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Summary

Summary

Major roadways are an important emission source of particulate pollution, through vehicle exhaust,
brake and tire wear, and re-suspended road dust. We examined the concentrations of particulate
matter 2.5 micrometers in aerodynamic diameter or smaller (PM;;s), black carbon (BC), and ultrafine
particle (UFP) counts from 58 near-road monitoring sites, focusing on 2016-2018 data. These sites
represent a diverse range of conditions, with fleet-equivalent annual average daily traffic (FE-AADT)
values ranging from approximately 126,000 to 631,000.

We present three-year (2016-2018) and five-year (2014-2018) trends of annual average PM; s for
near-road sites for which data are available. Sites with only three years of data did not show a
consistent trend. Six of seven sites with five years of data showed a decreasing trend in annual
average PM;;s levels. With the exception of six sites, 2018 daily average and annual average values
were below the NAAQS standards—four of these six sites were substantially impacted by PM, s from
wildfires. When calculated using a U.S. Environmental Protection Agency-recommended inverse
distance weighting squared (IDW) method, the near-road PM,s increment, i.e., the difference
between the near-road and background PM, s concentrations, ranged from -0.14 + 1.11 to

168 + 091 pg/m3 at sites with Federal Reference Method (FRM) monitors. With the exception of one
near-road site with an increment of 2.49 +1.42 ug/m?>, all other sites where Federal Equivalent
Method (FEM) monitors were used had increments below 2.0 pg/m3. Increments corresponded to a
roadway contribution between 1% and 27% of total near-road PM;s. Increments have a statistically
significant relationship with near-road site variables, including distance to the road and FE-AADT.

We examined UFP measurements from the 6 near-road sites and BC measurements from the 29
near-road sites for which data were available during 2016-2018. These measurements showed a clear
diurnal pattern, with median concentrations peaking during morning hours (between 5:00 a.m. and
9:00 a.m.). Weekday UFP and BC concentrations were higher than weekend concentrations at all sites.
The median UFP and BC values were typically higher when the monitor was downwind of the target
roadway, than during upwind conditions. BC increments ranged from -0.02 to 1.2 ug/m’,
corresponding to a roadway contribution of between 37% and 78% of near-road BC. Near-road total
annual average BC concentrations from 20 sites in 2018 ranged from 0.59 to 1.53 pg/m?, which made
up between 6.1% and 17.9% of total PM;s. The near-road site variables that were most correlated
with the PM, s increment and the BC increment were the monitor distance from the road, FE-AADT,
and the percentage of time the monitor was upwind of the target road. The monitor distance from
the target road was the variable with the strongest correlation with particulate concentrations and
increments.






1. Introduction and Objectives

1. Introduction and Objectives

Traffic-related emissions contribute to particulate pollution through direct emissions, such as
exhaust, brake wear and tire wear, and through the emission of precursor gases that form particles
2.5 micrometers or smaller in aerodynamic diameter (PMs) through gas-to-particle conversion.
PM, s mass has been shown to be higher next to a major roadway than at other nearby locations,
although near-road concentrations are typically dominated by urban background (Seagram et al.,
2019b; Hilker et al., 2019; Jeong et al.,, 2019; Sofowote et al., 2018). Black carbon (BC) and particle
count (typically measured as ultrafine particles [UFP] less than 100 nm in diameter) may be 50% to
200% higher next to a roadway (Karner et al., 2010). For example, a recent study of three near-road
monitoring stations sited between 6 and 15 meters from their target roadway in Toronto and
Vancouver estimated that on-road emissions contributed between 15% and 35% of near-road PM,
(Dabek-Zlotorzynska et al., 2019).

Since 2014, long-term measurements of pollutants next to major roadways in the U.S. have been
made as part of EPA's update to the NO, National Ambient Air Quality Standards (NAAQS) in 2010
(U.S. Environmental Protection Agency, 2010). Previous studies have examined measurements of
carbon monoxide (CO), nitrogen dioxide (NO,) and PM;s from these near-road monitors for data
collected through 2017, as well as more detailed case studies of individual monitors (Seagram et al.,
2019b; DeWinter et al., 2018; Brown et al., 2019; Mukherjee et al., 2019). To date, BC and UFP
measurements at these U.S. near-road sites have not been examined.

Near-road PM,s has been the subject of recent studies due to the importance of on-road emissions
and the proximity of substantial metropolitan populations to major roadways (Dabek-Zlotorzynska et
al., 2019; Abu-Allaban et al., 2007; Rowangould, 2013). Quantifying near-road PM;s is also relevant
for assessing the air quality impact of current and future transportation projects, within the context
of regulatory requirements (Mukherjee et al., 2019; U.S. Environmental Protection Agency, 2015a).
Studies have examined the gradients of PM,s from the roadway, the meteorological and traffic
conditions that lead to enhanced near-road PM, 5 concentrations, and the fraction of near-road PM, 5
attributable to traffic-related emissions (Karner et al., 2010; Baldwin et al., 2015; Brown et al., 2019;
Dabek-Zlotorzynska et al., 2019; Clayton et al., 2003; Hilker et al., 2019; Wang et al., 2018). Emissions
from heavy duty diesel vehicles are an important contributor of total PM,s (Gertler, 2005).

The PM,s increment represents the impact of traffic-related emissions. The PM, s increment, defined
as the difference between near-road PM,s and a background estimate, was quantified using 2015
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and 2016 data from EPA-mandated monitors by DeWinter et al. (2018) and Seagram et al. (2019a),
respectively. The highest annual average PM, s increment in 2017 from 40 near-road sites was

2.12 ug/m?* (Mukherjee et al., 2019). One challenge in quantifying the PM, s increment attributable to
near-scale roadway emissions is that its magnitude is typically a small fraction of total PM,s (Dabek-
Zlotorzynska et al., 2019; Askariyeh et al., 2019; DeWinter et al.,, 2018; Seagram et al., 2019a;
Mukherjee et al., 2019; Karner et al,, 2010). Different methods have been used to estimate the
background PM, s levels, including time series analysis, choosing the most representative ambient
monitor, and spatially weighting nearby ambient monitors (Seagram et al., 2019a; Wang et al., 2018).

BC is produced in combustion processes, such as vehicle exhaust or wood combustion (Janssen et al.,
2012). In the United States, the transportation sector contributes to the majority of BC emissions,
with other important sources being open biomass burning such as wildfires, stationary power
generation, industrial emissions, and residential biofuel use (Long et al., 2013). Near roadways, the
main source of BC is exhaust emissions (Wang et al.,, 2011). For example, in Detroit, Baldwin et al.
combined measurements and statistical modeling to determine a near-road increment of 0.24 ug/m?>
for BC and 2245 particles/cm?® for UFP above urban background within 50 m of major roadways
(Baldwin et al., 2015).

UFPs dominate total particle number counts in ambient air but contribute little to PM; 5 mass overall
(de Jesus et al., 2019; Health Effects Institute, 2013). In urban areas, UFPs are predominantly from
mobile source emissions (Riddle et al., 2008; Marmur et al., 2006; Kleeman et al., 2009; Kulmala et al,,
2004; Kumar et al,, 2014; Salma et al., 2014; Harrison et al., 2011). UFPs can be emitted directly from
combustion, or formed in the atmosphere via nucleation or condensation on pre-existing particles
(Németh et al., 2018; Kulmala et al., 2004; Holmes, 2007; Brines et al., 2015; Salma et al.,, 2014;
Canagaratna et al., 2010; Robinson et al., 2007). UFP concentrations are typically highest next to
roadways, especially roadways with a higher number of heavy-duty vehicles (HDVs) (Harrison et al.,
2011), and rapidly fall off within 100-300 m of the roadway, with strong spatial gradients within cities
(Venecek et al.,, 2019; Karner et al., 2010; Zhu et al., 2002). Concentrations at urban locations in the
2000s decade were 7-11 x 10° particles/cm? for urban areas and 35-48 x 10° particles/cm? for a range
of roadside or street canyon monitoring sites (Health Effects Institute, 2013; Morawska et al., 2008);
lower levels were reported by de Jesus et al. (roughly 15-20 x 10° particles/cm? for roadside sites),
using data from cities across the world (de Jesus et al,, 2019).

The objectives of this study were to (1) compare 2016-2018 near-road PM,s measurements to
NAAQS, (2) assess the 2018 annual average near-road increment for PM,s; (3) quantify near-road
UFP and BC concentrations and increments; and (4) assess the relationship of both concentrations
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and increments with site-specific factors such as traffic volumes and distance to road. Annual average
PM, s concentrations and increments for 2014 through 2017 from these near-road sites were
previously reported (Seagram et al.,, 2019b; Mukherjee et al., 2019; DeWinter et al., 2018). To our
knowledge, this is the first assessment of multiple years of near-road BC and UFP data from multiple
near-road sites in the United States. Comparisons made to NAAQS in this report are for research

purposes only and are not for air quality attainment status; U.S. EPA makes attainment-related
determinations.
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2. Methods

PM,s, BC, UFP, and meteorological data were downloaded directly from EPA's Air Quality System
(AQS) for all monitoring sites in the U.S. for 2016-2018. Near-road site data and associated metadata
(distance of monitor to roadway, traffic volume, AQS site identifier codes) were acquired from EPA's
near-road website ( ). When meteorological data at a
near-road site were not available, nearby meteorological data from an ambient station or the
MesoWest database were used. Land use data were adapted from the National Land Cover Database
(NLCD), developed by the United States Geological Survey (USGS).

Monitoring sites in this study are identified by their city and the last four digits of their EPA AQS site
ID codes, since some cities have multiple near-road sites (e.g., Philadelphia-0075 and Philadelphia-
0076). The EPA near-road metadata provide the geographic coordinates of the monitor and the
distance of the near-road monitor from the target road, defined as the distance to the edge of the
roadway. The EPA metadata contain AADT and fleet-equivalent AADT (FE-AADT) information for the
target road from the year 2016. EPA developed the FE-AADT calculation to represent an emissions-
weighted traffic volume, taking into account both AADT and fleet mix (U.S. Environmental Protection
Agency, 2012). FE-AADT is calculated as:

(AADT - HD,.) + (HD,, x HD.)

where HD. is the volume of heavy-duty vehicles on the target roadway, and HD,, is a scaling factor
that represents the ratio of heavy-duty to light-duty emissions of oxides of nitrogen (NO,).

In assessing PM, s data, we filtered for sites that had PM,s data with over 75% annual completeness
in 2018 in at least three out of four quarters (Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec). Data with specific
qualifier flags to indicate quality assurance errors or exceptional events were excluded from this
analysis. Near-road sites with multiple collocated records were classified by instrument method type:
federal reference method (FRM) or federal equivalent method (FEM). The FRM measurements used in
this study are based on 24-hour filter sampling and measure PM, s through gravimetric techniques.
The FEM measurements used in this study are based on hourly samples with instruments that use
gravimetric or beta-attenuation techniques to measure PM,s. Where both existed, we used FRM data
in lieu of FEM. If multiple FRM records or multiple FEM records were available at a near-road site, the
one with more days of data was chosen. As shown in Table 1, 52 near-road sites had a complete
PM,s record for 2018. Hourly BC measurements were available at 29 near-road sites, and hourly UFP
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data were available at six near-road sites from 2016 to 2018. PM, s data for 2018 were available for
52 near-road sites; for these sites, we compared data to the NAAQS using only 2018 measurements.
Of these 52 near-road sites, 26 sites have measurements from 2016-2018 that met completeness
thresholds for each year; for these 26 sites, we compared 2016-2018 data to the NAAQS and
evaluated three-year trends. Of these 26 sites, 7 sites have measurements from 2014-2018 that met
completeness thresholds for each year; for these sites, we also evaluated five-year trends.

Table 1. Near-road sites measuring PM,s, BC, and UFP. Distance to road, AADT, and FE-AADT
are shown for sites with available data. The number of PM, 5 days is from 2018, and the
number of BC and UFP hours are from 2016-2018. A distance of zero to a meteorology site
designates collocated measurements.

Distance Distance to
State AQS ID to Road AADT N PMzs NEC Meteorology
AADT Days Hours "
(m) Site (km)

Atlanta-0003 13-089-0003 147,000 320,710 17484 NA 2
Atlanta-0056 GA 13-121-0056 7 382,000 544,678 121 17484 NA 0
Austin-1068 X 48-453-1068 43 144,013 268,441 86 NA NA 0
Berkeley-0013 CA 06-001-0013 19 267,000 382,108 363 17160 NA 17.9
Birmingham-2059 AL 01-073-2059 25 126,670 193,362 61 NA NA 0
Boston-0044 MA 25-025-0044 10 205,861 261,441 355 25198 NA 2.2
Charlotte-0045 NC 37-119-0045 36 154,000 262,535 56 NA NA 0
Cheektowaga-0023 NY 36-029-0023 20 126,107 212,275 116 16145 24412 6.1
Chelmsford-0010 MA 25-017-0010 23 124,793 NA NA 4972 NA 284
Cincinnati-0048 OH 39-061-0048 10 152,115 360,578 320 26027 NA 3.5
Cleveland-0073 OH 39-035-0073 41 181,956 340,537 122 NA NA 16.4
Columbus-0038 OH 39-049-0038 32 135746 272,758 122 12127 NA 4.1
Denver-0027 co 08-031-0027 13 254,000 268,401 60 23206 NA 0
Denver-0028 co 08-031-0028 16 230,000 252,563 351 NA NA 0
Detroit-0093 MI 26-163-0093 8 156,800 210,034 NA 8307 NA 0
Fort Lauderdale-0035 FL 12-011-0035 12 300,000 609,962 317 9786 NA 6.1
Fort Lee-0010 NJ 34-003-0010 22 282,912 556,501 353 24869 NA 7.6
Fort Worth-1053 X 48-439-1053 38 159,040 209,139 112 NA NA 0
Hartford-0025 CT 09-003-0025 21 164,300 238,235 118 26065 NA 0
Houston-1052 X 48-201-1052 19 193,105 319,977 118 NA NA 0
Indianapolis-0087 IN 18-097-0087 25 165,672 316,144 118 19920 NA 0
Jacksonville-0108 FL 12-031-0108 35 146,000 319,374 361 NA NA 25.9
Kansas City-0042 MO 29-095-0042 34 119,477 362,706 357 24795 NA 0
Lakeville-0480 MN 27-037-0480 34 83,000 184,317 359 NA NA 0
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For all near-road sites, the hourly wind direction data were used to characterize times when the near-
road monitor was upwind or downwind of the road, or when winds were parallel to the road. First,
the angle from the near-road monitor to the center of the nearby road was deduced from the
coordinates using ArcMap. Then, the wind direction was classified as upwind, downwind, or parallel,
using 120 degree bins for each category. The percentage of time for each wind category was
calculated for each year. Hourly wind speed was used to calculate annual average wind speed.
Meteorological variables were used to assess particulates based on their analysis period: the year
2018 for PM, 5 and 2016-2018 for BC and UFP.

In order to examine land use characteristics of the domains around the near-road sites, we used the
NLCD developed by the USGS. The gridded data products of imperviousness and land cover from the
most recently available NLCD (2011 at the time of this work), at 30-meter resolution, were used.
Imperviousness is defined between 0 and 100%, with 100% representing impervious concrete, and
0% representing natural environments such as soil. The land use product contains 96 different
categories. These categories were classified into three bins: urban, 50% urban, and non-urban. This
process was carried out for near-road sites and nearby ambient sites. Based on these criteria, and on
a visual examination identifying the densest urban regions, the commonality of land use between
near-road and nearby ambient site was determined.

The daily ambient PM, s measurements within 40 km of each near-road site were used to estimate
the background PM, s concentrations. Background PM;s was estimated at near-road sites using two
methods: (1) using an inverse distance weighting (IDW) average of multiple monitors, and (2) using
the nearest ambient monitor to represent background concentrations (nearest-monitor method). For
the IDW method, ambient sites are given a relative weighting factor that is proportional to the
inverse length of the distance from the near-road monitor squared, so that sites closer to the near-
road monitor play a stronger role in representing the background. This method follows EPA
guidance® and is consistent with the method employed by previous studies (Seagram et al., 2019b;
Mukherjee et al., 2019). Daily PM; s near-road increments were calculated in both the IDW and
nearest-monitor methods as the difference between the near-road value and the background value.
Daily PM,s increments were then averaged up to an annual average PM; s increment.

Increments were calculated only where there were identical sampling methods at near-road and
nearby sites. After restricting for identical methods, 46 near-road sites were found to have at least

! See Section 8 in
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2. Methods

one ambient site within 40 km that met completeness thresholds. Following the procedure from a
previous study, the confounding factors of land use, proximity to sea breeze (within 5 km), and
immediate near-road site factors were evaluated for each near-road site (Mukherjee et al., 2019).
After removing near-road sites where any of these confounding factors was present, a final set of 32
near-road sites was chosen. We present increments for this final set of 32 near-road sites,
categorized by their instrument method type: FRM or FEM.

Two sources of uncertainty were calculated for the annual average increment: the uncertainty due to
instrument bias, and the statistical uncertainty on the mean. The average bias percentage by
instrument type was found from the EPA quality assessment of 2011-2013 data (U.S. Environmental
Protection Agency, 2015b). The daily uncertainty due to instrument bias was calculated by
multiplying the bias percentage with the daily near-road and ambient measurement. The daily
uncertainty of the increment was calculated as the root sum of squared (RSS) of uncertainties from
near-road and ambient data. The annual average uncertainty due to instrument bias was found by
taking an annual average of daily uncertainties. The statistical uncertainty is calculated as the 95%
confidence interval on the mean, defined as

Statistical uncertainty = 1.96 X standard deviation(increment)./(N — 1)

where N represents the valid number of days of data. The final uncertainty on the annual average
increment is the RSS from the two sources: instrument bias and statistical uncertainty.

We calculated BC increments using two methods: (1) using an ambient nearby monitor (NM) to
represent background BC and (2) using the time series method developed by Wang et al. (2018) to
separate background and BC increment. For the nearby monitor method, hourly BC increments were
calculated as the difference in the concentration between the near-road site and a representative
ambient site. Typically, the closest ambient monitor with complete BC data was used. In some cases,
the closest monitor was near a potential BC emission source, so another nearby monitor was
selected. All 29 near-road sites for which BC data were available had a nearby monitor within 40 km
that could be used to calculate a daily BC increment. Hourly increments from the 2016-2018 period
were averaged up to annual and three-year average increments. The Wang et al. time series method
separates out the “background” of a time series from the hourly fluxuations, providing an hourly
estimate of “local” and “"background” contributions. It does so by identifying the slower-varying,
lower-frequency signals of urban- or regional-scale pollution from the local sources that have faster-
varying, higher-frequency signals (Wang et al., 2018; Hilker et al., 2019). Details of the calculations
can be found in Wang et al., 2018.

11



2. Methods

We use statistical measures to examine and quantify the relationship between particulates
(incremental PM;;s, total and incremental BC) and the following near-road site characteristics:

The monitor’s distance to the road

AADT

FE-AADT

Average wind speed

The percent of time the monitor was upwind, downwind, or parallel of the target roadway

The pairwise coefficient of determination (R?) is computed to quantify the correlation: an R? value of
1 would correspond to perfect 1-to-1 correlation, and an R? value of 0 would correspond to no
correlation. Regressions are used to examine the relationship between near-road concentrations and
site characteristics, and the p-values of these regressions are used to see if the relationship is
statistically significant. A p-value less than 0.05 would signify a statistically significant relationship
with greater than 95% confidence.

12
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3. Results

The distributions of daily average near-road PM;s in 2018 from the 52 near-road sites are shown in
Figure 1. The annual and 98" percentile daily average NAAQS for PM. s are also shown. Figure 1
compares measured concentrations to the NAAQS for research purposes only and does not
represent a calculation to determine attainment status. Six sites exceeded the annual average NAAQS
of 12 pug/m?: Ontario-0027, Oakland-0012, Pleasanton-0015, Long Beach-4008, Cincinnati-0048, and
San Jose-0006. Five sites exceeded the daily 98th percentile PM,; value of 35 ug/m?: Oakland-0012,
Pleasanton-0015, Berkeley-0013, San Jose-0006, and Long Beach-4008. The California Bay Area sites
(Oakland-0012, Pleasanton-0015, San Jose-0006, Sacramento-0015, and Berkeley-0013) were
impacted by the Camp Fire for over two weeks in 2018, resulting in higher-than-typical daily average
PM,s. The Seattle-0030 and Tacoma-0024 sites were also impacted by wildfire smoke in 2018. Other
non-traffic processes may also contribute to the PM, s concentrations shown in Figure 1.
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*PM, 5 values from these sites were likely impacted by wildfires during November 8-21, 2018, in California and

August 14-25, 2018, in Washington.

Figure 1. Distribution of daily average PM, s at 52 near-road monitoring sites in 2018, sorted
by annual mean. The annual mean (orange circles) and 98th percentile of 24 hr PM; s
concentrations (blue squares) are shown. The orange dashed lined denotes the annual NAAQS
threshold (12 pg/m’), and the blue dashed line denotes the daily average NAAQS threshold

(35 pg/m’).
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Of the 52 near-road sites shown in Figure 1, daily average PM, s data for 26 sites met completeness
thresholds for the years 2016, 2017, and 2018. The distributions of daily average PM,s from those 26
sites are shown in Figure 2. Figure 2 compares measured concentrations to the NAAQS for research
purposes only and does not represent a calculation to determine attainment status. Two sites,
Ontario-0027 and Long Beach-4008, both in the Los Angeles area, exceeded the three-year annual
average NAAQS of 12 ug/m>. Three sites, Oakland-0012, San Jose-0006, and Ontario-0027, exceeded
the three-year average daily 98™ percentile PM, s value of 35 pg/m>. However, the California Bay Area
sites Oakland-0012 and San Jose-0006 were impacted by the Camp Fire, which contributed to their
high daily 98" percentile PM, 5 values.
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LongBeach—4008—1 LD T
*Qakland-0012-3 TR =
*San Jose-0006-3 i S e S
Wilkinsburg-1376-1 L
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Louisville-0075-1 L o e s
Denver-0028-3 e s e e
Laurel-0006-3 O o
Philadelphia-0075-1 - +—T3———skees oo
Providence-0030-1 - [—CiaH—&ew ]
Livonia-0095-1 - [—F—— e oo
St. Louis-0094-4 woerocd
Fort Worth-1053-1 ——= 1
Boston-0044-3 i —e. H
Tempe-4019-3 — el FURES WUNRHHOS TSSO SRS FNSSSRINS SOSSSSNN: NSRS SBISIS INISSSN SOSSSIEN HONSISROIE WSS WSS S—
Denver-0027-3 e e |
New Orleans-0021-1 Ok 1
Minneapolis-0962-3 ; T WS W —
Kansas City-0042-4 i
Portland-0005-1 -3 '
Hartford-0025-1 ———E e e R
Cheektowaga-0023-1 —n——Ee T e . L A
Rochester-0015-1 = 1
Lakeville-0480-3 1 : |
0 1
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*PM, 5 values from these sites were likely impacted by the Northern California Camp Fire, which occurred
November 8-21, 2018.

Figure 2. Distribution of daily average PM, s at 26 near-road monitoring sites from 2016 to
2018, sorted by three-year average annual mean. The three-year average annual mean
(orange circles) and 98th percentile of 24 hr PM, 5 concentrations (blue squares) are shown.
The orange dashed lined denotes the annual NAAQS threshold (12 ug/mg), and the blue
dashed line denotes the daily average NAAQS threshold (35 pg/m”).
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We assessed trends for the near-road sites whose available data met completeness criteria for the
five-year or three-year trend periods. Available data for seven near-road sites met completeness
thresholds to calculate the five-year trend for 2014-2018; available data for 26 near-road sites met
completeness thresholds to calculate the three-year trend for 2016-2018. The annual average PM,
levels for each year and the associated trend for each site is shown in Figure 3. The five-year trends
of annual average PM,; at the seven near-road sites show a decreasing trend in annual average
PM,s levels for most sites, with the notable exception of Kansas City-0042. The three-year trends of
annual average PM,s at 26 near-road sites do not display a consistent overall pattern. These 26 sites
were categorized based on their trend into: nine sites with a negative trend (negative slope of
regression), nine sites with a low positive trend (trend between 0 and 0.5 pg/m? per year), and eight
sites with a high positive trend (trend greater than 0.5 ug/m? per year). Oakland-0012 and San Jose-
0006 were influenced by wildfires in 2018 as previously discussed. The annual average PM;s values
for 2016-2018, and the three-year trends are presented in the Appendix.
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Figure 3. Distribution and trends of annual average PM, s at near-road monitoring sites.
Top left: five-year trend from 2014-2018 for the 7 near-road sites that met completeness
thresholds for each year. Three-year trends from 2016-2018 are presented for the 26 near-road
sites that met completeness thresholds for each year. Top right: 9 sites with a negative trend.
Bottom left: 9 sites with a low positive trend. Bottom right: 8 sites with a high positive trend.
Horizontal bars signify the highest and lowest annual average from all near-road sites for that

year.
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The range of annual average PM, s increment values calculated using the IDW method and the
nearest-monitor method to represent background concentrations is shown in Figure 4. Only the 46
sites with identical instrument comparisons are shown; of these sites, 34 sites had only positive
increments and 12 sites had a negative increment using the IDW method, the nearest-monitor
method, or both. A negative increment indicates that the PM, s value from the urban background
estimate was higher than the value from the near-road site; while this is not a physically meaningful
result, it does help to provide an indication of the uncertainty associated with characterizing urban
background PM, s concentrations representing the upwind concentrations at near-road sites.

Two sites, Fort Lauderdale-0035 (2.82 + 3.21 pg/m3) and Laurel-0006 (2.49 + 1.42 pg/mg), had IDW
increments greater than 2.0 ug/m>. IDW increments were between 1 and 2 pg/m? for 13 near-road
sites, between 0.5 and 1 pg/m? for 10 sites, and between 0 and 0.5 pug/m? for 11 sites. The
distribution of IDW and nearest-monitor increments is very similar. The uncertainty of each annual
average increment and the instrument method type, FEM or FRM, is shown in Figure 4. FEM
instruments resulted in higher measurement bias uncertainty. The four near-road sites with the
highest increments all used FEM instruments. Of the 12 near-road sites with a negative increment,
9 sites used FEM instruments.
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Figure 4. Distributions of annual average PM, s increments using identical instrument methods
from 46 near-road sites, computed using IDW and the nearest-monitor method. The 34 near-
road sites with all positive increments are shown at the top, and the 12 near-road sites with any
negative increments are shown at the bottom. The instrument measurement type (FRM vs.
FEM) is shown for each site. Uncertainty bars represent instrument bias and statistical
uncertainty of the mean. The full uncertainty bars are shown in Appendix Figure A-5.
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After removing sites with a confounding factor—the immediate site environment, land use, and
proximity to sea breeze (as described in Section 2.2)—a final list of 32 sites, a subset of the 46 sites
above, was determined. Table 2 lists the 32 sites, increments, increment uncertainties, and site
characteristics. Increments are presented only where identical methods were available at the near-
road and nearby sites.

Of these 32 sites, 19 sites had a FRM instrument and 13 sites had a FEM instrument to calculate the
increment; the FRM and FEM sites are plotted separately in Figure 5. The FRM sites have less
increment uncertainty, as well as a smaller difference between their IDW and nearest-monitor
increments. The FRM increments range from near-zero to 1.68 + 0.91 ug/m? (observed at Long
Beach-4008). The FRM increments from 7 sites range from near-zero to 0.5 ug/m? and for the other
12 sites range from 0.5 to 1.68 pg/m>. Among the FEM near-road sites, Laurel-0006, with an IDW
increment of 2.49 + 1.42 ug/m>, had the only increment greater than 2.0 ug/m?>. The increments for 7
FEM sites were between 1 and 2 pug/m>. The IDW increments for 4 FEM sites were negative; three of
these increments range from -0.54 to -0.04 pug/m? and Minneapolis-0962 had a negative increment
of -1.8 + 1.37 ug/m>. The negative increment at Minneapolis-0962 indicates that the urban
background concentrations were higher than the near-road site; we did not identify any confounding
factor for this near-road site. The range of positive IDW increments shown in Figure 5 corresponds to
a contribution between 1% and 27% from roadways to annual average PM,;s, as shown in Table 2.
These contributions are comparable to the results of Dabek-Zlotorzynska et al. (2019) which found
that on-road emissions contributed between 15% and 35% of near-road PM, s at 3 sites stationed
between 6 and 15 meters from the roadway in Canada. When we restrict the results in Table 2 for the
9 sites 15 meters or less than the roadway, we find roadway contributions range from 2% to 21%.
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Table 2. Near-road site characteristics, 2018 increments, and increment uncertainties from the IDW and nearest-monitor methods for the
32 near-road sites. Table is rank-ordered by IDW PM; s increment. Roadway contribution is calculated as the IDW PM, 5 increment
percentage of total annual average PM s, for sites with a positive increment.

Nearest
Nearest

A . i .
dlyite] Monitor Monitor Distance
PMzs

Site Name to Road | AADT

PM2;s : Increment

Laurel-0006 24-027-0006 4 271 335 14 17 199,131 482296 FEM
Providence-0030 44-007-0030 5 21.3 1.88 14 5 159,500 356,833 FEM
Pleasanton-0015 06-001-0015 6 12.2 2.08 2.34 15 233,000 NA FEM
Long Beach-4008 06-037-4008 2 12.7 172 0.9 24 190,000 612,560 FRM
Cincinnati-0048 39-061-0048 2 134 162 5.54 10 152,115 360,578 FEM
Denver-0027 08-031-0027 6 18.2 153 0.68 13 254,000 268,401 FRM
Boston-0044 25-025-0044 3 15.7 1.38 171 10 205,861 261,441 FEM
Denver-0028 08-031-0028 3 14.7 1.55 0.82 16 230,000 252,563 FEM
Tempe-4019 04-013-4019 7 12.3 151 0.31 13 267,488 521,640 FEM
Hartford-0025 09-003-0025 2 14.5 114 0.61 21 164,300 238,235 FRM
Louisville-0075 21-111-0075 4 10.1 114 0.77 33 188,697 286,634 FRM
Charlotte-0045 37-119-0045 1 124 1.03 0.61 36 154,000 262,535 FRM
Washington DC-0051 11-001-0051 2 10.5 1.03 1.56 15 130,892 195802 FEM
Queens-0125 36-081-0125 15 11.6 1 0.57 29 170,874 330,810 FRM
Richmond-0025 51-760-0025 4 12 0.84 0.56 17 159,954 275,121 FRM
Austin-1068 48-453-1068 1 9.7 0.92 0.73 43 144,013 268441 FRM
Indianapolis-0087 18-097-0087 6 8.4 0.89 0.75 25 165,672 316,144 FRM
Sacramento-0015 06-067-0015 3 6.7 0.52 0.67 23 190,800 487,258 FRM
Atlanta-0056 13-121-0056 5 7.2 0.53 0.71 7 382,000 544,678 FRM
Columbus-0038 39-049-0038 2 6.6 0.63 0.68 32 135,746 272,758 FRM
Memphis-0100 47-157-0100 3 5.2 0.43 0.6 22 157,380 327,350 FRM
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Nearest
Nearest

Annual . Moni .
Monitor onitor Distance
PMas

Site Name to Road | AADT

PM2;s Uncertainty . Increment
(ng/m?®) (g/m?°)

Cheektowaga-0023  36-029-0023  7.61 0.56 2 20 126,107 212,275 FRM
New Orleans-0021 22-071-0021 838 0.65 3 32 98,800 187,721 FRM
San Antonio-1069 48-029-1069  8.66 0.65 2 38 211,409 424,510 FRM
Birmingham-2059 01-073-2059 10.22 1.05 4 25 126,670 193,362 FRM
Las Vegas-1501 32-003-1501  8.16 0.82 5 18 297,000 404,177 FEM
Rochester-0015 36-055-0015  7.37 0.54 1 11 98,306 128179 FRM
Fort Worth-1053 48-439-1053  8.52 0.67 2 38 159,040 209,139 FRM
Lakeville-0480 27-037-0480  7.43 1.29 3 34 83,000 184,317 FEM
Philadelphia-0076 42-101-0076  8.59 15 3 25 210,456 344,929 FEM
San Jose-0006 06-085-0006  12.09 213 4 33 251,000 386,540 FEM
Minneapolis-0962 27-053-0962  6.82 137 6 35 250,000 349,504 FEM
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Figure 5. Distributions of 2018 annual average PM, s increments computed using IDW and
nearest-monitor calculation. Increments are shown for the 32 near-road sites that remained
after all sites with a noted confounding factor were removed. Left: Data from 19 near-road
sites calculated with an FRM instrument. Right: Data from 13 near-road sites calculated from
FEM instruments. The full uncertainty bars are presented in the Appendix.

Figure 6 shows the same annual average increments shown in Figure 5, aggregated through
boxplots. The plots show more clearly that the FEM sites have a greater range and variability than the

FRM sites. The full range of the FEM sites (represented by line segments in the boxplot) are largely
driven by the Laurel-0006 and Minneapolis-0962 sites. Excluding those sites would lead to an FEM

increment range from -0.54 ug/m? to 1.91 pg/m°. The inter-quantile range (IQR) of the FEM
increments is very similar to the whole range of the FRM increments, going from near-zero to about
1.7 ug/m’. The IQR of the FRM increments goes from approximately 0.5 ug/m® to approximately
1.1 ug/m’. Very similar distributions are seen between IDW and nearest-monitor increments for both
FEM and FRM instruments.
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Figure 6. Boxplot distributions of 2018 annual average PM, s increments computed using IDW
and nearest-monitor calculation (NM). Increments are shown for the 32 near-road sites that
remained after all sites with a noted confounding factor were removed. The box cutoffs are the
inter-quantile ranges (IQRs), and the line segments show the full range.

For the set of increments presented in Table 2, where all sites with a confounding factor have been
removed, increments were compared to meteorology, traffic, and site characteristic variables using
pairwise R? values and regressions. An R? value of 1 corresponds to perfect correlation, and an R?
value of 0 would correspond to no correlation. These comparisons show which site characteristics are
the most correlated with annual average incremental PM, s values. Only positive increments were
used in these comparisons. Table 3 shows the R? values between IDW and nearest-monitor
increments for the following variables: the monitor distance to the target road; FE-AADT; AADT,
percentage of time the monitor was upwind, downwind or parallel; and average wind speed. The
monitor distance to road was the most strongly correlated with the 2018 increments for both IDW
and nearest-monitor methods, with an R? value of 0.18 and 0.19, respectively. FE-AADT, percentage of
time upwind, and AADT also show some correlations (R? values ranging from 0.03 to 0.14 for the
nearest-monitor method and from 0.09 to 0.17 for the IDW method). Average wind speed and
percentage of time parallel or downwind show no correlation.
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Table 3. Coefficient of determination (R2 value) for IDW and nearest-monitor increments with
near-road site and meteorological variables for 2018. The comparisons are shown for
increments from Table 2, after removing sites with confounding factors. Only positive
increments were used for pairwise R” values. Variables are rank-ordered by R? values.

Variable IDW Nearest
Method Monitor

Distance to Road 0.18 0.19
FE-AADT 0.14 0.17
Percent Upwind 0.05 0.14
AADT 0.03 0.09
Average Wind Speed 0.03 0.07
Percent Parallel 0.03 0.01
Percent Downwind 0.01 0.01

Regressions shown in Figure 7 were calculated to compare the IDW increment with the four variables
that showed the highest R? correlation: the monitor distance to road, FE-AADT, percentage of time
upwind, and AADT. A linear regression (y = a * x + b) was used for FE-AADT, percentage of time
upwind, and AADT, and an inverse relationship (y = a /x + b) was used for distance to road. The
coefficients and p-values of these regressions are shown in Table 4. The p-values show that the
modeled relationships are statistically significant at a 95% confidence level for the variables FE-AADT
and monitor distance to road (p-values less than or equal to 0.05). A stronger statistical relationship
to the increment is seen with FE-AADT than with AADT (both higher R? and lower p-value), showing
the importance of heavy duty vehicles on incremental PM;s. The regression for distance to road
predicts an increment of 2 pg/m?® at 5 m from the roadway falling to approximately 1 pg/m?® at 15 m
from the roadway (96% confidence that the relationship exists). The linear regression for FE-AADT
predicts a relationship of 0.18 pg/m?* higher PM, s values for every increase of 100,000 in FE-AADT
(95% confidence).
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Figure 7. The relationship between the 2018 IDW PM; s increment in comparison to distance
to road (upper left), FE-AADT (upper right), percentage of time upwind of the roadway (lower
left), and AADT (lower right). Regressions are shown in black, with the range of the standard
error of the regression line shown in dark gray.

Table 4. The intercepts, slopes, p-values, and R” values for the four regressions presented in
Figure 7. For FE-AADT, AADT and percent upwind a linear regression is used, of the form
¥ =a *x + b Fordistance to road, an inverse relationship is used, of the form y =a /X + b.

Percent

Distance to FE-AADT

Regression Upwind vs. AADT vs.
9 Road vs. IDW | vs. IDW P
Model IDW Increment
Increment Increment
Increment

a 6.08 1.80 - 10° -0.014 1.83+10°

b 0.60 0.37 143 0.64
p-value 0.04* 0.05* 0.26 0.34

R? 0.18 0.14 0.05 0.03

*Showing a greater than 95% statistical significance
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A previous study examined near-road annual average PM,s increments from 2017 (Mukherjee et al.
2019). That study used the same methodology to calculate nearest monitor and IDW increments,
presented for a final set of 20 sites, after removing for the same confounding factors as this study,
and restricting for identical instrument comparisons. Increments from those 20 sites ranged from
0.13 ug/m? at Minneapolis-0962 to 2.04 pg/m? at Providence-0030 in 2017. Laurel-0006 had
increment values of IDW: 0.99 pg/m?® and nearest monitor: 1.13 pg/m?. The previous study presented
implications for determining transportation projects of local air quality concern (POAQC) based on
2017 increments from those 20 sites.

The current study used the same methodology for calculating nearest monitor and IDW increments
for 2018, which were presented for a final set of 32 sites, after removing for confounding factors and
restricting for identical instrument comparisons. Due to differences in data completeness, increments
based on 2018 data may be calculated from a different set of ambient monitors for a given near-road
site. The current (2018 data) study presents a more detailed calculation of uncertainty on the
increment, which includes the instrument bias for FRM or FEM instruments and statistical uncertainty.
Uncertainty for 2017 increments was calculated only based on statistical uncertainty.

While the 20 sites from 2017 included no negative increments, in 2018 six of the 32 sites have a
negative increment (nearest monitor, IDW or both). Five of these six sites with a negative increment
were based on FEM instruments. The lowest 2018 increment was Minneapolis-0962 (IDW: -1.8 + 1.37
g/m?, nearest monitor: -1.84 + 1.37 pug/m?>). The highest 2018 increment was at Laurel-0006 (IDW:
2.49 + 1.42 ug/m>, nearest monitor: 3.35 + 1.4 ug/m°). The second highest 2018 increment was at
Pleasanton-0015 (IDW: 1.75 + 2.33 ug/m’, nearest monitor: 2.08 + 2.34 ug/m>). Laurel-0006 and
Pleasanton-0015 were the only sites with an increment greater than 2.04 pg/m? the maximum
increment calculated from 2017 data in the previous work. Laurel-0006, Providence-0030 and
Pleasanton-0015 were the only sites with an increment greater than 1.72 ug/m>. All three of these
sites were based on FEM instruments. We show that FEM-based increments almost always have
higher uncertainty than FRM-based increments, due to inherent instrument bias (as shown in Figure
4 and Table 2).

We examined the case of Laurel-0006 in greater detail, to better understand its relatively high 2018
increment value. Laurel-0006 has only an FEM instrument available. The increment value from Laurel-
0006 is primarily determined by its nearest ambient monitoring station, 24-033-0030, 10 km away.
EPA presents a comparability assessment of ambient monitors where collocated instruments are
available (

). The ambient site, 24-033-0030, had one FEM instrument and two collocated FRM
instruments. The FEM instrument reads low relative to the two FRM instruments, with slopes of
regression of 0.90 and 0.71. Correcting the FEM instrument to its collocated FRM instruments would
change the resulting increments, leading to lower increment values at Laurel-0006 of approximately
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0.6 pg/m’ or 1.7 pg/m>. This confirms the higher uncertainty we present on the 2018 Laurel-0006
increment (+1.4 ug/m?) due to its FEM instrumental uncertainty.

The overall distribution of our 2018 increments (see Figures 5 and 6, and discussion in section 3.5) is
very similar to the distribution presented for 2017 increments. While it may be possible that the
near-road incremental impact at Laurel-0006 is higher than 2.0 pg/m?, the uncertainty for any given
FEM-based increment is high relative to its magnitude. After examining the whole distribution of
2018 increments, the range of 2018 FRM increments (-0.14 + 1.11 pg/m?> to 1.68 + 0.91 ug/m? from
19 sites) and noting the specific irregularities of the nearby ambient monitor at Laurel-0006, we
conclude that the results we presented in 2017 and implications for POAQC determination are still
consistent with the 2018 results.

UFP measurements from the years 2016-2018 were available at six near-road monitoring sites:
Tampa-0113, Cheektowaga-0023, Rochester-0015, Queens-0125, Providence-0030, and Laurel-0006.
Average concentrations ranged from a high of 5.1 x 10* particles/cm? at Providence-0030, which is
the site closest to the adjacent freeway at 5 m, to a low of 1.3 x 10* particles/cm? at Rochester-0015,
which is the site with the lowest AADT (98,306 vehicles/day) and FE-AADT (128,179 vehicles/day). This
average is typical of roadside concentrations, which are historically between 3 x 10* and 5 x 10"
particles/cm3 (Health Effects Institute, 2013; Morawska et al., 2008). Complete years of UFP data were
not available at any nearby sites, so increments were not calculated.

UFP concentrations peaked in the morning at each site, between 0500 and 0700 local time, typical of
near-road and urban locations. Providence-0030, Tampa-0113, and Laurel-0006 all showed small
evening peaks as well, likely because these three sites had the highest traffic volume among the sites
with UFP data. Concentrations were statistically significantly higher on weekdays compared to
weekends at all sites, with the largest differences at Providence and Laurel (the sites with the highest
FE-AADT), likely due to large changes in traffic volume between weekdays and weekends. The
distribution of UFP concentrations by hour of day and by weekday versus weekend are shown in the
Appendix.

When a near-road site was downwind of the adjacent freeway, UFP concentrations were statistically
significantly higher than when the site was upwind of the freeway or when the winds were parallel to
the freeway, with the exception of Rochester-0015 (see Figure 8). Median UFP concentrations were
1.4 to 3.5 times higher under downwind conditions, compared to upwind conditions. The differential
between upwind and downwind conditions was lowest at the sites with the lowest FE-AADT
(Cheektowaga-0023, Rochester-0015) and highest at the site with the highest FE-AADT (Laurel-0006,
482,296 vehicles per day). At the other three sites, FE-AADT was from of 330,000 to 370,000 vehicles
per day, and downwind concentrations were 1.7 to 2.0 times higher than upwind concentrations.
Overall, the trend of higher concentrations when a site is downwind of a freeway is likely more
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impacted by FE-AADT than by distance, at least within the 5-34 m distance range of these near-road
sites.

2000004

150000 4

Wind Origin Relative
to Target Roadway

Particle Number Count (#/cm3)

100000+ i i : — ES Downwind
i ; . : . B Parallel
PR T B2 Upwind
! ! ! ‘!
50000 4 !
0.
Cheeklovs;aga-DOZS Laurei-OODG Providenlce-(][)30 Queenls-m 25 Roches;er-[)m 5 Tampell-m 13

Near Road Site

Figure 8. Box plot of 2016-2018 UFP concentrations by site under downwind, parallel, and
upwind wind conditions.

BC concentrations from the years 2016-2018 were available for 29 sites representing a diverse set of
traffic and meteorological conditions. For these 29 sites, AADT ranged from 119,477 to 382,000,
FE-AADT ranged from 161,167 to 609,962, and the monitor distance to road ranged from 5 to

56 meters. Three-year average concentrations ranged from 0.62 ug/m? at St. Petersburg-0027 to
2.02 pug/m? at Atlanta-0056, shown in Table 5. Providence-0030 had a high average BC concentration
of 1.59 ug/m’ and also had the highest UFP concentration out of the six sites that measured UFP. Of
all sites used in this study (shown in Table 1), Providence-0030 was the site closest to the target
roadway (5 meters away), likely leading to the higher particulate concentrations there compared to
other sites.

BC concentrations followed a similar diurnal pattern across the sites. Average hourly BC
concentrations peaked in the morning between 0600-0900 local time for all sites, a morning peak
similar to the UFP diurnal pattern. Weekday concentrations were higher than weekend
concentrations for all sites, with the weekday/weekend concentration ratio ranging from 1.13 at
Columbus-0038 to 2.16 at Atlanta-0003. The sites with the highest weekday/weekend ratios typically
had higher average BC concentrations—six of the seven sites with average BC concentrations above
1.5 ug/m?® had weekday/weekend ratios above 1.6 (see the Appendix for the full relationship). The
average BC values by hour of day and by weekday versus weekend are provided in the Appendix.
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The distributions of BC while the near-road monitor was downwind of, parallel to, and upwind of the
target roadway are shown in Figure 9. The median BC concentration was higher during downwind
conditions than during parallel or upwind conditions for all sites except three: Berkeley-0013,
Oakland-0012, and Fort Lee-0010. Berkeley and Oakland are impacted by the sea breeze effect;
average wind speeds are ~2.5 times as high during downwind conditions as during upwind
conditions, leading to greater dispersion and lower BC concentrations. BC concentrations do not
have any noticeable variability during different wind directions at Fort Lee-0010. For the other

26 sites, we see a relationship similar to that shown in Figure 9, with downwind and parallel
conditions leading to higher BC concentrations than upwind conditions. Median BC concentrations
were 1.1 to 4.5 times higher under downwind conditions, compared to upwind conditions, for these
26 sites.
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Figure 9. BC concentrations from 29 near-road sites under downwind, parallel, and upwind

wind conditions during 2016-2018.

31



3. Results

Table 5. Average BC concentrations and increments for the three-year period (2016-2018). Increments are calculated using the time
series method by Wang et al. (2018) for all 29 sites and the nearby monitor (NM) method for 16 sites. The three-year average BC
concentrations, increments, and roadway contributions are given for both time series and NM methods. Roadway contribution is
calculated as the BC increment percentage of total average BC for sites with a positive increment.

Denver-0027
Atlanta-0003
Atlanta-0056

Fort Lauderdale-0035

Cincinnati-0048
Seattle-0030
Providence-0030
Oakland-0012
Laurel-0006
Berkeley-0013
Detroit-0093
Portland-0005
Boston-0044
Milwaukee-0056
Sacramento-0015
Indianapolis-0087
Tampa-0113
Hartford-0025
San Jose-0006

AQS ID

08-031-0027
13-089-0003
13-121-0056
12-011-0035
39-061-0048
53-033-0030
44-007-0030
06-001-0012
24-027-0006
06-001-0013
26-163-0093
41-067-0005
25-025-0044
55-079-0056
06-067-0015
18-097-0087
12-057-0113
09-003-0025
06-085-0006

N hours
Full
Record
23204
17482
17481
9784
26025
10367
24305
24018
15871
17159
8306
16548
25195
16298
21827
19919
17790
52124
8025

UG S5 Time Series
Three-Year

Average
(ng/m’)

1.75
191
2.02
171
1.82
15
1.59
1.24
131
116
116
1.04
1.09
1.03
1.03
1.07
0.89
0.91
0.99

Increment
(ng/m’)
1.04
0.96
0.92
0.91
0.9
0.82
0.75
0.64
0.61
0.57
0.56
0.54
0.53
0.51
0.49
0.48
0.47
0.46
0.46

Time Series
Roadway
Contribution
(%)

59
50
46
53
50
55
47
52
46
49
48
52
49
49
47
45
53
51
46

Nearby
Monitor
AQS ID
NA
NA
NA
NA
NA
53-033-0034
44-007-0022
06-001-0011
24-033-0030
06-001-0011
26-163-0033
41-051-2010
25-025-0042
55-079-0026
06-067-0006
18-097-0078
12-103-0026
09-003-1003
06-001-0007

Distance

to NM
(km)

NA
NA
NA
NA
0.6
24
29
10.1
5.8
13.1
193
22
14.4
12
29
26.8
43
392

NM

Three-Year

Average
(ng/m’)

NA

NA

NA

NA
148
153
118
1.28
111
1.22
1.01
1.06
0.94
1.05
1.04
0.81
0.87
0.94

NM
Increment
(ng/m’)

NA
NA
NA
NA
0.76
12
0.52
0.88
0.42
0.48
0.39
043
0.47
0.44
0.45
0.42
0.4
0.32

NM Roadway

Contribution
(%)

NA
NA
NA
NA
51
78
44
69
38
39
39
41
50

43
52
46
34
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N hours ?I:?:es-iz:: Time Series T;?,:::,:es Nearby Distance M NM NM Roadway
Site Name AQSID Full Increment y

P Contribution Monitor to NM TI;l;,e;-a\;e:r Increment | Contribution
AQS ID km m? %
o Q (m) | my | 9/ (%)

3
(ug/m3) (ng/m”)

Record

Oklahoma City-0097  40-109-0097 NA

Cheektowaga-0023  36-029-0023 16144 0.96 043 45 NA NA NA NA NA
St. Louis-0094 29-510-0094 25362 0.87 04 46 NA NA NA NA NA
Minneapolis-0962 27-053-0962 14367 0.79 04 50 NA NA NA NA NA
Chelmsford-0010 25-017-0010 4971 0.83 04 48 NA NA NA NA NA
Kansas City-0042 29-095-0042 24794 0.8 0.37 47 NA NA NA NA NA
Columbus-0038 39-049-0038 12124 0.8 0.36 45 NA NA NA NA NA
St. Petersburg-0027  12-103-0027 21994 0.62 0.34 54 12-103-0026 5.2 0.59 0.22 37
Fort Lee-0010 34-003-0010 24868 0.8 0.32 39 36-005-0110 6.8 0.78 -0.02 NA
Livonia-0095 26-163-0095 3580 0.62 0.28 46 NA NA NA NA NA
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BC Increments are presented in Table 5 and Figure 10 using two methods, the time series method
developed by Wang et al. (2018) and the nearby monitor (NM) method. Time series increments are
presented for all 29 sites. Of the 29 near-road sites with BC measurements, ambient measurements
that were considered representative of background values were available for 16 sites; so NM
increments were calculated for these 16 sites. Table 5 shows the average BC concentrations,
increments, and ratios for the 29 sites. The time series increments ranged from 0.28 ug/m? at Livonia-
0095 to 1.04 ug/m? at Denver-0027. The contribution of the roadway, calculated as the BC increment
percentage of total average BC, had a range of 39% to 59% for time series increments as shown in
Table 5. The NM BC increments were positive at all sites except Fort Lee-0010 (-0.02 pug/m°). At the
other 15 sites, BC increments ranged from 0.22 pg/m? at St. Petersburg-0027 to 1.2 pg/m’ at
Providence-0030. These positive NM increments corresponded to a roadway contribution range of
34% to 78%. A strong correlation was seen between the average BC concentration and the BC
increment (R? = 0.72 for NM increments, R? = 0.95 for time series increments, see Appendix for
additional figures). BC concentrations and increments were typically higher for sites closer to the
roadway.
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Denver-0027 -
Atlanta-0003 -
Atlanta-0056 -

Fort Lauderdale-0035 4
Cincinnati-0048
Seattle-0030 4
Providence-0030 o
Oakland-0012 4
Laurel-0006
Berkeley-0013 -
Detroit-0093 A
Portland-0005 A
Boston-0044 4
Milwaukee-0056 -
Sacramento-0015 4
Indianapolis-0087
Tampa-0113 4

San Jose-0006 o
Hartford-0025 A
Oklahoma City-0097 4
Cheektowaga-0023
Chelmsford-0010 4
Minneapolis-0962 -
St. Louis-0094 A
Kansas City-0042 -

Increment Method

Columbus-0038 Timeseries
St. Petersburg-0027 A A 4 Nearby Monitor
Fort Lee-001049 4
Livonia-0095
0.0 0:4 0:8 1:2

Three Year Average BC Increment (ug/m3)

Figure 10. Three year average (2016-2018) BC increments calculated from the time series
method developed by Wang et al. (2018) for all 29 sites and the nearby monitor method for
16 sites where nearby monitor data were available.

BC concentrations and increments were compared to the distance of the monitor to the roadway,
traffic volume, and meteorology to see which variables had the strongest correlation. Pairwise R
values are shown in Table 6. The distance to road had the highest R? value for both BC
concentrations and increments, showing a moderate correlation. AADT and FE-AADT show some
correlation to BC concentration and increments. A weak correlation is seen for other variables. Table
6 can be compared with Table 3, which shows the analogous correlations with PM; s increments. The
monitor distance to road shows a greater R? correlation to both the BC concentration and the BC
increment than the PM,s increment. Some similarities are seen in the ranking of site variables when
comparing Tables 3 and 6, with the monitor distance to road being the most correlated. FE-AADT,
and AADT show some correlation to BC concentrations/increments and the PM, s increment, whereas
the percentage of time downwind has almost no correlation with either particulate increments. The
relationships between the monitor distance to road and the BC concentration and increments are
shown in Figure 11. Overall, there is modestly higher correlation of BC concentrations and

35



3. Results

increments with distance to road than was seen for PM;s. As shown in Table 7, when using a linear
regression to predict BC concentration or increment, there is a statistically significant relationship
between distance to roadway and both BC concentration and BC increment (p-values less than 0.01).
Weaker correlations are seen for other site variables.

Table 6. Coefficient of determination (R? value) of near-road site characteristics with BC
concentrations and increments for 2016-2018. Only positive increments were used for pairwise
R’ values. Variables are rank-ordered by BC concentration R” values. All 29 sites were used for
BC concentration and time series increments, and 16 sites were used for BC nearby monitor
(NM) increments.

BC Time
. BC BC NM .
Variable . Series
Concentration Increment
Increment
Distance to Road 0.29 0.25 0.27
AADT 0.14 0.03 0.12
FE-AADT 0.12 0.10 0.07
Percent Parallel 0.11 0.02 0.09
Percent Upwind 0.08 0.02 0.10
Average Wind Speed 0.06 0.06 0.03
Percent Downwind 0.01 0.01 0.00
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BC Timeseries Increment (pg/m®)
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Table 7. The intercepts, slopes, p values, and R” values for linear regressions predicting BC
concentration and increment with distance to road. For distance to road, an inverse
relationship is used, of the form y = a / + b.

. . Distance to
. Distance to Distance to
Regression Road vs. BC
Road vs. BC Road vs. BC ) .
Model ! Time Series
Concentration | NM Increment
Increment
N sites 29 16 29
a 5.82 3.84 2.83
b 0.80 0.28 0.39
p value 0.00046* 0.0018* 0.0022*
R’ 0.29 0.25 0.27

*Showing a greater than 99% statistical significance

3.9.3 Black Carbon Fraction of PM;s

Of the 29 near-road sites with BC measurements, PM, s measurements from 20 of the sites had
annual average PM;s previously assessed. Table 8 presents 2018 annual average BC values, annual
average PMj; ;s values, and the BC fraction of PM;s. The BC and PM;s averages include contributions
from both traffic-related emissions and ambient background concentrations. The BC fraction ranges
from 6.1% at Fort Lee-0010 to 17.9% at Denver-0027. The BC fraction showed a strong relationship
with distance to road (R? = 0.36), which is shown in Figure 12. Figure 12 shows a relationship that is
consistent with the gradients of PM,s and BC examined in the previous literature, such as (Karner et
al., 2010). The BC fraction decreases with greater distance from the road because the BC increment is
a substantial fraction of the total BC concentration (34% to 78% as shown in Table 5); in contrast, the
PM, s increment is a smaller fraction of the total PM, s concentrations (1% to 27% as shown in

Table 2). No statistically significant relationship was seen between BC fraction and FE-AADT

(R? = 0.0008, p-value = 0.9).
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Table 8. Annual average PM, s and BC concentrations for 2018 for 20 near-road sites. Table is
rank-ordered by BC fraction of PM,s.

BC Annual | PM, s Annual BC Distance

Near-Road Site Average Average Fraction of | to Road | AADT | FE-AADT

(Hg/m?) (Hg/m?) PM, 5 (%) (m)

Denver-0027 254,000 268,401
Fort Lauderdale-0035 1.7 93 17.8 12 300,000 609,962
Providence-0030 15 9 16.4 5 159,500 356,833
Portland-0005 1.2 7.7 16.1 24 162,700 301,466
Seattle-0030 14 9.4 15.1 11 167,093 332,515
Laurel-0006 1.2 9.2 12.6 17 199,131 482,296
Hartford-0025 0.8 7.2 11.6 21 164,300 238,235
Cincinnati-0048 14 12.2 113 10 152,115 360,578
Oklahoma City-0097 0.9 9.2 10 20 165,000 207,768
Minneapolis-0962 0.7 6.8 9.7 35 250,000 349,504
St. Louis-0094 0.8 8.6 9.4 21 147,943 334,351
Berkeley-0013 11 11.8 93 19 267,000 382,108
Indianapolis-0087 1 10.7 9 25 165,672 316,144
Boston-0044 0.9 10.3 8.8 10 205,861 261,441
Kansas City-0042 0.7 8.3 8.7 34 119,477 362,706
Oakland-0012 1.2 144 83 24 225,000 441,675
Columbus-0038 0.7 9.1 8 32 135,746 272,758
Sacramento-0015 0.9 12 7.7 23 190,800 487,258
San Jose-0006 0.9 121 7.5 33 251,000 386,540
Fort Lee-0010 0.7 11.3 6.1 22 282,912 556,501
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Figure 12. The relationship between the monitor distance to road and the BC fraction of PM,s,
based on 2018 annual average values.
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4. Conclusions

Near-road monitors stationed within 50 m of major roadways provide a novel resource to examine
PM,s, BC, and UFP levels in the near-road environment. The near-road sites used in this study
represent a diverse range of traffic and meteorology conditions. From an analysis of 32 near-road
sites using 2018 measurements, after removing confounding site factors, the PM; s increment values
were below 2.0 pg/m?, with the exception of one site (Laurel), which had an increment of 2.49 pg/m?,
based on FEM data. These increments corresponded to a roadway contribution between 1.3% and
27.1% of annual average PM,s. PM, s increments derived from FRM data ranged from -0.14 + 1.11
ug/m? to 1.68 + 0.91 pug/m?>; uncertainty on the annual average increment was smaller for those
derived from FRM data than for those derived from FEM data. PM, 5 increments and BC increments
were statistically related to some near-road site variables, and had the highest R* correlation with the
monitor distance to road. Three other site variables showed statistical significance with PM, s and BC
increments in some cases: FE-AADT, percentage of time the monitor was upwind, and average wind
speed. A clear relationship of higher median UFP and BC levels was seen during times when the
monitor was downwind of the target roadway compared to upwind conditions. Diurnal patterns from
6 UFP stations and 29 BC stations showed a similar pattern, peaking during local morning hours for
all sites. BC increments ranged from -0.02 to 1.2 pg/m?. BC increments indicate a roadway
contribution between 37% and 78% of total BC. Total BC ranged from 6.1% to 17.9% of total PMs.
This analysis provides evidence that particulate pollution decreases substantially within the first 50
meters of the roadway across a diverse range of major traffic roadways with high FE-AADT values
(126,000 to 631,000).
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Appendix

Appendix: Supplementary Data

This appendix shows the diurnal pattern of UFP particles, the weekday versus weekend distributions
of UFP particles, average BC concentrations by weekday, weekend, and three-hour periods, the
relationship between average BC and the BC weekday/weekend ratio, the relationship between the
BC increment and total BC, and the full range of PM,s increment uncertainty for all 46 near road
sites.
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Figure A-1. UFP number count boxplot distributions by local hour of day for 2016-2018. The
center of the box plot represents the median value. The box cutoffs are the inter-quartile
ranges (IQRs), the line segments represent 1.5 x IQR, and the remaining points in the

distribution are plotted individually.
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Figure A-2. UFP number count boxplot distributions for weekday and weekend periods for
2016-2018.

Table A-1. Average 2016-2018 BC concentrations by selected time interval. All values have the
units ug/mg.

Near-Road Three Sat & | Hour | Hour | Hour | Hour | Hour | Hour | Hour | Hour
Site year Sun 0-2 3-5 6-8 9-11 | 12-14 | 15-17 | 18-20 | 21-23
Oakland-0012 1.24 1.36 0.94 0.80 0.95 1.70 1.88 1.45 1.13 1.00 0.98
Berkeley-0013 1.16 1.28 0.86 0.74 1.01 1.60 1.67 1.27 1.01 1.06 0.95

gg‘i?me”to' 103 110 085 090 097 125 110 100 095 100 105
San Jose-0006 099 107 079 NA  NA 134 103 087 084 089 098

Denver-0027 175 200 112 100 160 3.00 210 195 159 145 124
Hartford-0025 091 104 058 067 093 137 099 088 083 080 076

Fort
Lauderdale- 1.71 2.00 0.98 0.89 1.39 2.53 2.38 2.33 1.78 1.38 1.01
0035

Tampa-0113 089 097 068 079 109 154 078 064 070 080 0.78

St.
Petersburg- 062 067 049 054 077 106 069 053 041 044 051
0027

Atlanta-0003 191 226 105 210 251 259 170 135 132 176 196
Atlanta-0056 202 223 152 145 192 283 286 224 162 161 166

Indianapolis-

0087 1.07 113 091 1.01 105 133 1.00 088 0.95 112 1.22
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Near-Road Three Sat & | Hour | Hour | Hour | Hour | Hour | Hour | Hour | Hour
Site year Sun 0-2 3-5 6-8 9-11 | 12-14 | 15-17 | 18-20 | 21-23

Laurel-0006 131 149 086 135 166 183 132 101 092 114 125
ggf(')meord' 083 093 059 073 089 106 078 076 080 082 081

Boston-0044 109 124 071 078 128 176 142 101 081 084 084
Detroit-0093 116 130 079 080 100 167 147 132 120 091 0.87
Livonia-0095 062 068 049 050 050 078 069 057 062 072 062

(’;"9'2263‘30"5' 079 085 065 061 075 112 093 08 068 071 075
ggz;asc'ty' 08 084 070 070 075 096 074 070 078 091 085

St. Louis-0094 087 094 071 08 088 129 095 082 063 076 087
Fort Lee-0010 08 090 054 067 090 112 092 074 064 069 0.9

ggzegktowaga' 096 102 080 08 088 114 087 085 093 098 112
gg;mb“s' 08 08 073 073 075 108 079 067 067 081 089
gg:;””at" 182 206 121 168 212 280 198 144 121 157 172
Oklahoma

T 005 086 093 068 054 063 109 098 098 100 090 073

Portland-0005 1.04 118 068 079 097 1.40 114 106 0.98 1.02 095

ggg‘gdence' 159 180 107 120 193 248 179 155 126 123 126
Seattle-0030 15 172 097 085 117 199 224 18 152 131 110
(';’(')'g"éa“kee' 103 115 073 079 117 159 107 092 092 088 089

52



BC NM Increment (uglm3)

o
[
y

o
=
L

0.0

Appendix

2.51

2.0+

Weekday/Weekend Ratio

1.0+

0.5 1.0

15 20

Average Black Carbon Concentration (ug/m?)

Figure A-3. The relationship between three-year (2016-2018) average BC concentrations with
the ratio of average weekday to average weekend concentrations. Regressions are shown in
black, with the range of the standard error of the regression line shown in dark gray.
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Figure A-4. The relationship between the three-year (2016-2018) average BC increment and
the three-year (2016-2018) average BC concentration.
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Figure A-5. Distributions of 2018 annual average PM, s increments using identical instrument
methods from 46 near-road sites, computed using IDW and the nearest-monitor method. The
instrument measurement type (FRM vs FEM) is shown for each site. Uncertainty bars represent
instrument bias and statistical uncertainty of the mean. The same data and visualization is
shown in Figure 4, but the full range of uncertainty bars is included here.
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Table A-2. Annual average PM, s concentrations from 26 near-road sites based on data from
the 2016 to 2018 period. All PM; s concentration values have the units ug/m3. Three-year trend
is the slope of regression, with units of ug/m’ per year. Sites are rank ordered by three-year
(2016-2018) average PM;s.

2016 2017 2018
State Mean Mean | Mean AADT
PM,5 PM,5 | PMys

FE- Distance
AAD to Road

Near-Road

Site

Ontario-0027 CA 149 146 145 217,000 631,557
‘L‘ggg Beach- 0 120 128 132 127 190,000 612560 24 06
Oakland-0012 CA 88 117 144 116 225000 441675 24 28
San Jose-0006 CA 9.2 109 121 107 251,000 386,540 33 1.45
\{\;';'E”Sb“rg' PA 107 107 103 106 74421 126,040 23 0.2
glor;nglngham— AL 108 103 102 104 126,670 193362 25 03
g”o‘ggnapo"s' IN 101 96 107 101 165672 316144 25 03
Lol KY 92 89 102 94 188,697 286,634 33 05
0075

Denver-0028 CO 96 89 92 92 230,000 252,563 16 0.2
Laurel-0006 MD 98 84 92 91 199,131 482296 17 03
Fillzeiplie- oy |es 81 97 91 118498 244832 14 0.15
0075

Frovidones: o g 83 9.0 89 159,500 356,833 5 015
0030

Livonia-0095 MI 85 84 91 87 193,400 313407 56 03
St. Louis-0094 MO 8.8 84 86 86 147,943 334351 21 0
zg;taworth' X 85 86 85 86 159,040 209,139 38 01
Boston-0044 MA 69 78 103 83 205861 261441 10 1.7
Tempe-4019 AZ 80 8.1 87 82 267,488 521,640 13 035
Denver-0027 CO 78 79 8.3 8.0 254000 268,401 13 0.25
Newieens | | 9e 81 8.4 8.0 98800 187,721 32 045
0021

g’gg;eapo“s’ MN 79 77 6.8 75 250,000 349,504 35 055
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Near-Road
Site

Kansas City-
0042
Portland-0005
Hartford-0025

Cheektowaga-
0023

Rochester-
0015

Lakeville-0480

Appendix

Distance | 3-Year
to Road | Trend

34 1.05
24 0.4

21 -0.2
20 0.75
11 0.55
34 0.85
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