table>

When constructing wastewater lines, the Contractor shall use O-ring gasket joints conforming to ASTM C 443. Just before making a joint, the ends of the pipe shall be clean, dry, free of blisters or foreign matter and shall be wire brushed. For O-ring joints, the gasket and the inside surface of the bell shall be lubricated with a light film of soft vegetable soap compound to facilitate assembly of the joint. The rubber O-ring gasket shall be stretched uniformly in the joint. Wedge seal type ("Forsheda" pre-lubricated) gaskets may be used if joint details submitted are approved; installation of such gaskets shall be in strict accordance with the manufacturer's recommendations, and shall be the sole element depended upon to make the joint flexible and watertight.

In wastewater lines no horizontal or vertical angles in the alignment of pipes shall be permitted unless indicated.
The spigot shall be centered in the bell, the pipe pushed uniformly home and brought into true alignment. Bedding material shall be placed and tamped against pipe to secure the joint.

5. Bends

When horizontal or vertical angles in the alignment of storm sewers are indicated, the bend or angle shall be constructed by cutting on a bias one or both pipes as may be required for the alignment indicated. The pipe cut shall be sufficiently long to allow exposing the reinforcement, which shall be bent, welded and incorporated into the pipe bend and reinforced concrete collar to maintain the structural integrity. The collar shall be 6 inches minimum, reinforced with #4 bars on a 1 foot center both directions. Builder's hardware cloth may be used on the outside of the joint to aid in holding cementing materials in place. Plywood, fiberboard or other materials placed on the inside of the pipe as formwork shall be removed as soon as the joint materials have obtained initial set, after which the inside surface of the pipe joint shall be finished smooth and true to the line and grade established. The Contractor may use prefabricated bends meeting the specification requirements in lieu of field fabricated bends. All bends shall be watertight, have a smooth flow line and be equal or greater in strength to the adjacent pipe.

Horizontal or vertical changes in alignment in wastewater lines shall be accomplished by use of manholes. With the Engineer’s approval, horizontal changes in alignment may be made by the "Joint Deflection" method. Joint deflection is limited by regulations of the Texas Commission on Environmental Quality (TCEQ) to 80 percent of the maximum recommended by the manufacturer; such deflection may not exceed 5 degrees at any joint. Changes in alignment using pipe flexure shall not be allowed.

6. Sulfide and Corrosion Control

All concrete pipe used for wastewater installations shall be protected from sulfide and corrosion damage by using limestone aggregate.

(d) Concrete Steel Cylinder (CSC) Pipe

1. General Requirements

The Contractor shall submit to the Engineer for approval along with other required data a tabulated layout schedule with reference to the stationing and grade lines to be used.

The manufacturer shall furnish all fittings and special pieces required for closures, bends, branches, manholes, air valves, blow offs and connections to main line valves and other fittings as indicated.
Each pipe length, fitting and special joint shall have plainly marked on the bell end of the pipe, the head condition for which it is designed. In addition, marking shall be required to indicate the location of each pipe length or special joint in the line and such markings will be referenced to the layout schedules and drawings and submitted for approval.

Concrete steel cylinder fittings shall be tested as required by the applicable AWWA Standards.

2. Design and Inspection

Where not otherwise indicated, concrete steel cylinder pipe shall be Class 150, designed to withstand a vacuum of not less than 28 feet of water. Valve reducers, tees and outlets from a pipe run shall be designed and fabricated so that all stresses are carried by the steel forming the fitting or outlet.

Concrete steel cylinder pipe shall meet one of the following specifications:

AWWA C-301 - Any Size
AWWA C-303 - 24-inch maximum size

All pipe flanges shall conform to AWWA C-207, requirements for standard steel flanges of pressure classes corresponding to the pipe class.

Pipe to be installed in a tunnel or encasement shall be manufactured with 1 inch thick by 24-inch wide skid bands of mechanically impacted mortar in addition to the normal coating.

All concrete steel cylinder fittings shall be constructed of steel plate of adequate strength to withstand both internal pressure and external loading. Rod reinforcing shall not be used to figure the required steel area. The fittings shall have a concrete lining and 1 inch minimum coating of cement mortar, except that centrifugally spun lining need not be reinforced.

Minimum lining thickness shall be 1/2 inch for 16-inch pipe and 3/4 inch for sizes larger than 16-inch pipe. Where it is impractical to place such concrete protection on interior surfaces of small outlets, 2 coats of "Bitumastic Tank Solution" shall be applied.

No fitting shall be made by cutting of standard pipe, except that outlets of less than 75 percent of the pipe diameter may be placed in a standard pipe. Beveled spigots may be placed on standard pipe.
3. Joint Materials

Joints shall be of the rubber gasket type conforming to the applicable standards. The inside and outside recesses between the bell and spigot shall be completely filled with Cement Grout in accordance with the pipe manufacturer's recommendations. Grout materials for jointing such pipe, unless otherwise indicated, shall be as described herein.

(e) Reserved

(f) Polyethylene Tubing

1. General

All polyethylene (PE) tubing shall be high density, high molecular weight plastic tubing meeting ASTM D 2737; it shall be pressure rated at 200 psi working pressure and must bear the National Sanitation Foundation seal of approval for potable water service. Pipe manufacturers shall be listed on SPL WW-65.

2. Materials

Polyethylene plastics shall be Designation PE3408 (Grade P34 with hydrostatic design stress of 800 psi).

3. Markings

Permanent marking on the tubing shall include the following at intervals of not more than 5 feet:

- Nominal tubing size.
- Type of plastic material, i.e., PE 3408.
- Dimension Ratio (DR) and pressure rating in psi for water at 73.4 °F (e.g., SDR-9, 200 psi).
- ASTM D 2737 designation.
- Manufacturer's name or trademark, code and seal of approval (NSF mark) of the National Sanitation Foundation.

Polyethylene tubing for reclaimed service lines shall be purple.

4. Tube Size

PE tubing shall be standard copper tube size outside diameter, with Standard Dimension Ratio (SDR) of 9.

(g) Copper Tubing

All copper service tubing shall be annealed seamless Type K water tube meeting ASTM B88 and rated at 150 psi working pressure. The tubing shall be homogenous throughout and free from cracks, holes, crimping,
foreign inclusions or other defects. It shall be uniform in density and other physical properties. Copper tubing for reclaimed water shall be wrapped in purple polyethylene film wrap. Pipe manufacturers shall be listed on SPL WW-613.

(h) Service Connection Fittings

All fittings used in customer service connection - tapping mains, connecting meters, etc. - must be currently listed on the applicable Water and Wastewater Standard Products List (SPL WW-68), or called for in the City of Austin Standard Details (520 - series).

(i) Brass Goods

All brass valves, couplings, bends, connections, nipples and miscellaneous brass pipe fittings and accessories used in meter connections, service lines, air release piping assemblies, and wherever needed in the water distribution system, shall conform to the City of Austin Standards, Austin Water Utility Standard Products Lists, and AWWA C-800, except as herein modified or supplemented.

Unless otherwise noted, the goods described herein shall be fabricated of standard Red Brass (Waterworks Brass) meeting ASTM B62 or B584, alloy 83600, consisting of 85 percent copper and 5 percent each of tin, lead and zinc.

Exposed threads shall be covered with plastic caps or sheeting to protect the threads.

Brass goods of each type and class shall be compatible with other fittings in common usage for similar purposes. Where not otherwise indicated, all such materials shall meet the following requirements:

Inlet threads of corporation valves shall be AWWA iron pipe (IP) thread (male); outlets of service saddles shall be tapped with AWWA IP thread (female). AWWA IP threads shall conform to ANSI/ASME B1.20.1 as required by AWWA C800 for “General Purpose (Inch) Pipe Threads”. For 3/4” and 1” sizes only, corporation valve inlet threads, and the internal threads of saddles may be the AWWA taper thread conforming to AWWA C800 Figure 1 and Table 6. External threads of corporation valve inlet must be compatible with internal threads of the service saddle.

Connections of all new tubing, and of tubing repairs wherever possible, shall be by compression fittings. Compression connections shall be designed to provide a seal and to retain the tubing, without slippage, at a working water pressure of 150 psig.

Flanges shall conform to ANSI B16.1, Class 125, as to dimensions, drillings, etc. Copper tubing, when used, shall be Type K tubing having dimensions and weights given in Table A.1 of AWWA C800.
Brass pipe shall conform to the weights and dimensions for Extra Strong pipe given in Table A.2 of AWWA C800.

All fittings shall be suitable for use at hydrostatic working pressures up to 150 psig (hydrostatic testing of installed systems is at 200 psig).

(j) Reserved

(k) Polyvinyl Chloride Potable/Reclaimed Water Pipe

1. General

All polyvinyl chloride (PVC) potable/reclaimed water pipe shall be of the rigid (UNPLASTICIZED) type and must bear the National Sanitation Foundation seal of approval for potable water pipe. Each joint of pipe shall consist of single continuous extrusion; bells or other components attached by solvent welding are not acceptable. Pipe shall be pressure rated at 200 psi (SDR-14).

Pipe shall have push-on, rubber gasket joints of the bell and spigot type with thickened integral bells with rubber gasket joints. The wall thickness of each pipe bell and joint coupling must be greater than the standard pipe barrel thickness. Clearance must be provided in every gasket joint for both lateral pipe deflection and for linear expansion and contraction. Concrete thrust blocking shall be placed behind bends and tees. Concrete support cradles or blocking shall be required for support of all fire hydrants, valves and AWWA C110 fittings; such support shall be provided for AWWA C153 fittings when required by the Engineer.

2. Applicable Specifications

Except as modified or supplemented herein, PVC pipe shall meet the following standards:

AWWA C-900, SDR 14 for PVC Pressure Pipe, in 4, 6, 8 and 12 inch nominal sizes, having Cast Iron Pipe size outside diameters.

Fittings used with PVC Pressure pipe shall be AWWA C-110 or AWWA C-153 compact ductile iron fittings.

All pipe 4 inches and larger must be approved Underwriter's Laboratories for use in buried water supply and fire protection systems.

3. Material Requirements

All pipe and fittings shall be made from clean, virgin, NSF certified, Class 12454B PVC. Clean reworked materials generated from the manufacturers own production may be used within the current limits of the referenced AWWA C-900.
4. Marking

PVC for reclaimed piping shall be purple or wrapped in purple polyethylene film wrap.

Permanent marking on each joint of pipe shall include the following at intervals of not more than 5 feet:

Nominal pipe size and OD base (e.g., 4 CIPS).
Type of plastic material (e.g., PVC 12454B).
Standard Dimension Ratio and the pressure rating in psi for water at 73°F (e.g., SDR 14, 200 psi).
AWWA designation with which the pipe complies (e.g., AWWA C-900).
Manufacturer's name or code and the National Sanitation Foundation (NSF) mark.

5. Tracer Tape

Inductive Tracer Detection Tape shall be placed directly above the centerline of all non-metallic pipe a minimum of 12 inches below subgrade or, in areas outside the limits of pavement, a minimum of 18 inches below finished grade. The tracer tape shall be encased in a protective, inert, plastic jacket and color coded according to American Public Works Association Uniform Color Code. Except for minimum depth of cover, the tracer tape shall be placed according to manufacturer’s recommendations. Manufacturers must be listed on SPL WW-597.

(l) Polyvinyl Chloride (PVC) Pipe (Nonpressure) and Fittings

1. General

PVC sewer and wastewater pipe and fittings 6 through 15 inch diameter shall conform to ASTM D 3034. Pipe shall have minimum cell classification of 12364 or 12454. Fittings shall have cell classification of 12454 or 13343. Pipe stiffness shall be at least 115 psi as determined by ASTM D 2412. Pipe manufacturers shall be on SPL WW-227, and fitting manufacturers shall be on SPL WW-227B.

PVC sewer and wastewater pipe and fittings 18 through 27 inch diameter shall conform to ASTM F 679. Pipe shall have minimum cell classification of 12364 or 12454. Pipe stiffness shall be at least 72 psi as determined by ASTM D 2412. Pipe manufacturers shall be on SPL WW-227A, and fitting manufacturers shall be on SPL WW-227B.
2. Joints

PVC pipe and fitting shall have elastomeric gasket joints conforming to ASTM D 3212. Gaskets shall conform to ASTM F 477.

3. Pipe Markings

Pipe meeting ASTM D 3034 shall have permanent marking on the pipe that includes the following at intervals of not more than 5 feet:

- Manufacturer's name and/or trademark and code.
- Nominal pipe size.
- PVC cell classification per ASTM D 1784
- The legend “SDR-_ _ PVC Sewer Pipe” (SDR 26, 23.5. or less is required)
- The designation “ASTM D 3034”

Pipe meeting ASTM F 679 shall have permanent marking that includes the following at intervals of not more than 5 feet:

- Manufacturer’s name or trademark and code
- Nominal pipe size
- PVC cell classification per ASTM D 1784
- Pipe stiffness designation “PS _ _ PVC Sewer Pipe” (PS of at least 72 is required)
- The designation “ASTM F 679”

4. Fitting Markings

Fittings meeting ASTM D 3034 shall have permanent marking that includes the following:

- Manufacturer's name or trademark,
- Nominal size
- The material designation "PVC"
- The designation, "ASTM D 3034"

Fittings meeting ASTM F 679 shall have permanent marking that includes the following:

- Manufacturer’s name or trademark and code
- Nominal size
- The material designation “PVC”
- The designation “ASTM F 679”

5. Tracer Tape

Inductive Tracer Detection Tape shall be placed directly above the centerline of all non-metallic pipe a minimum of 12 inches below
subgrade or, in areas outside the limits of pavement, a minimum of 18 inches below finished grade. The tracer tape shall be encased in a protective, inert, plastic jacket and color coded according to American Public Works Association Uniform Color Code. Except for minimum depth of cover, the tracer tape shall be placed according to manufacturer’s recommendations. Manufacturers must be listed on SPL WW-597.

(m) Steel Pipe
1. Standard Weight
 ASTM A 53, Schedule 40.
2. Extra Heavy Weight
 Seamless ASTM A 53, Schedule 80.
3. Encasement Pipe
 a. For direct-bury installations, pipe shall conform to ASTM A134 with minimum thickness of 3/8 inch (9.5 mm).
 b. For jacked installations, pipe shall conform to requirements on drawings.
4. Fittings
 Nipples and fittings extra strong Federal Specification WW-N 351 or WW-P 521.
5. Coatings
 Black or galvanized as indicated.

(n) Welded Steel Pipe and Fittings for Water-Pipe
 Specifications of the American Water Works Association (AWWA) listed below shall apply to this Section.

 C-200 Steel Water Pipe 6 inches and larger.
 C-205 Cement-Mortar Protective Lining and Coating for Steel Water Pipe, 4 inches and larger, Shop Applied.
 C-206 Field Welding of Steel Water Pipe.
 C-207 Steel Pipe Flanges for Waterworks Services, Sizes 4 inches through 144 inches.
 C-208 Dimensions for Steel Water Pipe Fittings.
 C-602 Cement-Mortar Lining of Water Pipelines, 4 inches and larger in Place.

2. Submittals
 Furnish Shop Drawings, product data, design calculations and test reports as described below:
a. Certified copies of mill tests confirming the type of materials used in steel plates, mill pipe flanges and bolts and nuts to show compliance with the requirements of the applicable standards.

b. Complete and dimensional working drawings of all pipe layouts. Shop Drawings shall include the grade of material, size, wall thickness of the pipe and fittings, type and location of fittings and the type and limits of the lining and coating systems of the pipe and fittings.

c. Product data to show compliance of all couplings, supports, fittings, coatings and related items.

3. Job Conditions

a. The internal design pressure of all steel pipe and fittings shall be as indicated.

b. The interior of all steel pipe for potable water, 4 inches and larger, shall be cement-mortar lined.

4. Manufacturing

a. Description

 Pipe shall comply with AWWA C-200.

 (1) Circumferential deflection of all pipe in-place shall not exceed 2.0 percent of pipe diameter.

 (2) Diameter

 Nominal pipe diameter shall be the inside diameter of lining or pipe barrel, unless otherwise designated in Job Conditions.

b. Wall Thickness

 (1) Steel pipe wall thickness shall be designed for the internal and external loads specified in this section. The cylinder thickness needed to resist internal pressure shall be based on an allowable stress in the steel equal to 1/2 the minimum yield stress of the material used.

5. Fittings

a. Welded

 Fabricated steel fittings shall be of the same material as pipe and shall comply with AWWA C-208.

6. Flanges

a. Flanges shall comply with the requirements of AWWA C-207, Class D or Class E. The class shall be based on operating conditions and mating flanges of valves and equipment.
b. Gaskets shall be cloth-inserted rubber, 1/8 inch thick.
c. Flanges shall be flat faced with a serrated finish.

7. Pipe Joints

a. Lap Joints for Field Welding

(1) Lap joints for field welding shall conform to AWWA C-206. This item applies only to pipes 72 inches in diameter and larger.

(2) The bell ends shall be formed by pressing on a hydraulic expander or a plug die. After forming, the minimum radius of curvature of the bell end at any point shall not be less than 15 times the thickness of the steel shell. Bell ends shall be formed in a manner to avoid impairment of the physical properties of the steel shell. Joints shall permit a lap at least 1 1/2 inches when assembled. The longitudinal or spiral weld on the inside of the bell end and the outside of the spigot end on each section of pipe shall be ground flush with the plate surface. The inside edge of the bell and the outside edge of the spigot shall be scarfed or lightly ground to remove the sharp edges or burrs.

b. Bell and Spigot Joints with O-Ring Gasket

(1) Bell and spigot joints with rubber gasket shall conform to AWWA C-200.

(2) The bell and spigot ends shall be so designed that when the joint is assembled, it will be self-centered and the gasket will be confined to an annular space in such manner that movement of the pipe or hydrostatic pressure cannot displace it. Compression of the gasket when the joint is completed shall not be dependent upon water pressure in the pipe and shall be adequate to ensure a watertight seal when subjected to the specified conditions of service. Bell and spigot ends shall be welded on preformed shapes. The bell and spigot ends shall conform to the reviewed Shop Drawings.

8. Interior and Exterior Protective Surface Coatings

a. Exterior Surface to be mortar coated shall conform to AWWA C-205 for shop application and AWWA C-602 for field application. Pipe materials shall be the product of an organization, which has had not less than 5 years successful experience manufacturing pipe materials, and the design and manufacture of the pipe, including all materials, shall be the product of one company.

b. All surfaces except as noted in c and d below shall receive shop application of mortar lining and coating.
c. Field Welded Joints. After installation, clean, line and coat unlined or uncoated ends adjacent to welded field joints, including the weld proper, as specified for pipe adjacent to the weld. Potable water only shall be used in the preparation of any cement, mortar, or grout lining.

d. Machined Surfaces. Shop coat machined surfaces with a rust preventative compound. After jointing surfaces, remaining exposed surfaces shall be coated per a) and b) above.

(o) Corrugated Metal Pipe

1. General

Pipe shall be corrugated continuous lock or welded seam helically corrugated pipe. Corrugated metal pipe may be galvanized steel, aluminized steel or aluminum conforming to the following:

- Galvanized Steel AASHTO M 218
- Aluminized Steel AASHTO M 274
- Aluminum AASHTO M 197

Where reference is made herein to gage of metal, the reference is to U.S. Standard Gage for uncoated sheets. Tables in AASHTO M 218 and AASHTO M 274 list thickness for coated sheets in inches. The Tables in AASHTO M 197 list thickness in inches for clad aluminum sheets.

Sampling and testing of metal sheets and coils used for corrugated metal pipe shall be in accordance with TXDOT Test Method Tex-708-I.

Damaged spelter coating shall be repaired by thoroughly wire brushing the damaged area and removing all loose, cracked or weld-burned spelter coating. The cleaned area shall be painted with a zinc dust-zinc oxide paint conforming to Federal Specifications TT-P 641b. Damaged pipe shall be rejected and removed from the project.

Damaged aluminized coating shall be repaired in accordance with the manufacturer's recommendations.

The following information shall be clearly marked on each section of pipe:
- Thickness and corrugations
- Trade Mark of the manufacturer
- Specification compliance

2. Fabrication

a. Steel Pipe
Galvanized or aluminized steel pipe shall be full circle or arch pipe conforming to AASHTO M 36, Type I or Type II as indicated.

It may be fabricated with circumferential corrugations; lap joint construction with riveted or spot welded seams or it may be fabricated with helical corrugations with continuous helical lock seam or ultra high frequency resistance butt-welded seams.

b. Aluminum Pipe

Pipe shall conform to AASHTO M 196, Type I, circular pipe or Type II, pipe arch as indicated. It may be fabricated with circumferential corrugations; lap joint construction with riveted or spot welded seams or it may be fabricated with helical corrugations with a continuous helical lock seam.

 Portions of aluminum pipe that are to be in contact with high chloride concrete or metal other than aluminum, shall be insulated from these materials by a coating of bituminous material. The coating applied to the pipe or pipe arch to provide insulation between the aluminum and other material shall extend a minimum distance of 1 foot beyond the area of contact.

3. Selection of Gages

The pipe diameter, permissible corrugations and required gauges for circular pipe shall be as indicated on the drawings.

For pipe arch, the span, rise, gage, corrugation size and coating thickness shall be as shown on the drawings. A tolerance of plus or minus 1 inch or 2 percent of equivalent circular diameter, whichever is greater, will be permissible in span and rise, with all dimensions measured from the inside crests of the corrugations.

4. Joint Material

Except as otherwise indicated, coupling bands and other hardware for galvanized or aluminized steel pipe shall conform to AASHTO M 36 for steel pipe and AASHTO M 196 for aluminum pipe. Field joints for each type of corrugated metal pipe shall maintain pipe alignment during construction and prevent infiltration of soil material during the life of the installation.

Coupling bands shall be not more than 3 nominal sheet thickness lighter than the thickness of the pipe to be connected and in no case lighter than 0.052 inch for steel or 0.048 inch for aluminum.

Coupling bands shall be made of the same base metal and coating (metallic or otherwise) as the pipe.

Coupling bands shall lap equally on each of the pipes being connected to form a tightly closed joint after installation.
Pipes furnished with circumferential corrugations shall be field jointed with corrugated locking bands. This includes pipe with helical corrugations, which has reformed circumferential corrugations on the ends. The locking bands shall securely fit into at least one full circumferential corrugation on each of the pipe ends being coupled. The minimum width of the corrugated locking bands shall be as shown below for the corrugation which corresponds to the end circumferential corrugations on the pipes being joined:

10 1/2 inches wide for 2 2/3 inches x 1/2-inch corrugations.

12 inches wide for 3 inches x 1 inch or 5 inches x 1-inch corrugations.

Helical pipe without circumferential end corrugations will be permitted only when it is necessary to join a new pipe to an existing pipe, which was installed with no circumferential end corrugations. In this event pipe furnished with helical corrugations at the ends shall be field jointed with either helically corrugated bands or with bands with projections or dimples. The minimum width of helically corrugated bands shall conform to the following:

12 inches wide for pipe diameters up to and including 72 inches.

14 inches wide for 1 inch deep helical end corrugations.

Bands with projections shall have circumferential rows of projections with one projection for each corrugation. The width of bands with projections shall be not less than the following:

12 inches wide for pipe diameters up to and including 72 inches.

The bands shall have 2 circumferential rows of projections.

16 1/4 inches wide for pipe diameters of 78 inches and greater.

The bands shall have 4 circumferential rows of projections.

Unless otherwise indicated, all bolts for coupling bands shall be 1/2-inch diameter. Bands 12 inches wide or less shall have a minimum of 2 bolts and bands greater than 12 inches wide shall have a minimum of 3 bolts.

Galvanized bolts may be hot dip galvanized conforming to AASHTO M 232, mechanically galvanized to provide the same requirements as AASHTO M 232 or electro-galvanized per ASTM A 164 Type RS.

5. Additional Coatings or Linings

a. Bituminous Coated

Bituminous Coated pipe or pipe arch shall be as indicated both as to base metal and fabrication and in addition shall be coated inside
and out with a bituminous coating which shall meet the performance requirements set forth herein. The bituminous coating shall be 99.5 percent soluble in carbon bisulphide. The pipe shall be uniformly coated inside and out to a minimum thickness of 0.05 inch, measured on the crests of the corrugations.

The bituminous coating shall adhere to the metal tenaciously, shall not chip off in handling and shall protect the pipe from deterioration as evidenced by samples prepared from the coating material successfully meeting the Shock Test and Flow Test in accordance with Test Method Tex-522-C.

b. Paved Invert

Where a Paved Invert is indicated, the pipe or pipe arch, in addition to the fully coated treatment described above, shall receive additional bituminous material of the same specification as above, applied to the bottom quarter of the circumference to form a smooth pavement with a minimum thickness of 1/8 inch above the crests of the corrugations.

c. Cement Lined

(1) General

Except as modified herein, pipe shall conform to AASHTO M 36 for lock seam or welded helically corrugated steel pipe. Pipe shall be of full circle and shall be fabricated with two annular corrugations for purposes of joining pipes together with band couplers. Lock seams shall develop the seam strength as required in Table 3 of AASHTO M 36. Concrete lining shall conform to the following:

Composition

Concrete for the lining shall be composed of cement, fine aggregate and water that are well mixed and of such consistency as to produce a dense, homogeneous, non-segregated lining.

Cement

Portland Cement shall conform to AASHTO M 85.

Aggregate

Aggregates shall conform to AASHTO M 6 except that the requirements for gradation and uniformity of gradation shall not apply.

Mixture

The aggregates shall be sized, graded, proportioned and thoroughly mixed with such proportions of cement and water
as will produce a homogenous concrete mixture of such quality that the pipe will conform to the design requirements indicated. In no case, however, shall the proportions of Portland Cement, blended cement or Portland Cement plus pozzolanic admixture be less than 470 lb/cu. yd of concrete.

Thickness
The lining shall have a minimum thickness of 1/8 inch above the crest of the corrugations.

Lining Procedures
The lining shall be plant applied by a machine traveling through a stationary pipe. The rate of travel of the machine and the rate of concrete placement shall be mechanically regulated so as to produce a homogenous nonsegregated lining throughout.

Surface Finish
The lining machine shall also mechanically trowel the concrete lining as the unit moves through the pipe.

Certification
Furnish manufacturer's standard certification of compliance upon request of the purchaser.

Joints
Pipe shall be joined together with coupling bands made from steel sheets to an indicated thickness of 0.064 inch (12 ga.). Coupling bands shall be formed with two corrugations that are spaced to provide seating in the third corrugation of each pipe end without creating more than 1/2 inch ± annular space between pipe ends when joined together.

Bands shall be drawn together by two 1/2 inch galvanized bolts through the use of a bar and strap suitably welded to the band.

When O-ring gaskets are indicated they shall be placed in the first corrugation of each pipe and shall be compressed by tightening the coupling band. Rubber O-ring gaskets shall conform to Section 5.9, ASTM C 361.

(2) Causes for Rejection
Pipe shall be subject to rejection on account of failure to conform to any of the indications. Individual sections of pipe may be rejected because of any of the following:

Damaged ends, where such damage would prevent making satisfactory joint.
Defects that indicate poor workmanship and could not be easily repaired in the field.

Severe dents or bends in the metal itself.

If concrete lining is broken out, pipe may be rejected or at the discretion of the Engineer, repaired in the field in accordance with the manufacturer's recommendation.

Hairline cracks or contraction cracks in the concrete lining are to be expected and does not constitute cause for rejection.

d. Fiber Bonded

Where fiber bonded pipe is indicated, the pipe or pipe arch shall be formed from sheets whose base metal shall be as indicated. In addition, the sheets shall have been coated with a layer of fibers, applied in sheet form by pressing them into a molten metallic bonding. If a paved invert is indicated it shall be in accordance with the procedure outlined above. The test for spelter coating above is waived for fiber bonded pipe.

6. Slotted Drain Storm Sewers

The pipes for the slotted drain and slotted drain outfall shall be helically corrugated, lock seam or welded seam pipe. Materials and fabrication shall be in accordance with the above. The metal thickness shall be a minimum 16 gage.

The chimney assemblies shall be constructed of 3/16 inch welded plate or machine formed 14 gage galvanized steel sheets. The height of the chimney required shall be as indicated. Metal for the welded plate slot shall meet the requirements of ASTM A 36 and the completed plate slot shall be galvanized after fabrication in accordance with ASTM A 123.

Weld areas and the heat affected zones where the slot is welded to the corrugated pipe shall be thoroughly cleaned and painted with a good quality asphalt base aluminum paint.

7. Mortar

Mortar shall be composed of 1 part Type I Portland Cement and 2 parts clean, sharp mortar sand suitably graded for the purpose and conforming in other respects to the provisions for fine aggregate of Item No. 403, "Concrete for Structures". Hydrated lime or lime putty
may be added to the mix, but in no case shall it exceed 10 percent by weight of the total dry mix.

510.3 Construction Methods

(1) General

Prior to commencing this Work, all erosion control and tree protection measures required shall be in place and all utilities located and protected as set forth in "General Conditions". Clearing the site shall conform to Item No. 102S, "Clearing and Grubbing". Maintenance of environmental quality protection shall comply with all requirements of "General Conditions" and Item No. 601S, "Salvaging and Placing Topsoil".

The Contractor shall conduct his Work such that a reasonable minimum of disturbance to existing utilities will result. Particular care shall be exercised to avoid the cutting or breakage of all existing utilities. If at any time the Contractor damages the utilities in place through his operations, the Contractor shall immediately notify the Department and owner of the utility to make the necessary repairs. When active wastewater sewer lines are cut in the trenching operations, temporary flumes shall be provided across the trench while open and the lines shall be restored when the backfilling has progressed to the original bedding lines of the sewer so cut.

The Contractor shall inform utility owners sufficiently in advance of the Contractor's operations to enable such utility owners to reroute, provide temporary detours or to make other adjustments to utility lines in order that the Contractor may proceed with his Work with a minimum of delay and expense. The Contractor shall cooperate with all utility owners concerned in effecting any utility adjustments necessary and shall not hold the City liable for any expense due to delay or additional Work because of conflicts arising from existing utilities.

The Contractor shall do all trenching in accordance with the provisions and the directions of the Engineer as to the amount of trench left unfilled at any time. All excavation and backfilling shall be accomplished as indicated and in compliance with State Statutes.

Where excavation for a pipe line is required in an existing City street, a street cut permit is required and control of traffic shall be as indicated in accordance with the Texas Manual on Uniform Traffic Control Devices.

Wherever existing utility branch connections, sewers, drains, conduits, ducts, pipes or structures present obstructions to the grade and alignment of the pipe, they shall be permanently supported, removed, relocated or reconstructed by the Contractor through cooperation with the owner of the utility, structure or obstruction involved. In those instances where their relocation or reconstruction is impractical, a deviation from line and grade will be ordered by the Engineer and the change shall be made in the manner directed.
Adequate temporary support, protection and maintenance of all underground and surface utility structures, drains, sewers and other obstructions encountered in the progress of the Work shall be furnished by the Contractor, at his expense and as approved by the Engineer.

Where traffic must cross open trenches, the Contractor shall provide suitable bridges in conformance with Standard 804S-4. Adequate provisions shall be made for the flow of sewers; drains and watercourses encountered during construction and any structures, which may have been disturbed, shall be satisfactorily restored upon completion of Work.

When rainfall or runoff is occurring or is forecast by the U.S. Weather Service, the Contractor shall not perform or attempt any excavation or other earth moving Work in or near the flood plain of any stream or watercourse or on slopes subject to erosion or runoff, unless given specific approval by the Engineer. When such conditions delay the Work, an extension of time for working day contracts will be allowed in accordance with "General Conditions".

(2) Water Line/New Wastewater Line Separation

Separation between water, reclaimed water, and wastewater lines shall be provided as shown in the Drawings.

Crossings of water, reclaimed water, and wastewater lines shall conform to details in the Drawings.

Wastewater manholes within 9 feet of water and reclaimed water lines shall be made watertight according to details in the Drawings.

(3) Utility and Storm Sewer Crossings

When the Contractor installs a pipe that crosses under a utility or storm sewer structure and the top of the pipe is within 18 inches of the bottom of the structure, the pipe shall be backfilled as shown in the Drawings. When the Contractor installs a pipe that crosses under a utility or storm sewer structure that is not shown in the Drawings, the pipe shall be backfilled as directed by the Engineer. Payment for backfilling pipe at utility or storm sewer structures not shown in the Drawings shall be by Change Order.

(4) Trench Excavation

Excavation in a paved street shall be preceded by saw cutting completely through any asphaltic cement concrete or portland cement concrete surface, base, or subbase to the underlying subgrade. This requirement shall not apply to excavations made with trenching machines that use a rotating continuous belt or chain for cutting and removing of material.

Underground piped utilities shall be constructed in an open cut in accordance with Federal regulations, applicable State Statutes conforming to Item No. 509S, "Excavation Safety Systems" and with a trench width and depth described below.
When pipe is to be constructed in fill above the natural ground, Contractor shall construct embankment to an elevation not less than one foot above the top of the pipe, after which trench is excavated. Required vertical sides shall be sheeted and braced as indicated to maintain the sides of the required vertical excavation throughout the construction period. Adequacy of the design of sheeting and bracing shall be the responsibility of the Contractor's design professional. The Contractor shall be responsible for installation as indicated. After the pipe has been laid and the backfill placed and compacted to 12 inches above the top of the pipe, any sheeting, shoring and bracing required may be removed with special care to insure that the pipe is not disturbed. As each piece of sheeting is removed, the space left by its removal must be thoroughly filled and compacted with suitable material and provisions made to prevent the sides of the trench from caving until the backfill has been completed. Any sheeting left in place will not be paid for and shall be considered subsidiary to the pipe item bid.

(5) Trench Width

Trenches for water, reclaimed, and wastewater lines shall have a clear width on each side beyond the outside surfaces of the pipe bell or coupling of not less than 6 inches nor more than 12 inches.

Trenches for Storm Sewers up to 42 inches shall have a width of 1 foot on each side beyond the outside surfaces of the pipe. Pipes more than 42 inches shall have a trench width not to exceed 18 inches on each side beyond the outside surfaces of the pipe.

If the trench width within the pipe zone exceeds this maximum, the entire pipe zone shall be refilled with approved backfill material, thoroughly compacted to a minimum of 95 percent of maximum density as determined by TxDOT Test Method Tex-114-E and then re-excavated to the proper grade and dimensions. Excavation along curves and bends shall be so oriented that the trench and pipe are approximately centered on the centerline of the curve, using short lengths of pipe and/or bend fittings if necessary.

For all utilities to be constructed in fill above natural ground, the embankment shall first be constructed to an elevation not less than 1 foot above the top of the utility after which excavation for the utility shall be made.

(6) Trench Depth and Depth of Cover

All pipe and in-line appurtenances shall be laid to the grades indicated. The depth of cover shall be measured from the established finish grade, natural ground surface, subgrade for staged construction, street or other permanent surface to the top or uppermost projection of the pipe.

(a) Where not otherwise indicated, all potable/reclaimed water piping shall be laid to the following minimum depths:
1. Potable/reclaimed water piping installed in undisturbed ground in easements of undeveloped areas, which are not within existing or planned streets, roads or other traffic areas shall be laid with at least 36 inches of cover.

2. Potable/reclaimed water piping installed in existing streets, roads or other traffic areas shall be laid with at least 48 inches of cover below finish grade.

3. Unless approved by the Engineer, installation of potable/reclaimed water piping in proposed new streets will not be permitted until paving and drainage plans have been approved and the roadway traffic areas excavated to the specified or standard paving subgrade, with all parkways and sidewalk areas graded according to any applicable provisions of the drainage plans or sloped upward from the curb line to the right of way line at a minimum slope of 1/4 inch per foot. Piping and appurtenances installed in such proposed streets shall be laid with at least 36 inches of cover below the actual subgrade.

(b) Where not otherwise indicated, all wastewater piping shall be laid to the following minimum depths:

1. Wastewater piping installed in natural ground in easements or other undeveloped areas, which are not within existing or planned streets, roads or other traffic areas shall be laid with at least 42 inches of cover.

2. Wastewater piping installed in existing streets, roads or other traffic areas shall be laid with at least 66 inches of cover.

3. Wastewater piping installed in such proposed streets shall be laid with at least 48 inches of cover below the actual subgrade.

(7) Classification of Excavation

Excavation will not be considered or paid for as a separate item of Work, so excavated material will not be classified as to type or measured as to quantity. Full payment for all excavation required for the construction shall be included in the various unit or lump sum Contract prices for the various items of Work installed, complete in place. No extra compensation, special treatment or other consideration will be allowed due to rock, pavement, caving, sheeting and bracing, falling or rising water, working under and in the proximity of trees or any other handicaps to excavation.

(8) Dewatering Excavation

Underground piped utilities shall not be constructed or the pipe laid in the presence of water. All water shall be removed from the excavation prior to the pipe placing operation to insure a dry firm granular bed on which to place the underground piped utilities and shall be maintained in such unwatered condition until all concrete and mortar is set. Removal of water may be accomplished by bailing, pumping or by a well-point installation as conditions warrant.
In the event that the excavation cannot be dewatered to the point where the pipe bedding is free of mud, a seal shall be used in the bottom of the excavation. Such seal shall consist of Class B concrete, conforming to Item No. 403, "Concrete for Structures", with a minimum depth of 3 inches.

(9) Trench Conditions

Before attempting to lay pipe, all water, slush, debris, loose material, etc., encountered in the trench must be pumped or bailed out and the trench must be kept clean and dry while the pipe is laid and backfilled. Where needed, sump pits shall be dug adjoining the trench and pumped as necessary to keep the excavation dewatered.

Backfilling shall closely follow pipe laying so that no pipe is left exposed and unattended after initial assembly. All open ends, outlets or other openings in the pipe shall be protected from damage and shall be properly plugged and blocked watertight to prevent the entrance of trench water, dirt, etc. The interior of the pipeline shall at all times be kept clean, dry and unobstructed.

Where the soil encountered at established footing grade is a quicksand, saturated or unstable material, the following procedure shall be used unless other methods are indicated:

All unstable soils shall be removed to a depth of a minimum 2 feet below bottom of piped utility or as required to stabilize the trench foundation. Such excavation shall be carried out for the entire trench width.

All unstable soil so removed shall be replaced with a concrete seal, foundation rock or coarse aggregate materials placed across the entire trench width in uniform layers not to exceed 6 inches, loose measure and compacted by mechanical tamping or other means which shall provide a stable foundation for the utility.

Forms, sheathing and bracing, pumping, additional excavation and backfill required in unstable trench conditions shall be subsidiary to pipe bid.

(10) Blasting

All blasting shall conform to the provisions of the "General Conditions" and/or "Public Safety and Convenience".

(11) Removing Old Structures

When out of service masonry structures or foundations are encountered in the excavation, such obstructions shall be removed for the full width of the trench and to a depth of 1 foot below the bottom of the trench. When abandoned inlets or manholes are encountered and no plan provision is made for adjustment or connection to the new sewers, such manholes and inlets within the construction limits shall be removed completely to a depth 1 foot below the bottom of the trench. In each instance, the bottom of the trench shall be restored to grade by
backfilling and compacting by the methods provided above. Where the trench cuts through storm or wastewater sewers which are known to be abandoned, these sewers shall be cut flush with the sides of the trench and blocked with a concrete plug in a manner satisfactory to the Engineer. When old structures are encountered, which are not visible from the existing surface and are still in service, they shall be protected and adjusted as required to the finished grade.

(12) Lines and Grades

Grades, lines and levels shall conform to the General Conditions and/or "Grades, Lines and Levels". Any damage to the above by the Contractor shall be re-established at the Contractor's expense. The Contractor shall furnish copies of all field notes and "cut sheets" to the City.

The location of the lines and grades indicated may be changed only by direction of the Engineer and it is understood that the Contractor will be paid on the basis of his unit Contract prices bid for such Work actually performed and shall make no claim for damages or loss of anticipated profits due to the change of location or grade.

The Contractor shall furnish, at his expense, all necessary batter boards or electronic devices for controlling the Work. Batter boards shall be of adequate size material and shall be supported substantially. The boards and all location stakes must be protected from possible damage or change of location. The Contractor shall furnish good, sound twilled lines for use in achieving lines and grades and the necessary plummets and graduated poles.

The Contractor shall submit to the Engineer at least six copies of a detailed pipe laying schedule for review and approval. The laying schedule shall list all types of pipe, fittings, valves, hydrants, flanged outlets, and other appurtenances required for construction. The Contractor shall submit the laying schedule at least 30 days in advance of construction on the project. The Engineer will forward review comments to the Contractor for revisions. The Contractor shall make revisions and forward to the Engineer for review. Prior to start of construction on the Project, the Engineer will send a reviewed final laying schedule marked for construction to the Contractor. Should the Contractor's procedures not produce a finished pipe placed to grade and alignment, the pipe shall be removed and relaid and the Contractor's procedures modified to the satisfaction of the Engineer. No additional compensation shall be paid for the removal and relaying of pipe required above.

(13) Surplus Excavated Materials

Excess material or material which cannot be made suitable for use in embankments will be declared surplus by the Engineer and shall become the property of the Contractor to dispose of off site at a permitted fill site, without liability to the City or any individual. Such surplus material shall be removed.
from the Work site promptly following the completion of the portion of the utility involved.

(14) Pipe Bedding Envelope

Pipe shall be installed in a continuous bedding envelope of the type shown on the drawings or as described herein. The envelope shall extend the full trench width, to a depth of 6 inches below the pipe and shall rise at least to the spring line of storm water pipe and to 12 inches above water, reclaimed, and wastewater pipe.

(a) Standard Bedding Materials

<table>
<thead>
<tr>
<th>USE / PIPE MATERIAL</th>
<th>Cement Stabilized Backfill</th>
<th>Natural or Mf'd Sand</th>
<th>Pea Gravel</th>
<th>PIPE BEDDING STONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER and RECLAIMED WATER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welded Steel</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Service Tubing 3/4" to 2-1/2"</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WATER and RECLAIMED WATER (Ductile Iron)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 15 Inch ID</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Larger Than 15 Inch ID</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATER and RECLAIMED WATER (PVC only) and WASTEWATER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 15 Inch ID</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Larger Than 15 Inch ID</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STORMWATER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Metal</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) General requirements and limitations governing bedding selection.

(1) Crushed gravel or crushed stone shall not be used with polyethylene tubing or polyethylene film wrap.

(2) Uncrushed gravel may be used with polyethylene film wrap in trenches up to 6 feet deep and in deeper trenches where ample trench width, a tremmie, or conditions will allow controlled placement of the gravel without damaging the polyethylene wrap.

(3) Bedding shall be placed in lifts not exceeding 8 inches loose thickness and compacted thoroughly to provide uniform support for the pipe barrel and to fill all voids around the pipe.

(4) Pea Gravel or bedding stone shall be used in blasted trenches.
(c) Requirements to prevent particle migration.

Bedding material shall be compatible with the materials in the trench bottom, walls and backfill so that particle migration from, into or through the bedding is minimized. The Engineer may require one or more of the following measures to minimize particle migration: use of impervious cut-off collars; selected bedding materials, such as pea gravel or bedding stone mixed with sand; filter fabric envelopment of the bedding; cement stabilized backfill; or other approved materials or methods. Measures to minimize particle migration will be shown on the Drawings or designated by the Engineer, and, unless provisions for payment are provided in the contract documents, the cost of these measures shall be agreed by change order. The following limitations shall apply.

1. Sand, alone, shall not be used in watercourses, in trenches where groundwater is present, or in trenches with grades greater than 5 percent.

2. Pea gravel or bedding stone, alone, shall not be used in the street right-of-way within 5 feet of subgrade elevation in trenches that are 3 feet or wider.

3. Each gravel or bedding stone, alone, shall not be used where the trench bottom, sides, or backfill is composed of non-cementitious, silty or sandy soils having plasticity indices less than 20, as determined by the Engineer.

(15) Laying Pipe

No pipe shall be installed in the trench until excavation has been completed, the bottom of the trench graded and the trench completed as indicated.

Laying of corrugated metal pipes on the prepared foundation shall be started at the outlet end with the separate sections firmly joined together, with outside laps of circumferential joints pointing upstream and with longitudinal laps on the sides. Any metal in joints, which is not protected by galvanizing, shall be coated with suitable asphaltum paint. Proper facilities shall be provided for hoisting and lowering the sections of pipe into the trench without damaging the pipe or disturbing the prepared foundation and the sides of the trench. Any pipe which is not in alignment or which shows any undue settlement after laying or damage shall be taken up and re-laid without extra compensation.

Multiple installations of corrugated pipe or arches shall be laid with the centerlines of individual barrels parallel. When not otherwise indicated, clear distances of 2 feet between outer surfaces of adjacent pipes shall be maintained.

No debris shall remain in the drainways or drainage structures.

All recommendations of the manufacturer shall be carefully observed during handling and installation of each material. Unless otherwise indicated, all materials shall be delivered to the project by the manufacturer or agent and
unloaded as directed by the Contractor. Each piece shall be placed facing the proper direction near to where it will be installed.

The interior of all pipe, fittings and other accessories shall be kept free from dirt and foreign matter at all times and stored in a manner that will protect them from damage. Stockpiled materials shall be stacked so as to minimize entrance of foreign matter.

The interior of all pipeline components shall be clean, dry and unobstructed when installed.

Piping materials shall not be skidded or rolled against other pipe, etc. and under no circumstances shall pipe, fittings or other accessories be dropped or jolted.

During handling and placement, materials shall be carefully observed and inspected and any damaged, defective or unsound materials shall be marked, rejected and removed from the job site. Minor damage shall be marked and repaired in a manner satisfactory to the Engineer. Joints, which have been placed, but not joined, backfilled, etc., shall be protected in a manner satisfactory to the Engineer.

(16) Assembling of Pipe

Angular spacing of all joints shall meet the manufacturer's recommendations for the pipe and accessories being used. Side outlets shall be rotated so that the operating stems of valves shall be vertical when the valves are installed. Pressure pipe shall be laid with bell ends facing the direction of pipe installation. Pipe end bells shall be placed upgrade for all wastewater lines.

Orientation marks, when applicable, shall be in their proper position before pipe is seated.

Before joining any pipe, all foreign matter, lumps, blisters, excess coal tar coating, oil or grease shall be removed from the ends of each pipe and the pipe ends shall then be wire brushed and wiped clean and dry. Pipe ends shall be kept clean until joints are made.

Every precaution shall be taken to prevent foreign material from entering the pipe during installation. No debris, tools, clothing or other materials shall be placed in the pipe.

(17) Joints

(a) Mortar (Storm Drain joints only)

Pipe ends shall be clean, free of asphalt or other contaminants, which will inhibit the bond of the mortar to the pipe. The pipe ends shall be moistened immediately prior to placing the mortar in the joint.

(b) Cold Applied Preformed Plastic Gaskets (Storm Drain joints only)
The pipe ends shall be clean and the joint material applied to the dry pipe. In cold weather, the joint material shall be heated to facilitate the seal of the joint.

(c) O-Ring and Push-on Joints

Just before making a joint the ends of the pipe shall be clean, dry, free of any foreign matter, lump blisters, excessive coal tar coating and grease or oil and shall be wire brushed. The gasket and the inside surface of the bell shall be lubricated with a light film of soft vegetable soap compound (Flax Soap) to facilitate telescoping the joints. The rubber gasket if not factory installed shall be stretched uniformly as it is placed in the spigot groove to insure a uniform volume of rubber around the circumference of the groove. The spigot shall be centered in the bell, the pipe pushed home uniformly and brought into true alignment. Bedding material shall be placed and tamped against pipe to secure the joint. Care should be taken to prevent dirt or foreign matter from entering the joint space.

(d) Bolted Joints

All flanged, mechanical or other bolted joints shall be joined with nuts and bolts and be coated as indicated above in Iron Pipe.

(18) Pressure Pipe Laying

(a) Grout for Concrete Steel Cylinder Pipe (CSC) and Welded Steel Pipe

Aggregate, cement, etc., shall be as indicated in "Mortar" herein. Potable water shall be used in the preparation of any cement, mortar, or grout lining.

Grout shall be poured into the recess between the bell and spigot on the outside of the pipe and contained by a joint wrapper ("diaper") recommended by the pipe manufacturer. The wrapper shall have a minimum width of 7 inches for 30 inch and smaller and 9 inches for larger pipe, secured to the pipe by "Band Iron" steel straps. The grout shall be poured in one continuous operation in such manner that after shrinkage and curing the joint recess shall be completely filled.

Mortar for the inside recess shall be of the consistency of plaster. The inside recess between the bell and spigot shall be filled with mortar after the pipe joint on either side of the recess has been backfilled and well tamped with no less than one pipe joint installed ahead of the pipe forming the recess. The mortar shall completely fill the recess and shall be trowelled and packed into place and finished off smooth with the inside of the pipe.

The Contractor shall inspect the joint after the mortar has set and make repairs of any pockets, cracks or other defects caused by shrinkage to the satisfaction of the Engineer. The inside surface shall be cleared of any mortar droppings, cement, water, slurry, etc., before they have become set.
and shall be cleared of any other foreign matter. The inside surface of the pipe shall be left clean and smooth.

Pipe shall be handled at all times with wide non-abrasive slings, belts or other equipment designed to prevent damage to the coating and all such equipment shall be kept in such repair that its continued use is not injurious to the coating. The use of tongs, bare pinch-bars, chain slings, rope slings without canvas covers, canvas or composition belt slings with protruding rivets, pipe hooks without proper padding or any other handling equipment, which the Engineer deems to be injurious to the coating, shall not be permitted. The spacing of pipe supports required to handle the pipe shall be adequate to prevent cracking or damage to the cement mortar lining.

(19) Placing Pipe in Tunnels

Piping installed as a carrier pipe in a tunnel, encasement pipe, etc., shall have uniform alignment, grade, bearing and conform to the reviewed Shop Drawings. All necessary casing spacers, bedding material, grout cradle or paving, bracing, blocking, etc., as stipulated by the Contract or as may be required to provide and maintain the required pipe alignment and grade, shall be provided by the Contractor at no cost except as provided by the Bid Items. This shall include casing spacers acceptable to the Department attached to the carrier pipe in accordance with the manufacturer's recommendations. The insertion pushing forces shall not exceed the pipe manufacturer's recommendation. Such carrier piping shall have flexible bolted or gasketed push-on joints or Concrete Steel Cylinder pipe installed as follows:

(a) 21 Inch Pipe and Smaller

Prior to placing the pipe in the tunnel, the inside joint recess at the bell shall be buttered with cement mortar.

After the joint is engaged, the excess mortar shall be smoothed by pulling a tight fitting swab through the joint. Cement mortar protection shall then be placed in the normal manner to the exterior of the joint and allowed to harden sufficiently to avoid dislodgment during installation. If time is of the essence, a quick setting compound may be used.

(b) 24 Inch Pipe and Larger

Each length of pipe shall be pushed into the tunnel as single units. A flexible mastic sealer shall be applied to the exterior of the joint prior to joint engagement. The surfaces receiving the mastic sealer shall be cleaned and primed in accordance with the manufacturer's recommendation. Sufficient quantities of the mastic sealer shall be applied to assure complete protection of all steel in the joint area. The interior of the joint shall be filled with cement mortar in the normal manner after the pipe is in its final position within the tunnel.
(20) Temporary Pipe Plugs, Caps, Bulkheads and Trench Caps

Temporary plugs, caps or plywood bulkheads shall be installed to close all openings of the pipe and fittings when pipeline construction is not in progress.

All temporary end plugs or caps shall be secured to the pipe as provided under Item No. 507, "Bulkheads".

Trench caps shall be reinforced Class D concrete as indicated.

(21) Corrosion Control

(a) Protective Covering

Unless otherwise indicated, all flanges, nuts, bolts, threaded outlets and all other iron or steel components buried and in contact with earth or backfill shall be wrapped with 8-mil (minimum) polyethylene film meeting ANSI/AWWA C-105 to provide a continuous wrap.

(22) Pipe Anchorage, Support and Protection

Pressure pipeline tees, plugs, caps and bends exceeding 22-1/2 degrees; other bends as directed shall be securely anchored by suitable concrete thrust blocking or by approved metal harness. Unless otherwise indicated, on 24 inch or larger piping, all bends greater than 11 1/4 degrees shall be anchored as described herein.

Storm sewers on steep grades shall be lugged as indicated.

(a) Concrete Thrust Blocking

Concrete for use as reaction or thrust blocking shall be Class B conforming to Item No. 403, "Concrete for Structures".

Concrete blocking shall be placed between solid ground and the fitting to be anchored. The area of bearing on the pipe and on the ground shall be as indicated or directed by the Engineer. The blocking shall, unless otherwise indicated, be so placed that the pipe, fittings and joints will be accessible for repair.

The trench shall be excavated at least 6 inches outside the outermost projections of the pipe or appurtenance and the trench walls shaped or undercut according to the detail Drawings or as required to provide adequate space and bearing area for the concrete.

The pipe and fittings shall be adequately weighted and laterally braced to prevent floating, shifting or straining of the pipeline while the concrete is being placed and taking initial set. The Contractor shall be solely responsible for the sufficiency of such restraints.
(b) Metal Thrust Restraint

Fabricated thrust restraint systems such as those described below may be approved for use instead of concrete blocking. To obtain approval, the project Drawings must include sufficient drawings, notes, schedules, etc., to assure that the proposed restraints as installed will be adequate to prevent undesirable movement of the piping components. Such restraint systems may only be used where and as specifically detailed and scheduled on approved Project Drawings.

1. Thrust Harness

A metal thrust harness of tie rods, pipe clamps or lugs, turnbuckles, etc., may be approved. All carbon steel components of such systems, including nuts and washers, shall be hot-dip galvanized; all other members shall be cast ductile iron. After installation, the entire assembly shall be wrapped with 8-mil polyethylene film, overlapped and taped in place with duct tape to form a continuous protective wrap.

2. Restrained Joints

Piping or fitting systems utilizing integral mechanically restrained joints may be approved. All components of such systems shall be standard manufactured products fabricated from cast ductile iron, hot-dip galvanized steel, brass or other corrosion resistant materials and the entire assembly shall be protected with a continuous film wrap as described for 1. above. Manufacturers of pipe with restrained joints integral to the pipe shall be listed on SPL WW-27F. All pipe and fitting systems with restrained joints shall be identified by applying an adhesive-backed warning tape to the top of the pipe and for the full length of the pipe, regardless of the type of pipe. For plastic pipes the warning tape shall be applied directly to the top of the pipe. For metal pipes and fittings the warning tape shall be applied to the top of the polyethylene film wrap. The warning tape shall conform to 510.2(8)(b)5.

Location, configuration and description of such products shall be specifically detailed on the Drawings. (Add-on attachments such as retainer glands, all-thread rods, etc., are not acceptable.)

(c) Concrete Encasement, Cradles, Caps and Seals

When trench foundation is excessively wet or unstable or installation of water or wastewater pipe will result in less than 30 inches of cover, Contractor shall notify Engineer. Engineer may require Contractor to install a concrete seal, cradle, cap, encasement or other appropriate action.

All concrete cap, etc., shall be continuous and begin and end within 6 inches of pipe joints. Concrete cap, cradle and encasement shall conform to City of
Austin Standard No. 510S-1, “Concrete Trench Cap”. The pipe shall be well secured to prevent shifting or flotation while the concrete is being placed.

(d) Anchorage Bulkheads

Concrete bulkheads keyed into the undisturbed earth shall be placed as indicated to support and anchor the pipe and/or backfill against end thrust, slippage on slopes, etc. Concrete material and placement shall be Class A, Item No. 403, "Concrete for Structures".

(e) Trench Caps, Concrete Rip-Rap and Shaped Retards

Where called for by the Contract or as directed by the Engineer, concrete trench caps, concrete rip-rap and/or shaped retards shall be placed as detailed by the Drawings as protection against erosion. Concrete material and placement shall be Class B, Item No. 403, "Concrete for Structures".

(23) Wastewater Connections

(a) Connections to Mains 12 Inches and Smaller

All branch connections of new main lines shall be made by use of manholes.

Service stubs shall be installed as indicated. Minimum grade shall be 1 percent downward to main and minimum cover shall be 4 1/2 feet at the curb. Standard plugs shall be installed in the dead end before backfilling.

Where a service connection to a main 12 inches or smaller is indicated, a wye, tee or double wye shall be installed.

Where a service connection to a main 15 inches or larger is indicated, a field tap may be made with the pipes installed crown to crown. The tap should be made conforming to the pipe manufacturer's recommendations with the Engineer’s approval.

Where not otherwise indicated, (wastewater) service connections shall be installed so that the outlet is at an angle of not more than 45 degrees above horizontal at the main line.

(b) Connections to the Existing System

Unless otherwise specified by the Engineer, all connections made to existing mains shall be made at manholes with the crown of the inlet pipe installed at the same elevation as the crown of the existing pipe. Service stubs installed on the existing system shall be installed by use of tapping saddles unless otherwise approved by the Engineer. Extreme care shall be exercised to prevent material from depositing in the existing pipe as the taps are being made.

82-109 5732
06-09
When connections to existing mains are made, a temporary plug approved by the Engineer must be installed downstream in the manhole to prevent water and debris from entering the existing system before Final Completion. These plugs shall be removed after the castings are adjusted to finish grade or prior to Final Completion.

(c) Connecting Existing Services to New Mains

Where wastewater services currently exist and are being replaced from the main to the property line, those services shall be physically located at the property line prior to installing any new mains into which the services will be connected. Where wastewater services currently exist but are not being replaced to the property line, those services shall be physically located at the point of connection between the new and existing pipes prior to installing any new mains into which the services will be connected.

(24) Potable or Reclaimed Water System Connections

The Contractor shall, at his expense, make all necessary connections of new piping or accessories to the existing potable or reclaimed water system. To minimize any inconvenience from outages, the Contractor shall schedule all such connections in advance and such schedule must be approved by the Engineer before beginning any Work.

(a) Shutoffs

The City will make all shutoffs on existing potable or reclaimed water mains. The Contractor shall be required to notify the Engineer’s field representative on the job at least 72 hours prior to the desired time for any shutoff. The Engineer’s field representative will notify any affected utility customers at least 48 hours prior to the shutoff. The Water Utility will make the shutoff after ensuring that all appropriate measures have been taken to protect the potable or reclaimed water system, customers and employees.

The City will operate all valves to fill existing mains. Where a newly constructed main has not been placed in service and has only one connection to the potable or reclaimed system, the Contractor may operate one valve to fill the main after approval has been obtained from the Water Utility. The operation of the valve is to be conducted under the immediate supervision of the Engineer’s field representative.

Water for the Work shall be metered and furnished by the Contractor in accordance with Section 01500 of the Standard Contract Documents.

(b) Wet Connections to Existing Water Potable or Reclaimed System

The Contractor shall make all wet connections called for by the Contract or required to complete the Work. Two connections to an existing line
performed during the same shutout, at the same time and at a distance less than 50 linear feet apart, will be considered one wet connection. Two connections to an existing line performed during the same shutout, at the same time and at a distance equal to, or greater than 50 linear feet will be considered two wet connections. A wet connection shall include draining and cutting into existing piping and connecting a new pipeline or other extension into the existing pressure piping, forming an addition to the potable or reclaimed water transmission and distribution network.

The Contract price for wet connections shall be full payment for all necessary shutoffs, excavation, removing plugs and fittings, pumping water to drain the lines, cutting in new fittings, blocking and anchoring piping, bedding and backfilling, placing the lines and service and all site cleanup.

No water containing detectable amounts of chlorine may be drained, released or discharged until specific planning and appropriate preparations to handle, dilute and dispose of such chlorinated water are approved in advance by the City and the disposal operations will be witnessed by an authorized representative from the City.

(c) Pressure Taps to Existing Potable or Reclaimed Water System

The Contractor shall make all pressure taps called for by the Contract Documents or required to complete the Work. A pressure tap shall consist of connecting new piping to the existing potable or reclaimed water system by drilling into the existing pipe while it is carrying water under normal pressure without taking the existing piping out of service.

Unless otherwise provided by the Contract, the Contractor shall, at his expense, perform all necessary excavation, furnish and install the tapping sleeve, valve and accessories, provide the tapping machine, drill the tap and shall block, anchor and backfill the piping, valve and all accessories, place the new piping in service and perform all site cleanup. When the City makes the tap, City forces are not obligated or expected to perform any Work except to provide tapping machine and drill the actual hole. If City crews are to make the tap, fiscal arrangements must be made in advance at the Taps Office, Waller Creek Center, 625 East 10th Street.

If a private Contractor makes the tap, an Austin Water Utility Inspector must be present. "Size on size" taps will not be permitted, unless made by use of an approved full circle gasket tapping sleeve. Concrete blocking shall be placed behind and under all tap sleeves 24 hours prior to making the wet tap.

(d) Service Connections

Service connection taps into PVC or AC pipe or into CI or DI pipe 12 inches or smaller shall be made using either a service clamp or saddle or a tapping sleeve as recommended by the pipe manufacturer and as approved by the Engineer. Direct tapping of these pipes will not be permitted.
All potable or reclaimed water service connections shall be installed so that the outlet is at an angle of not more than 45 degrees above horizontal at the main line.

Precautions should be taken to ensure that the tapping saddle or sleeve is placed on the pipe straight to prevent any binding or deformation of the PVC pipe. The mounting chain or U-bolt strap must be tight.

Tapping shall be performed with a sharp shell type cutter so designed that it will smoothly penetrate heavy walled PVC DR14 and 200 psi AC and will retain and extract the coupon from the pipe.

(25) Backfilling

(a) General

Special emphasis is placed upon the need to obtain uniform density throughout the backfill material. The maximum lift of backfill shall be determined by the compaction equipment selected and in no case shall it exceed 18 inches, loose measurement.

No heavy equipment, which might damage pipe, will be allowed over the pipe until sufficient cover has been placed and compacted. All internal pipe bracing installed or recommended by the manufacturer shall be kept in place until the pipe bedding and trench backfill have been completed over the braced pipe section. Testing of the completed backfill in streets and under and around structures shall meet the specified density requirements. Initial testing shall not be at Contractor's expense and shall conform to the "General Conditions."

(b) General Corrugated Metal Pipe

After the corrugated metal pipe structure has been completely assembled on the proper line and grade and headwalls constructed where indicated; selected material free from rocks over 8 inches in size from excavation or borrow, as approved by the Engineer, shall be placed along both sides of the completed structures equally, in uniform layers not exceeding 6 inches in depth (loose measurement), sprinkled if required and thoroughly compacted between adjacent structures and between the structures and the sides of the trench.

Backfill material shall be compacted to the same density requirements as indicated for the adjoining sections of embankment in accordance with the governing specifications thereof. Above the 3/4 point of the structure, the fill shall be placed uniformly on each side of the pipe in layers not to exceed 12 inches, loose measure.

Prior to adding each new layer of loose backfill material, until a minimum of 12 inches of cover is obtained over the crown of the pipe, an inspection will be made of the inside periphery of the corrugated metal structure to determine if any floating, local or unequal deformation has occurred as a result of improper construction methods.
(c) Backfill Materials

The Engineer may approve any of the following well graded materials:

1. Select trench material
2. Sand
3. Crushed rock cuttings
4. Rock cuttings
5. Foundation Rock
6. Blasted material with fines and rock
7. Cement stabilized material
8. Borrow

Within the 100-year flood plain, sand will not be permitted for backfilling. The Engineer will approve the topsoil for areas to be seeded or sodded.

(d) Backfill in Street Right of Way

Placement of backfill under existing or future pavement structures and within 2 feet of any structures shall be compacted to the required density using any method, type and size of equipment, which will give the required compaction without damaging the pipe or bedding. Placement of backfill greater than 2 feet beyond structures in Right of Way shall be conform to (g) below. The depth of layers, prior to compaction, shall depend upon the type of sprinkling and compacting equipment used and the test results thereby obtained. Prior to and in conjunction with the compaction operation, each layer shall be brought to the moisture content necessary to obtain the required density and shall be kept level to insure uniform compaction over the entire layer. Testing for density shall be in accordance with Test Method Tex-114-E and Test Method Tex-115-E.

Each layer of backfill must provide the density as required herein. Swelling soils (soils with plasticity index of 20 or more) shall be sprinkled as required to provide not less than optimum moisture nor more than 2 percent over optimum moisture content and compacted to the extent necessary to provide not less than 95 percent nor more than 102 percent of the density as determined in accordance with Test Method Tex-114-E. Non-swelling soils (soils with plasticity index less than 20) shall be sprinkled as required and compacted to the extent necessary to provide not less than 95 percent of the density as determined in accordance with Test Method Tex-114-E.

After each layer of backfill is complete, tests may be made by the Engineer. If the material fails to meet the density indicated, the course shall be reworked as necessary to obtain the indicated compaction and the compaction method shall be altered on subsequent Work to obtain indicated density.

At any time, the Engineer may order proof rolling to test the uniformity of compaction of the backfill layers. All irregularities, depressions, weak or soft spots that develop shall be corrected immediately by the Contractor.

Should the backfill, due to any reason, lose the required stability, density or finish before the pavement structure is placed, it shall be recompacted and
refinished at the sole expense of the Contractor. Excessive loss of moisture in the subgrade shall be prevented by sprinkling, sealing or covering with a subsequent backfill layer or granular material. Excessive loss of moisture shall be construed to exist when the subgrade soil moisture content is more than 4 percent below the optimum of compaction ratio density. Backfill shall be placed from the top of the bedding material to the existing grade, base course, subgrade or as indicated. The remainder of the street backfill shall be Flexible Base, Concrete or Hot Mix Asphalt Concrete as indicated or to replaced in kind to the surface removed to construct the pipe.

(e) Backfill in County Street or State Highway Right of Way

All Work within the right of way shall meet the requirements of (d) above, as a minimum and shall meet the requirements of the permit issued by the County when their requirements are more stringent. Prior to the start of construction, the Contractor shall be responsible for contacting the appropriate TxDOT office or County Commissioner's Precinct Office and for coordinating his activities with the operating procedures in effect for utility cut permits and pavement repair under their jurisdiction. Approval for all completed Work in the State or County right of way shall be obtained from the appropriate Official prior to final payment by the Department.

(f) Backfill in Railroad Right of Way

All Work within the railroad right of way shall meet the requirements of (d) above, as a minimum and shall meet the requirements of the permit issued by the Railroad Owner when their requirements are more stringent. Approval for all completed Work in the railroad right of way shall be obtained from the Railroad prior to Final Completion.

(g) Backfill in Easements

Where not otherwise indicated, Contractor may select whatever methods and procedures may be necessary to restore entire Work area to a safe, useful and geologically stable condition with a minimum density of 85 percent or a density superior to that prior to construction.

In and near flood plain of all streams and watercourses, under or adjacent to utilities, structures, etc. all backfill shall be compacted to a density of not less than 95 percent conforming to TxDOT Test Method Tex-114-E, unless otherwise directed by Engineer.

All soil areas disturbed by construction shall be covered with top soil and seeded conforming to Item No. 604, "Seeding for Erosion Control". All turf, drainways and drainage structures shall be constructed or replaced to their original condition or better. No debris shall remain in the drainways or drainage structures.

(h) Temporary Trench Repair/Surfacing
If details of temporary trench repair/surfacing are not provided in the contract documents, the Contractor shall submit for approval of the Engineer (1) a plan for temporary trench repair for areas that will be open to traffic but will be excavated later for full depth repair, and (2) a proposed method for covering trenches to maintain access to properties. The temporary surfacing shall afford a smooth riding surface and shall be maintained by the Contractor the entire time the temporary surface is in place.

(i) Permanent Trench Repair

The Contractor shall install permanent trench repairs conforming to details in the drawings.

(26) Quality Testing for Installed Pipe

(a) Wastewater Pipe Acceptance Testing

After wastewater pipe has been backfilled, the Contractor shall perform infiltration tests, exfiltration tests, or low pressure air tests as determined by the Engineer. In addition, the Contractor shall perform deflection tests and shall assist utility owner’s personnel, as directed by the Engineer, in performing pipeline settlement tests. The Contractor shall be responsible for making appropriate repairs to those elements that do not pass any of these tests.

(b) Exfiltration Test

Water for the Work shall be metered and furnished by the Contractor in accordance with Section 01500 of the Standard Contract Documents.

Exfiltration testing shall be performed by the Contractor when determined by the Engineer to be the appropriate test method. Exfiltration testing shall conform to requirements of the Texas Commission on Environmental Quality given in the Texas Administrative Code Title 30 Part 1 Chapter 317 Rule §317.2.

(c) Infiltration Test

Infiltration testing shall be performed by the Contractor when determined by the Engineer to be the appropriate test method. Infiltration testing shall conform to requirements of the Texas Commission on Environmental Quality given in the Texas Administrative Code Title 30 Part 1 Chapter 317 Rule §317.2.

(d) Pipeline Settlement Test

During the infiltration test or after the exfiltration test, the pipe will be TV inspected for possible settlement. When air testing has been used, water shall be flowed into the pipe to permit meaningful observations. Any pipe settlement which causes excessive ponding of water in the pipe shall be cause for rejection. Excessive ponding shall be defined as a golf ball (1-5/8” dia.) submerged at any point along the line.
(e) Low Pressure Air Test of Gravity Flow Wastewater Lines

(1) General

Wastewater lines up to 24-inch diameter shall be air tested between manholes. Wastewater lines 30-inch in diameter shall be air tested between manholes or at pipe joints. Wastewater lines 36-inch diameter and larger shall be air tested at joints. Backfilling to grade shall be completed before the test and all laterals and stubs shall be capped or plugged by the Contractor so as not to allow air losses, which could cause an erroneous test result. Manholes shall be plugged so they are isolated from the pipe and cannot be included in the test.

All plugs used to close the sewer for the air test shall be capable of resisting the internal pressures and must be securely braced. Place all air testing equipment above ground and allow no one to enter a manhole or trench where a plugged sewer is under pressure. Release all pressure before the plugs are removed. The testing equipment used must include a pressure relief device designed to relieve pressure in the sewer under test at 10 psi or less and must allow continuous monitoring of the test pressures in order to avoid excessive pressure. Use care to avoid the flooding of the air inlet by infiltrated ground water. (Inject the air at the upper plug if possible.) Use only qualified personnel to conduct the test.

(2) Ground Water

Since the presence of ground water will affect the test results, test holes shall be dug to the pipe zone at intervals of not more than 100 feet and the average height of ground water above the pipe (if any) shall be determined before starting the test.

(3) Test Procedure

The Engineer may, at any time, require a calibration check of the instrumentation used. Use a pressure gauge having minimum divisions of 0.10 psi and an accuracy of 0.0625 psi. (One ounce per square inch.) All air used shall pass through a single control panel. Clean the sewer to be tested and remove all debris where indicated. Wet the sewer prior to testing. The average backpressure of any ground water shall be determined (0.433 psi) for each foot of average water depth (if any) above the sewer.

Add air slowly to the section of sewer being tested until the internal air pressure is raised to 3.5 psig greater than the average backpressure of any ground water that may submerge the pipe. After the internal test pressure is reached, allow at least 2 minutes for the air temperature to stabilize, adding only the amount of air required to maintain pressure. After the temperature stabilization period, disconnect the air supply. Determine and record the time in seconds that is required for the internal air pressure to drop from 3.5 psig to 2.5 psig greater than the average backpressure of any ground water that may submerge the pipe.
For pipe less than 36-inch diameter, compare the time recorded with the time computed using the following equation:

\[T = \frac{(0.0850 \times D \times K)}{Q} \]

where

- \(T \) = time for pressure to drop 1.0 pounds per square inch gauge in seconds;
- \(K = 0.000419 \times D \times L \), but not less than 1.0
- \(D \) = nominal inside diameter, in inches, as marked on the pipe;
- \(L \) = length of line of same pipe size in feet; and
- \(Q \) = rate of loss, 0.0015 cubic feet per minute per square foot of internal surface area (ft³/min/ft sq) shall be used.

Because a \(K \) value of less than 1.0 shall not be used, there are minimum test times for each pipe diameter as shown in the following table:

Table For Low Pressure Air Testing of Pipe

<table>
<thead>
<tr>
<th>Pipe Diameter (inches)</th>
<th>Minimum Time (seconds)</th>
<th>Minimum Time applies to All Pipes Shorter than (feet)</th>
<th>Time for Longer Pipes (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>454</td>
<td>298</td>
<td>1.520 \times L</td>
</tr>
<tr>
<td>10 (See Note 1)</td>
<td>567</td>
<td>239</td>
<td>2.374 \times L</td>
</tr>
<tr>
<td>12</td>
<td>680</td>
<td>199</td>
<td>3.419 \times L</td>
</tr>
<tr>
<td>15</td>
<td>850</td>
<td>159</td>
<td>5.342 \times L</td>
</tr>
<tr>
<td>18</td>
<td>1020</td>
<td>133</td>
<td>7.693 \times L</td>
</tr>
<tr>
<td>21</td>
<td>1190</td>
<td>114</td>
<td>10.471 \times L</td>
</tr>
<tr>
<td>24</td>
<td>1360</td>
<td>100</td>
<td>13.676 \times L</td>
</tr>
<tr>
<td>30</td>
<td>1700</td>
<td>80</td>
<td>21.369 \times L</td>
</tr>
</tbody>
</table>

Note 1. 10 inch diameter pipe to be used only by Austin Water Utility maintenance personnel.

Any drop in pressure, from 3.5 psig to 2.5 psig (adjusted for groundwater level), in a time less than that required by the above equation or table shall be cause for rejection. When the line tested includes more than one size pipe, the minimum time shall be that given for the largest size pipe included.

Lines that are 36 inches or larger inside diameter must be air tested at each joint. Lines that are 30-inch diameter may be air tested at each joint. The minimum time allowable for the pressure to drop from 3.5 pounds per square inch to 2.5 pounds per square inch gauge during a joint test,
regardless of pipe size, shall be twenty (20) seconds. A drop in pressure from 3.5 psig to 2.5 psig (adjusted for groundwater level) in less than twenty seconds shall be cause for rejection.

Manholes must be tested separately and independently. All manholes must be hydrostatically tested with a maximum loss allowance of 0.025 gallon per foot diameter per foot of head per hour.

When lines are air tested, manholes are to be tested separately by exfiltration or vacuum method (see Standard Specification Item No. 506S, “Manholes”).

(f) Deflection Test

Deflection tests shall be performed by the Contractor on all flexible and semi-rigid wastewater pipes. The tests shall be conducted after the final backfill has been in place at least 30 days. Testing for in-place deflection shall be with a pipe mandrel at 95% of the inside diameter of the pipe. A second test of flexible and semi-rigid wastewater pipes 18 inch size and larger, also with a pipe mandrel sized at 95% of the inside diameter of the pipe, shall be conducted by the Contractor 30 days prior to expiration of his warranty on the Work.

Contractor shall submit his proposed pipe mandrels to the Engineer or his designated representative for concurrence prior to testing the line.

Test(s) must be performed without mechanical pulling devices and must be witnessed by the Engineer or his designated representative.

Any deficiencies noted shall be corrected by the Contractor and the test(s) shall be redone.

(27) Pressure Pipe Hydrostatic Testing

After the pipe has been installed and backfilled and all service laterals, fire hydrants and other appurtenances installed and connected, a pressure test, followed by a leakage test, will be conducted by the City. The City will furnish the pump and gauges for the tests. The Contractor shall be present and shall furnish all necessary assistance for conducting the tests. The specified test pressures will be based on the elevation of the lowest point of the line or section under test. Before applying the specified test pressure, all air shall be expelled from the pipe. If permanent air vents are not located at all high points, the Contractor shall install corporation cocks at such points.

All drain hydrant and fire hydrant leads, with the main 6-inch gate valve open and the hydrant valve seats closed and nozzle caps removed, shall be included in the test.

(a) Pressure Test
The entire project or each valved section shall be tested, at a constant pressure of 200 psi for a sufficient period (approximately 10 minutes) to discover defective materials or workmanship. The Contractor assumes all risks associated with testing against valves. Repairs shall be made by the Contractor to correct any defective materials or workmanship. The Contractor shall pre-test new lines before requesting pressure tests by City Forces. The Contractor shall have new lines pressurized to a minimum of 100 psi, on the date of testing, prior to arrival of City Forces.

(b) Leakage Test

A leakage test will follow the pressure test and will be conducted on the entire project or each valved section. The Contractor assumes all risks associated with testing against valves. The leakage test shall be conducted at 150 psi for at least 2 hours. The test pressure shall not vary by more than ±5 psi for the duration of the test.

(1) Allowable Leakage

Leakage shall be defined as the quantity of water that must be supplied into any test section of pipe to maintain the specified leakage test pressure after the air in the pipeline has been expelled and the pipe has been filled with water.

No pipe installation will be accepted if leakage exceeds the amount given by the following formula:

Allowable leakage (gal / hr) = \([L \times D] \div 10,875\)

where

- \(L\) = length of pipe tested, in feet
- \(D\) = nominal pipe diameter, in inches, as marked on the pipe

(2) Location and Correction of Leakage

If such testing discloses leakage in excess of this specified allowable, the Contractor, at his expense, shall locate and correct all defects in the pipeline until the leakage is within the indicated allowance.

All visible leakage in pipe shall also be corrected by Contractor at his own expense.

(28) Service Charges for Testing

Initial testing performed by City forces for the Contractor will be at the City's expense. Retesting, by City forces, of Contractor's work that fails initial testing will be at the Contractor's expense. The City’s charge for retests will be $265.00,
plus $50.00 for each hour over four hours. On City-funded projects, the charges incurred by the City for retesting will be deducted from funds due the Contractor. On non-City-funded projects, the charges incurred by the City for retesting will be billed to the Contractor. The City will withhold acceptance of the Contractor's work until the Contractor has paid the City for the retesting costs.

(29) Disinfection of Potable Water Lines

(a) Preventing Contamination

The Contractor shall protect all piping materials from contamination during storage, handling and installation. Prior to disinfection, the pipeline interior shall be clean, dry and unobstructed. All openings in the pipeline shall be closed with watertight plugs when pipe laying is stopped at the close of the day’s work.

(b) Cleaning

Prior to disinfection the Contractor shall clean the pipeline to remove foreign matter. For pipelines 16” in diameter or smaller, cleaning shall consist of flushing the pipeline. For pipelines greater than 16” in diameter, cleaning shall be performed by operating hydrants and blow-offs located at low points in the pipeline, or by mechanical means (sweeping or pigging. Water for the Work shall be metered and furnished by the Contractor in accordance with Section 01500 of the Standard Contract Documents.

(c) Procedure and Dosage

The Contractor, at its expense, will supply the test gauges and the Sodium Hypochlorite conforming to ANSI/AWWA B300, which contains approximately 5 percent to fifteen percent available chlorine, and will submit for approval a written plan for the disinfection process. Calcium Hypochlorite conforming to ANSI/AWWA B300, which contains approximately 65 percent available chlorine by weight, may be used in granular form or in 5 g tablets for 16” diameter or smaller lines, if it is included as part of the written plan of disinfection that is approved by the City of Austin. The Contractor, at its expense, shall provide all other equipment, supplies and the necessary labor to perform the disinfection under the general supervision of the City.

One connection to the existing system will be allowed with a valve arranged to prevent the strong disinfecting dosage from flowing back into the existing water supply piping. The valve shall be kept closed and locked in a valve box with the lid painted red. No other connection shall be made until the disinfection of the new line is complete and the water samples have met the established criteria. The valve shall remain closed at all times except when filling or flushing the line and must be manned during these operations. Backflow prevention in the form of a reduced pressure backflow assembly must be provided if the valve is left unattended. The new pipeline shall be filled completely with disinfecting solution by feeding the concentrated
chlorine and approved water from the existing system uniformly into the new piping in such proportions that every part of the line has a minimum concentration of 50 mg/liter available chlorine.

The disinfecting solution shall be retained in the piping for at least 24 hours and all valves, hydrants, services, stubs, etc. shall be operated so as to disinfect all their parts. After this retention period, the water shall contain no less than 25 mg/liter chlorine throughout the treated section of the pipeline.

For pipelines larger than 16” in diameter, the Contractor may use the AWWA C-651 “Slug Method” for disinfecting the pipeline. Chlorine shall be fed at a constant rate and at a sufficient concentration at one end of the pipeline to develop a slug of chlorinated water having not less than 100 mg/liter of free chlorine. The Contractor shall move the slug through the main so that all interior surfaces are exposed to the slug for at least three (3) hours. The chlorine concentration in the slug shall be measured as it moves through the pipeline. If the chlorine concentration drops below 50 mg/liter, the Contractor shall stop the slug and feed additional chlorine to the head of the slug to restore the chlorine concentration to at least 100 mg/liter before proceeding. As the slug flows past fittings and valves, related valves and hydrants shall be operated so as to disinfect appurtenances and pipe branches.

Unless otherwise indicated, all quantities specified herein refer to measurements required by the testing procedures included in the current edition of “Standard Methods”. The chlorine concentration at each step in the disinfection procedure shall be verified by chlorine residual determinations.

(d) Final Flushing

The heavily chlorinated water shall then be carefully flushed from the potable water line until the chlorine concentration is no higher than the residual generally prevailing in the existing distribution system. Proper planning and appropriate preparations in handling, diluting, if necessary, and disposing of this strong chlorine solution is necessary to insure that there is no injury or damage to the public, the water system or the environment. The plans and preparations of the Contractor must be approved by the City before flushing of the line may begin. Additionally the flushing must be witnessed by an authorized representative of the City.

Approval for discharge of the diluted chlorine water or heavily chlorinated water into the wastewater system must be obtained from the Austin Water Utility. The line flushing operations shall be regulated by the Contractor so as not to overload the wastewater system or cause damage to the odor feed systems at the lift stations. The City shall designate its own representative to oversee the work.
Daily notice of line discharging must be reported to the Austin Water Utility Dispatch office.

(e) Bacteriological Testing

After final flushing of the strong disinfecting solution, two (2) sets of water samples from the line, that are taken at least twenty-four (24) hours apart, will be tested for bacteriological quality by the City and must be found free of coliform organisms before the pipeline may be placed in service. Each set shall consist of one (1) sample that is drawn from the end of the main and additional samples that are collected at intervals of not more than 1000 feet along the pipeline. All stubs shall be tested before connections are made to existing systems.

The Contractor, at its expense, shall install sufficient sampling taps at proper locations along the pipeline. Each sampling tap shall consist of a standard corporation cock installed in the line and extended with a copper tubing gooseneck assembly. After samples have been collected, the gooseneck assembly may be removed and retained for future use.

Samples for bacteriological analysis will only be collected from suitable sampling taps in sterile bottles treated with sodium thiosulfate. Samples shall not be drawn from hoses or unregulated sources. The City, at its expense, will furnish the sterile sample bottles and may, at its discretion, collect the test samples with City personnel.

If the initial disinfection fails to produce acceptable sample test results, the disinfection procedure shall be repeated at the Contractor’s expense. Before the piping may be placed in service, two (2) consecutive sets of acceptable test results must be obtained.

An acceptable test sample is one in which: (1) the chlorine level is similar to the level of the existing distribution system; (2) there is no free chlorine and (3) total coliform organisms are absent. An invalid sample is one, which has excessive free chlorine, silt or non-coliform growth as defined in the current issue of the "Standards Methods." If unacceptable sample results are obtained for any pipe, the Contractor may, with the concurrence of the Inspector, for one time only flush the lines and then collect a second series of test samples for testing by the City. After this flushing sequence is completed, any pipe with one or more failed samples must be disinfected again in accordance with the approved disinfection procedure followed by appropriate sampling and testing of the water.

The City of Austin Water Quality Laboratory will notify the assigned City of Austin Inspector in writing of all test results. The Inspector will subsequently notify the Contractor of all test results. The Water Quality Laboratory will not release test results directly to the Contractor.

(30) Cleanup and Restoration
It shall be the Contractor's responsibility to keep the construction site neat, clean and orderly at all times. Cleanup shall be vigorous and continuous to minimize traffic hazards or obstructions along the streets and to driveways. Trenching, backfill, pavement repair (as necessary), and cleanup shall be coordinated as directed by the City. The Engineer will regulate the amount of open ditch and may halt additional trenching if cleanup is not adequate to allow for orderly traffic flow and access.

Materials at the site shall be stored in a neat and orderly manner so as not to obstruct pedestrian or vehicular traffic. All damaged material shall be removed from the construction site immediately and disposed of in a proper manner. All surplus excavated materials shall become the property of the Contractor for disposal at his expense. After trenching, the Contractor shall immediately remove all excavated materials unsuitable for or in excess of, backfill requirements. Immediately following the pipe laying Work as it progresses, the Contractor shall backfill, grade and compact all excavations as provided elsewhere. The backfill placed at that time shall meet all compaction test requirements. The Contractor shall immediately clean up and remove all unused soil, waste and debris and restore all surfaces and improvements to a condition equal or superior to that before construction began and to an appearance which complements the surroundings. The Contractor shall grade and dress the top 6 inches of earth surfaces with soil or other material similar and equal to the surrounding, fill and smooth any visible tracks or ruts, replace and re-establish all damaged or disturbed turf or other vegetation and otherwise make every effort to encourage the return of the entire surface and all improvements to a pleasant appearance and useful condition appropriate and complementary to the surroundings and equal or similar to that before construction began.

Placement of the final lift of permanent pavement, if a pavement is required, shall begin immediately after all testing of each segment of piping is satisfactorily completed.

510.4 Measurement and Payment

Work performed and materials furnished as prescribed by this item will be measured in accordance with the Section entitled, "Measurement" and paid for by appropriate bid item identified in the Section entitled "Payment" of the Special Specification entitled "Water and Wastewater Utilities" and the contract.

End

Applicable References:

SS511S
Water Valves

511S.1 Description

This item shall govern the valves furnished and installed as indicated on the Drawings. Unless otherwise indicated on the Drawings, all valves 4 inches (102 mm) and larger shall be AWWA-type valves of suitable design and fully equipped for service buried in the earth, without need for further modification and shall be wrapped with 8-mil (0.2 mm) polyethylene film with all edges and laps securely taped to provide a continuous wrap.

For reclaimed water piping, the polyethylene film shall be purple. Where not indicated, the Contractor may use valves with any type end-joint allowed for fittings of the pipe class being used. Unless otherwise indicated on the Drawings, all valve stems shall be adjusted to situate the operating nut not more than 24 inches (0.6 meters) below the proposed ground or paving surface of the finished project. Laydown valves shall not be used unless indicated otherwise on the Drawings by call out. Standard details shall not be an indicator of options.

This specification is applicable for projects or work involving either inch-pounds or SI units. Within the text, inch-pound units are given preference followed by SI units shown within parentheses.

511S.2 Materials

The Contractor shall submit descriptive information and evidence that the materials and equipment the Contractor proposes for incorporation in the Work is of the kind and quality that satisfies the specified functions and quality. The City of Austin Water and Wastewater Utility Standard Products Lists (SPL) are considered to form a part of these Specifications. Contractors may, when appropriate, elect to use products from the SPL; however, submittal to the Engineer is still required. If the Contractor elects to use any materials from these lists, each product shall be completely and clearly identified by its corresponding SPL number when making the product submittal. This will expedite the review process in which the Engineer decides whether the products meet the Contract requirements and the specific use foreseen by the Engineer in the design of this engineered Project.

The SPL’s should not be interpreted as being a pre-approved list of products necessarily meeting the requirements for a given construction Project. Items contained in the SPL cannot be substituted for items shown on the Drawings, or called for in the specifications, or specified in the Bidding Requirements, Contract Forms and Conditions of Contract, unless approved by the Engineer. The Standard Product List current at the time of plan approval will govern.
A) Samples, Inspection and Testing Requirements:
 All tests and inspections called for by the applicable standards shall be performed by
 the manufacturer. Upon request, results of these tests shall be made available to the
 purchaser.

B) Other Requirements:
 Each submittal shall be accompanied by:
 1) Complete data covering:
 a). the operator, including type and size, model number, etc.,
 b). the manufacturer's name and address of his nearest service facility,
 c). the number of turns to fully open or close the valve.
 2) Detailed instructions for calibrating the limit stops for open and closed positions,
 and
 3) Any other information that may be necessary to operate and maintain the
 operator.
 4) Complete dimensional data and installation instructions for the valve assembly
 as it is to be installed, including the operator.
 5) Complete replacement parts lists and drawings, identifying every part for both the
 valve and operator.

511S.3 Valves

A) Iron-Body Gate Valves
 Resilient-seated gate valves for potable or reclaimed service, including tapping
 valves, shall conform to AWWA C-509 and Standard Products List item WW-282.

 Reduced-wall, resilient-seated gate valves for potable or reclaimed service, including
 tapping valves, shall conform to AWWA C-515 and Standard Products List item
 WW-700,

 Metal-seated gate valves for potable or reclaimed service, including tapping valves,
 shall conform to AWWA C-500 and Standard Products List item WW-132.

 1) Stem Seals: All valves shall have approved O-ring type stem seals. At least two
 O-rings shall be in contact with the valve stem where it penetrates the valve
 body.

 2) Operation: All valves shall have non-rising stems with a 2" (50 mm) square
 operating nut, or with a spoke type handwheel when so ordered, turning
 clockwise to close.
3) **Gearing:** Gate valves in 24 inch (610 mm) and larger sizes shall be geared and, when necessary for proper bury depth and cover, shall be the horizontal bevel-g geared type enclosed in a lubricated gear case.

4) **Bypass:** Unless otherwise indicated on the Drawings, 16 inch (406 mm) and larger metal-seated gate valves shall be equipped with a bypass of the non-rising stem type which meets the same AWWA standard required for the main valve.

5) **Valve Ends:** Valve ends shall be push-on, flanged or mechanical joint, as indicated or approved.

 Tapping valves shall have inlet flanges conforming to MSS SP-60, with bolt holes drilled per ANSI B16.1 Class 125. Seat rings and body casting shall be over-sized as required to accommodate full size cutters; the outlet end shall be constructed and drilled to allow the drilling machine adapter to be attached directly to the valve.

6) **Gear Case:** All geared valves shall have enclosed gear cases of the extended type, attached to the valve bonnet in a manner that makes it possible to replace the stem seal without disassembly and without disturbing the gears, bearing or gear lubricant. Gear cases shall be designed and fabricated with an opening to atmosphere so that leakage past the stem seal does not enter the gear case.

7) **Valve Body:** Double disc gate valves in 16 inch (406 mm) and larger sizes installed in the horizontal position shall have bronze rollers, tracks, scrapers, etc. For reclaimed water valves, the body shall be manufactured in purple, factory painted purple, or field painted purple.

B) **Butterfly Valves:**

 Unless otherwise indicated, all valves shall conform to the current "AWWA" Standard C-504, "Rubber-Seated Butterfly Valves", Class 150B, except as modified or supplemented herein.

 1) **Functional Requirements**

 a). Valves shall be the short body design and shall have flanged connections on both ends unless otherwise called for.

 b). Valves shall be of such design that the valve discs will not vibrate or flutter when operated in a throttled position. Valve discs shall be secured to the shafts by means of keys or pins so arranged that the valve discs can be readily removed without damage thereto. All keys and pins used in securing valve discs to shafts shall be stainless steel or monel. Valve discs shall be stainless steel or ductile iron, ASTM A 536, Grade 65-45-12 (448-310-12); seating edge shall be stainless steel or other corrosion resistant material.

 c). Valve shafts shall be constructed of wrought stainless steel or monel. The ends of the shaft shall be permanently marked to indicate the position of the disc on the shaft.
d). All buried valves shall have approved manufacturer's O-ring type or split V type "Chevron" shaft seals. When O-ring seals are used, there shall be at least two O-rings in contact with the valve shaft where it penetrates the valve body.

On 24 inch (635 mm) and larger valves, the seat shall be completely replaceable and/or adjustable with common hand tools without disassembling the valve from the pipeline.

Rubber seats located on the valve disc shall be mechanically secured with stainless steel retainer rings and fasteners.

e). Unless otherwise indicated, valves shall be provided with manual operators with vertical stems and 2 inches (50 mm) square operating nut turning clockwise to close and equipped with a valve disc position indicator. All keys or pins shall be stainless steel or monel. Buried valves shall have the valve stems extended or adjusted to locate the top of the operating nut no more than 24 inches (0.6 meter) below finish grade.

f). Unless otherwise indicated, motorized butterfly valves shall be equipped with 230/460 volt, 3-phase reversing motor operators, extended as required to locate the center line of the operator shaft approximately 4 feet to 4 feet, 6 inches (1.2 to 1.4 meters) above finish grade. Operators shall be equipped with cast iron or malleable iron manual override hand wheel with a valve position indicator, local push button controls, lighted status/position indicator, torque and travel limit switches and all switches, relays and controls (except external power and signal wiring) necessary for both local and remote operation.

2) Performance Requirements

a). Unless otherwise indicated, valve operators shall be sized to seat, unseat, open and close the valve with 150 psi (1 megapascal) shutoff pressure differential across the disk and allow a flow velocity of 16 feet (4.9 meters) per second past the disc in either direction.

b). Motorized valve motors shall be capable of producing at least 140 percent of the torque required to operate the valves under conditions of maximum non-shock shutoff pressure without exceeding a permissible temperature rise of 131°F over 104°F ambient (55 degrees Celsius over 40 degrees Celsius ambient); they shall have a duty rating of not less than 15 minutes and shall be capable of operating the valve through 4 1/2 cycles against full unbalanced pressure without exceeding the permissible temperature rise. Motors shall be suitable for operating the valve under maximum differential pressure when voltage to motor terminals is 80 percent of nominal voltage. Motor bearings shall be permanently lubricated and sealed.

C) Ball Valves:

Ball valves shall be brass, bronze, stainless steel or PVC as indicated on the Drawings or Details or as approved by the Engineer or designated representative.
D) Air-Vacuum Release Valves

1) Valves shall be combination air-release, air-vacuum units having small and large orifice units contained and operating within a single body or assembled unit.

The small orifice system shall automatically release small volumes of air while the pipe is operating under normal conditions. The large air-vacuum orifice system shall automatically exhaust large volumes of air while the pipe is being filled and shall permit immediate re-entry of air while being drained.

Valves shall be rated for at least 150 psi (1 megapascal) {maximum} normal service pressure.

2) Material Requirements

Valve exterior bodies and covers shall be cast iron or reinforced nylon.

Internal bushings, hinge pins, float guide and retaining screws, pins, etc., shall be stainless steel, bronze, nylon or Buna-N rubber.

Orifice seats shall be Buna-N rubber.

Floats shall be stainless steel, nylon or Buna-N rubber, rated at 1000 psi (6.9 megapascals).

Unless otherwise indicated, these valves shall be as included in the Standard Products List (SPL WW-367 for water, WW-462 for wastewater force mains).

E) Fire Hydrants

All fire hydrants shall be Dry Barrel, Traffic Model (break-away), Post Type having Compression Type Main Valves with 5 1/4" (133 mm) opening, closing with line pressure. Approved models are listed on SPL WW-3 of the Water and Wastewater Utility Standard Products List.

1) Applicable Specifications

- AWWA C-502 current: "AWWA Standard for Dry-Barrel Fire Hydrants".
- NFPA 1963: "National (American) Standard Fire Hose Coupling Screw Thread" and City of Austin 4 inch (102 mm) Fire Hose Connection Standard (Available upon request from the Austin Water Utility’s Standards Committee Chairperson at 972-0204).

2) Functional Requirements

Design Working Pressure shall be 200 psi (1.38 megapascals) and a test pressure of 400 psi (2.76 megapascals).

Inlet shall be side connection hub end for mechanical joint (ANSI A-21.11-current). Shoe shall be rigidly designed to prevent breakage.
Lower Barrel shall be rigid to assure above ground break at traffic feature. Bury length of hydrant shall be four (4) feet (1.2 meters) minimum, five (5) feet (1.5 meters) maximum (hydrant lead pipe may be elbowed up from main using restrained joints; flanged joints in lead pipes are not allowed). Flange type connections between hydrant shoe, barrel sections and bonnet shall have minimum of 6 corrosion resistant bolts.

Hydrant Main Valve shall be 5 1/4 inch (133 mm) I.D. Valve stem design shall meet requirements of AWWA C502, with Operating Nut turning clockwise to close. Operating Nut shall be pentagonal, 1 1/2 inch (38 mm) point to flat at base, and 1 7/16 inches (36.5 mm) at top and 1 inch (25 mm) minimum height. Seat ring shall be bronze (bronze to bronze threading), and shall be removable with lightweight stem wrench. Valve mechanisms shall be flushed with each operation of valve; there shall be a minimum of two (2) drain ports.

Traffic Feature shall have replaceable breakaway ferrous metal stem coupling held to stem by readily removable type 302 or 304 stainless steel fastenings. Breakaway flange or frangible lugs shall be designed to assure aboveground break. Breakaway or frangible bolts will not be acceptable.

Outlet Nozzles shall be located approximately 18 inches (450 mm) above ground. Each hydrant shall have two (2) 2 1/2 inch (63.5 mm) nozzles 180 degrees apart with National (American) Standard Fire Hose Coupling Screw Thread NFPA 1963 and one (1) 4 inch (102 mm) pumper nozzle with City of Austin standard thread—six (6) threads per inch (25 mm) "Higbee" cut, 4.8590 inch (123.4 mm) O.D., 4.6425 inch (117.9 mm) root diameter. Nozzles shall be threaded or cam-locked, O-ring sealed, and shall have type 302 or 304 stainless steel locking devices. Nozzle caps (without chains) and cap gaskets shall be furnished on the hydrant. The cap nut shall have the same configuration as the operating nut.

Hydrants shall be Dry-Top Construction, factory lubricated oil or grease with the lubricant plug readily accessible. The system shall be described for City approval.

A blue reflective delineator of a type approved by the Engineer shall be placed 2 to 3 feet (0.6 to 0.9 meters) offset from the centerline of paved streets, on the side of and in line with, all newly installed fire hydrants.

Hydrant shall have double O-ring seals in a bronze stem sheath housing to assure separation of lubricant from water and shall have a weather cap or seal, or both, as approved by the Department, to provide complete weather protection.

3) Material Requirements

All below ground bolts shall be corrosion resistant. The hydrant valve shall be Neoprene, 90-durometer minimum. The seat ring, drain ring, operating nut and nozzles shall be bronze, AWWA C-502 current, containing not over 16 percent zinc. Break-away stem coupling shall be of ferrous material; it’s retaining pins, bolts, nuts, etc. of type 302 or 304 stainless steel.
Coatings shall be durable and applied to clean surfaces. Exterior surfaces above ground shall receive a coating of the type and color specified in the applicable version of City of Austin SPL WW-3. The coating shall be applied according to coating manufacturer's specifications. Other exposed ferrous metal shall receive asphalt-based varnish, or approved equal, applied according to the coating manufacturer's specifications.

F) Pressure/Flow Control Valves:

All control valves to regulate pressure, flow, etc., in City lines shall be models listed in the City of Austin Water and Wastewater Standard Products List (SPL).

G) Drain Valves:

Drain valve materials and installation shall conform to City of Austin Standard Detail No. 511S-9A.

H) Valve Stem Extensions:

Valve stem extensions shall consist of a single piece of the required length with a socket on one end and a nut on the other.

511S.4 Construction Methods

A) Setting Valves, Drains and Air Releases

Unless otherwise indicated, main line valves, drain valves and piping, air and vacuum release assemblies and other miscellaneous accessories shall be set and jointed in the manner described for cleaning, laying, and jointing pipe.

Unless otherwise indicated, valves shall be set at the locations shown on the Drawings and such that their location does not conflict with other appurtenances such as curb ramps. Valves shall be installed so that the tops of operating stems will be at the proper elevation required for the piping at the location indicated above. Valve boxes and valve stem casings shall be firmly supported and maintained, centered and aligned plumb over the valve or operating stem, with the top of the box or casing installed flush with the finished ground or pavement in existing streets, and installed with the top of the box or casing approximately 6 inches (150 mm) below the standard street subgrade in streets which are excavated for paving construction or where such excavation is scheduled or elsewhere as directed by the Engineer or designated representative.

Drainage branches or air blowoffs shall not be connected to any sanitary sewer or submerged in any stream or be installed in any other manner that will permit back siphonage into the distribution system (see City of Austin "Standard Detail Drawings-Series 500/500S"). Every drain line and every air release line shall have a full sized independent gate valve flanged directly to the main. Flap-valves, shear gates, etc., will not be accepted.

B) Setting Fire Hydrants:
Fire hydrants shall be located in a manner to provide accessibility and in such a manner that the possibility of damage from vehicles or conflict with pedestrian travel will be minimized. Unless otherwise directed, the setting of any hydrant shall conform to the following:

Hydrants between curb and sidewalk on public streets shall be installed as shown on Standard 511S-17, with outermost point of large nozzle cap 6" to 18" (150 mm to 450 mm) behind back of curb. Where walk abuts curb, and in other public areas or in commercial areas, dimension from gutter face of curb to outermost part of any nozzle cap shall be not less than 3 feet (0.9 meters), nor more than 6 feet (1.8 meters), except that no part of a hydrant or its nozzle caps shall be within 6 inches (150 mm) of any sidewalk or pedestrian ramp. Any fire hydrant placed near a street corner shall be no less than 20 feet (6 meters) from the curb line point of tangency. Fire hydrants shall not be installed within nine feet (2.75 meters) vertically or horizontally of any sanitary sewer line regardless of construction.

All hydrants shall stand plumb; those near curbs shall have the 4-inch (102 mm) nozzle facing the curb and perpendicular to it. The hydrant bury mark shall be located at ground or other finish grade; nozzles of all new hydrants shall be approximately 18 inches (450 mm) above grade. Lower barrel length shall not exceed 5 feet (1.5 meters). Barrel extensions are not permitted unless approved by the Engineer or designated representative. Each hydrant shall be connected to the main by 6-inch (152 mm) ductile iron pipe; a 6-inch (152 mm) gate valve shall be installed in the line for individual shutoff of each new hydrant.

Below each hydrant, a drainage pit 2 feet (0.6 meter) in diameter and 2 feet (0.6 meter) deep shall be excavated and filled with compacted coarse gravel or broken stone mixed with coarse sand under and around the bowl of the hydrant, except where thrust blocking is located (City of Austin Specification Item 510 and Standard Detail 510-6 and to a level 6 inches (150 mm) above the hydrant drain opening.

The hydrant drainage pit shall not be connected to a sanitary sewer. The drain gravel shall be covered with filter fabric to prevent blockage of voids in the gravel by migration of backfill material. The bowl of each hydrant shall be well braced against unexcavated earth at the end of the trench with concrete thrust blocking (taking care not to obstruct the hydrant drain holes), or the hydrant shall be tied to the pipe with approved metal harness rods and clamps. The fire line shall be provided with joint restraint from the main line to the fire hydrant. Hydrants shall be thoroughly cleaned of dirt or foreign matter before setting.

Fire hydrants on mains under construction shall be securely wrapped with a poly wrap bag or envelope taped into place. When the mains are accepted and placed in service the bag shall be removed.

C) Pressure Taps: Refer to Section 510.3 (24) of Standard Specification Item Number 510, "Pipe".

D) Plugging Dead Ends
Standard plugs shall be inserted into the bells of all dead ends of pipes, tees or crosses and spigot ends shall be capped. All end plugs or caps shall be secured to the pipe conforming to Section 510.3 (22) of Standard Specification Item Number 510, "Pipe".

E) Protective Covering:

Unless otherwise indicated, all flanges, nuts, bolts, threaded outlets and all other steel component shall be coal tar coated and shall be wrapped with standard minimum 8-mil (0.2 mm) low density polyethylene film or a minimum 4-mil (0.1 mm) cross laminated high-density polyethylene meeting ANSI/AWWA Specification C-105-current, with all edges and laps taped securely to provide a continuous and watertight wrap. Repair all punctures of the polyethylene, including those caused in the placement of bedding aggregates, with duct tape to restore the continuous protective wrap before backfilling. For reclaimed water piping, the polyethylene shall be purple.

F) Valve Box, Casing and Cover:

Stems of all buried valves shall be protected by valve box assemblies. Valve box castings shall conform to ASTM A 48, Class 30B. Testing shall be verified by the manufacturer at the time of shipment. Each casting shall have cast upon it a distinct mark identifying the manufacturer and the country of origin. Valve boxes and covers for potable water shall be round. Valve boxes and covers for reclaimed water piping shall be square and shall have “Reclaimed Water” indicated on the lid.

G) Drain Valve Installations:

Refer to City of Austin Standards 511S-9A.

H) Air Release Assemblies:

Refer to City of Austin Standards 511S-1A, 511S-1B, 511S-2A, 511S-2B, 511S-3A and 511S-3B.

I) Pressure/Flow Control Valves:

Assemblies shall be installed as indicated.

J) Connections to Existing System:

Refer to Item No. 510, "Pipe" for connections to the existing system.

K) Shutoffs:

Refer to Item No. 510, "Pipe" for shutoffs.

511S.5 Measurement and Payment

Work performed and materials furnished as prescribed by this item will be measured in accordance with the Section entitled, "Measurement" and paid for by appropriate bid item identified in the Section entitled "Payment" of the Special Specification entitled "Water and Wastewater Utilities" and the contract.

END
SPECIFIC CROSS REFERENCE MATERIALS

Specification 511S, “Water Valves”

City of Austin Standard Specification Items

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 510</td>
<td>Pipe</td>
</tr>
<tr>
<td>Section-510.3 (22)</td>
<td>Pipe Anchorage, Support and Protection</td>
</tr>
<tr>
<td>Section-510.3(24)</td>
<td>Water System Connections</td>
</tr>
</tbody>
</table>

City of Austin Standard Details

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>511S-1A</td>
<td>25 mm (1”) - 76 mm (2”) Vented Air Release Valve Installation (Type I)</td>
</tr>
<tr>
<td>511S-1B</td>
<td>25 mm (1”) - 76 mm (2”) Non-Vented Air Release Valve Installation (Type I)</td>
</tr>
<tr>
<td>511S-2A</td>
<td>Type II - 76 mm (3”) or Larger Vented Air/Vacuum Valve Installation</td>
</tr>
<tr>
<td>511S-2B</td>
<td>Type II - 76 mm (3”) or Larger Non-Vented Air/Vacuum Valve Installation</td>
</tr>
<tr>
<td>511S-3A</td>
<td>Type III - 76mm (3”) or Larger Vented Air/Vacuum Valve Installation</td>
</tr>
<tr>
<td>511S-3B</td>
<td>Type III-76mm (3”) or Larger Non-Vented Air/Vacuum Valve Installation</td>
</tr>
<tr>
<td>511S-9A</td>
<td>Drain Valve Assembly</td>
</tr>
<tr>
<td>511S-17</td>
<td>Standard Fire Hydrant Installation</td>
</tr>
</tbody>
</table>

City of Austin W/WW Standard Products

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW-3</td>
<td>Standard Products List for Fire Hydrants</td>
</tr>
<tr>
<td>WW-132</td>
<td>Standard Products List for Metal-Seated Gate Valves, AWWA C-500</td>
</tr>
<tr>
<td>WW-282</td>
<td>Standard Products List for Resilient-Seated Gate Valves, AWWA C-509</td>
</tr>
<tr>
<td>WW-367</td>
<td>Standard Products List for Air Release Valves for Water</td>
</tr>
<tr>
<td>WW-462</td>
<td>Standard Products List for Air Release/Vacuum Relief Valves for Wastewater</td>
</tr>
<tr>
<td>WW-700</td>
<td>Standard Products List for Resilient-Seated Gate Valves, AWWA C-515</td>
</tr>
</tbody>
</table>

ANSI/AWWA Standards

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-105</td>
<td>American National Standard for Polyethylene Encasement for Ductile-Iron Pipe</td>
</tr>
<tr>
<td>C-500</td>
<td>Metal-Seated Gate Valves for Water Supply Service</td>
</tr>
<tr>
<td>C-502</td>
<td>Dry-Barrel Fire Hydrants</td>
</tr>
<tr>
<td>C-504</td>
<td>Rubber-Seated Butterfly Valves</td>
</tr>
<tr>
<td>C-509</td>
<td>Resilient Seated Gate Valves for Water and Sewage Systems</td>
</tr>
<tr>
<td>C-515</td>
<td>Reduced-Wall, Resilient-Seated Gate Valves For Water Supply Service</td>
</tr>
</tbody>
</table>

ASTM Standards

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A48/A48M</td>
<td>Specification for Gray Iron Castings</td>
</tr>
</tbody>
</table>
ASTM A 536 Specification for Ductile Iron Castings
National Fire Protection Association (NFPA)
1963 National (American) Standard Fire Hose Coupling Screw Thread

<table>
<thead>
<tr>
<th>RELATED CROSS REFERENCE MATERIALS</th>
</tr>
</thead>
</table>

City of Austin Standard Specification Items

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 501S</td>
<td>Jacking or Boring Pipe</td>
</tr>
<tr>
<td>Item No. 502S</td>
<td>Tunneling</td>
</tr>
<tr>
<td>Item No. 503S</td>
<td>Frames, Grates, Rings and Covers</td>
</tr>
<tr>
<td>Item No. 505S</td>
<td>Concrete Encasement and Encasement Pipe</td>
</tr>
<tr>
<td>Item No. 506S</td>
<td>Manholes</td>
</tr>
<tr>
<td>Item No. 507S</td>
<td>Bulkheads</td>
</tr>
<tr>
<td>Item No. 508S</td>
<td>Miscellaneous Structures and Appurtenances</td>
</tr>
<tr>
<td>Item No. 509S</td>
<td>Excavation Safety Systems</td>
</tr>
</tbody>
</table>
593S.1 Description
This item governs Portland cement concrete retards used to anchor underground pipe. Retards shall be constructed as indicated on the Drawings, presented in City of Austin Standard Detail 593S-1 or as directed by the Engineer or designated representative in accordance with these specifications.

This specification is applicable for projects or work involving either inch-pound or SI units. Within the text and accompanying tables, the SI units are given preference followed by inch-pound units shown within parentheses.

593S.2 Submittals
The submittal requirements of this specification item include:
A. Class D p.c. concrete mix design,
B. Construction details (i.e. reinforcing steel, curing membrane).

593S.3 Materials
A. Portland Cement Concrete
The concrete materials used in construction under this item shall conform to Class D, Standard Specification Item No. 403S, "Concrete for Structures".

B. Reinforcement
Reinforcement shall conform to Standard Specification Item No. 406S, "Reinforcing Steel".

593S.4 Construction Methods
Prior to placement of Portland cement concrete, excavation for retards shall be made to proper section and depth. If considered necessary by Engineer or designated representative, the bottom of the excavation shall be hand tamped and sprinkled. The excavated area for concrete retards shall be moist when the Portland cement concrete is placed.

After the Portland cement concrete has been placed, consolidated and shaped to conform to the dimensions indicated on the Drawings and after sufficiently set, it shall be given a moderately rough finish by floating with a wood float (Standard Specification Item No. 411S, "Surface Finishes for Concrete").

No mortar or concrete work shall be undertaken, when the ambient temperature is below 35°F (1°C) and work shall be protected from freezing. After completion of the concrete retard, exposed surfaces shall be covered with burlap, cotton mats or other approved covering and kept moist for a minimum period of 3 days. White pigmented curing compound conforming to Item No. 409S, "Membrane Curing", Type 2, will be permitted when applied to exposed surfaces.

Unless directed otherwise by the Engineer or designated representative, the material excavated during trenching shall be disposed of at a permitted site.
593S.5 Measurement and Payment

Work performed and materials furnished as prescribed by this item will be measured in accordance with the Section entitled, "Measurement" and paid for by appropriate bid item identified in the Section entitled "Payment" of the Special Specification entitled "Water and Wastewater Utilities" and the contract.

End

SPECIFIC CROSS REFERENCE MATERIALS

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 403S</td>
<td>Concrete for Structures</td>
</tr>
<tr>
<td>Item No. 406S</td>
<td>Reinforcing Steel</td>
</tr>
<tr>
<td>Item No. 409S</td>
<td>Membrane Curing</td>
</tr>
<tr>
<td>Item No. 411S</td>
<td>Surface Finishes for Concrete</td>
</tr>
<tr>
<td>Item No. 507S</td>
<td>Excavation Safety Systems</td>
</tr>
</tbody>
</table>

City of Austin Standard Details

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 593S-1</td>
<td>Concrete Retard</td>
</tr>
</tbody>
</table>

RELATED CROSS REFERENCE MATERIALS

City of Austin Special Specifications

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 402S</td>
<td>Controlled Low Strength Material</td>
</tr>
<tr>
<td>Item No. 405S</td>
<td>Concrete Admixtures</td>
</tr>
<tr>
<td>Item No. 407S</td>
<td>Fibrous Concrete</td>
</tr>
<tr>
<td>Item No. 501S</td>
<td>Jacking or Boring Pipe</td>
</tr>
<tr>
<td>Item No. 502S</td>
<td>Tunneling</td>
</tr>
<tr>
<td>Item No. 504S</td>
<td>Adjusting Structures</td>
</tr>
<tr>
<td>Item No. 505S</td>
<td>Concrete Encasement and Encasement Pipe</td>
</tr>
</tbody>
</table>

City of Austin Standard Specifications

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 506</td>
<td>Manholes</td>
</tr>
<tr>
<td>Item No. 507S</td>
<td>Bulkheads</td>
</tr>
<tr>
<td>Item No. 510</td>
<td>Pipe</td>
</tr>
<tr>
<td>Item No. 511S</td>
<td>Water Valves</td>
</tr>
</tbody>
</table>

TxDOT Specifications

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 421</td>
<td>Portland Cement Concrete</td>
</tr>
<tr>
<td>Item 440</td>
<td>Reinforcing Steel</td>
</tr>
<tr>
<td>Item 526</td>
<td>Membrane Curing</td>
</tr>
<tr>
<td>Item 532</td>
<td>Concrete Erosion Retards</td>
</tr>
</tbody>
</table>