The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by the Texas Department of Transportation (TxDOT) pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated December 16, 2014, and executed by the Federal Highway Administration and TxDOT.
Table of Contents

1.0 PROJECT DESCRIPTION .. 1
2.0 SOUND/NOISE FUNDAMENTALS ... 1
3.0 TRAFFIC MODELING RESULTS .. 3
 A. Existing Noise Levels ... 4
 B. Predicted Future Noise Levels ... 5
4.0 MITIGATION ... 6
5.0 REFERENCES .. 7

List of Tables
Table 1. FHWA Noise Abatement Criteria .. 2
Table 2. Modeled Traffic Noise Levels .. 4
Table 3. Decibel Addition ... 5
Table 4. Predicted 2040 Noise Impact Contour ... 6

Appendices
Appendix A: Exhibits
Appendix B: Traffic Data
Appendix C: Field Data Sheets
1.0 Project Description

The City of League City and Texas Department of Transportation (TxDOT) propose the extension of Landing Boulevard and the NASA Road 1 Bypass (NASA 1) from FM 518 (West Main Street) in League City, Galveston County, to Interstate Highway 45 (I-45) in Webster, Harris County. The project length is approximately 1.7 miles and a project location map is provided in Appendix A. The proposed Build Alternative would extend Landing Boulevard northward beyond its existing terminus north of FM 518 as a four-lane, divided roadway to a proposed roundabout with the proposed NASA 1 Bypass extension, which would connect to the existing NASA 1 Bypass at I-45.

The Build Alternative would include two travel lanes in each direction. The inside travel lane would be 12 feet wide and the outside travel lane, designated as a shared-use lane, would be 15 feet wide. The raised median would vary from 4 feet to 16 feet. The proposed Landing Boulevard would be elevated over Clear Creek and Newport Ditch (a tributary of Clear Creek) with a bridge approximately 2,800 feet long. The proposed NASA 1 would be elevated over a drainage channel with a 100-foot-long bridge. Northbound and westbound right-turn lanes would be added at Landing Boulevard and FM 518. Southbound Landing Boulevard would be expanded to include two through lanes, a left-turn lane and a right-turn lane at FM 518. Left-turn bays would be provided for a median cut on Landing approximately 700 feet north of FM 518 to provide access to adjacent commercial properties. The NASA 1 Bypass at the I-45 frontage road intersection would include one through lane, one left-turn lane and one through lane with optional left in each direction, and an eastbound right-turn lane. An eastbound right-turn lane would be added to the southbound I-45 frontage road.

The No Build Alternative would leave existing Landing Boulevard north of FM 518 as a cul-de-sac and provide no new facilities.

The topography in the proposed project area is flat, lying within the Gulf coastal plain. Land use in the vicinity of the proposed project is urban. The proposed project lies within the city limits of League City (south of Clear Creek) and Webster (north of Clear Creek). Dominant land uses adjacent to the project area include commercial uses (zoned for general commercial use) near the existing Landing Boulevard and single-family residences to the east and west within League City. A utility corridor and undeveloped land lie north along the proposed project with public parks to the east (Myrtle Park) and west (Challenger 7 Memorial Park) and a privately-owned cemetery (Forest Park Cemetery) to the east. Undeveloped land within the League City proposed project area is currently zoned for public use or open space and in Webster is zoned for planned unit development. The proposed project is consistent with local planning efforts.

2.0 Sound/Noise Fundamentals

This analysis was accomplished in accordance with TxDOT’s (Federal Highway Administration [FHWA] approved) Guidelines for Analysis and Abatement of Roadway Traffic Noise (2011).

Sound from highway traffic is generated primarily from a vehicle’s tires, engine and exhaust. It is commonly measured in decibels and is expressed as “dB.”

Sound occurs over a wide range of frequencies. However, not all frequencies are detectable by the human ear; therefore, an adjustment is made to the high and low frequencies to approximate the way an average person hears traffic sounds. This adjustment is called A-weighting and is expressed as “dB(A)”.

1
Also, because traffic sound levels are never constant due to the changing number, type and speed of vehicles, a single value is used to represent the average or equivalent sound level and is expressed as “Leq”.

The traffic noise analysis typically includes the following elements:

- Identification of land use activity areas that might be impacted by traffic noise.
- Determination of existing noise levels.
- Prediction of future noise levels.
- Identification of possible noise impacts.
- Consideration and evaluation of measures to reduce noise impacts.

FHWA has established the following (Table 1) Noise Abatement Criteria (NAC) for various land use activity areas that are used as one of two means to determine when a traffic noise impact would occur.

Table 1. FHWA Noise Abatement Criteria

<table>
<thead>
<tr>
<th>Activity Category</th>
<th>dB(A) Leq</th>
<th>Description of Land Use Activity Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>57 (exterior)</td>
<td>Lands on which serenity and quiet are of extra-ordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose</td>
</tr>
<tr>
<td>B</td>
<td>67 (exterior)</td>
<td>Residential</td>
</tr>
<tr>
<td>C</td>
<td>67 (exterior)</td>
<td>Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings</td>
</tr>
<tr>
<td>D</td>
<td>52 (interior)</td>
<td>Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios</td>
</tr>
<tr>
<td>E</td>
<td>72 (exterior)</td>
<td>Hotels, motels, offices, restaurants/bars, and other developed lands, properties, or activities not included in A-D or F</td>
</tr>
<tr>
<td>F</td>
<td>--</td>
<td>Agricultural, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing</td>
</tr>
<tr>
<td>G</td>
<td>--</td>
<td>Undeveloped lands that are not permitted</td>
</tr>
</tbody>
</table>

Source: TxDOT, 2011
A noise impact occurs when either the absolute or relative criterion is met:

Absolute criterion - the predicted noise level at a receiver approaches, equals or exceeds the NAC. "Approach" is defined as one dB(A) below the NAC. For example: a noise impact would occur at a Category B residence if the noise level is predicted to be 66 dB(A) or above.

Relative criterion - the predicted noise level substantially exceeds the existing noise level at a receiver even though the predicted noise level does not approach, equal or exceed the NAC. “Substantially exceeds” is defined as more than 10 dB(A). For example: a noise impact would occur at a Category B residence if the existing level is 54 dB(A) and the predicted level is 65 dB(A).

When a traffic noise impact occurs, noise abatement measures must be considered. A noise abatement measure is any positive action taken to reduce the impact of traffic noise on an activity area.

The FHWA TNM® Version 2.5 software was used to calculate existing and predicted traffic noise levels. The model primarily considers the number, type and speed of vehicles; highway alignment and grade; cuts, fills and natural berms; surrounding terrain features; and the locations of activity areas likely to be impacted by the associated traffic noise.

3.0 Traffic Modeling Results

Existing and predicted traffic noise levels were modeled at receiver locations that represent the land use activity areas adjacent to the proposed project that might be impacted by traffic noise and potentially benefit from feasible and reasonable noise abatement, if needed.

There were 12 representative receivers included in the TNM® model for potential noise impacts representing one cemetery, two parks, one private park, and approximately 26 residences (*Exhibit 3*).
Table 2. Modeled Traffic Noise Levels

<table>
<thead>
<tr>
<th>Site ID</th>
<th>No. Receiver(s) Represented</th>
<th>NAC Category</th>
<th>NAC Level</th>
<th>Existing (2018) dB(A) Leq</th>
<th>Build Alternative (2040) dB(A)</th>
<th>Change (+/-)</th>
<th>Noise Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1 (Residence)</td>
<td>5</td>
<td>B</td>
<td>67</td>
<td>50*</td>
<td>53**</td>
<td>+3</td>
<td>No</td>
</tr>
<tr>
<td>R-2 (Residence)</td>
<td>7</td>
<td>B</td>
<td>67</td>
<td>50*</td>
<td>52</td>
<td>+2</td>
<td>No</td>
</tr>
<tr>
<td>R-3 (Residence)</td>
<td>3</td>
<td>B</td>
<td>67</td>
<td>53</td>
<td>60</td>
<td>+7</td>
<td>No</td>
</tr>
<tr>
<td>R-4 (Private Park)</td>
<td>1</td>
<td>C</td>
<td>67</td>
<td>53</td>
<td>59</td>
<td>+6</td>
<td>No</td>
</tr>
<tr>
<td>R-5 (Residence)</td>
<td>3</td>
<td>B</td>
<td>67</td>
<td>49</td>
<td>53</td>
<td>+4</td>
<td>No</td>
</tr>
<tr>
<td>R-6 (Residence)</td>
<td>4</td>
<td>B</td>
<td>67</td>
<td>49</td>
<td>57</td>
<td>+8</td>
<td>No</td>
</tr>
<tr>
<td>R-7 (Residence)</td>
<td>2</td>
<td>B</td>
<td>67</td>
<td>49</td>
<td>56</td>
<td>+7</td>
<td>No</td>
</tr>
<tr>
<td>R-8 (Residence)</td>
<td>2</td>
<td>B</td>
<td>67</td>
<td>49</td>
<td>52</td>
<td>+3</td>
<td>No</td>
</tr>
<tr>
<td>R-9 (Park)</td>
<td>1</td>
<td>B</td>
<td>67</td>
<td>56</td>
<td>57***</td>
<td>+1</td>
<td>No</td>
</tr>
<tr>
<td>R-10 (Cemetery)</td>
<td>1</td>
<td>C</td>
<td>67</td>
<td>59</td>
<td>60***</td>
<td>+1</td>
<td>No</td>
</tr>
<tr>
<td>R-11 (Cemetery)</td>
<td>1</td>
<td>C</td>
<td>67</td>
<td>59</td>
<td>62****</td>
<td>+3</td>
<td>No</td>
</tr>
<tr>
<td>R-12 (Park)</td>
<td>1</td>
<td>C</td>
<td>67</td>
<td>53</td>
<td>59</td>
<td>+6</td>
<td>No</td>
</tr>
</tbody>
</table>

*Estimated noise levels based on distance from receiver.

**The logarithmic function of decibel addition was used to determine the Build Alternative noise level because this receiver had the same existing noise levels as the TNM results for the Build Alternative.

**The logarithmic function of decibel addition was used to determine the Build Alternative noise level because the measured existing noise levels were higher than the TNM results for the Build Alternative.

****The logarithmic function of decibel addition was used to determine the Build Alternative noise level because this receiver shared the similar environment and proximity to I-45 as R-10.

A. Existing Noise Levels

The measured ambient noise levels for the existing conditions along the proposed location of the roadway in the proposed project area range from 49 to 59 dB(A) Leq as shown in Table 2, and the receiver locations are shown in Exhibit 3. Since there is not an existing roadway along the proposed alignment, current ambient noise from traffic sources include high-speed traffic on I-45 east of the proposed project area, roadway traffic on FM 518 and FM 528 on the southern and northern end of the proposed project area, respectively, and local traffic on residential streets in adjacent neighborhoods on the southern end of the proposed project. Besides the ambient noise from traffic, additional noise sources at the time of the ambient readings included birds throughout the area, children playing at park facilities within Challenger 7 Memorial Park, and construction/landscaping occurring at Forest Park Cemetery. Based on the current noise sources, the measured noise levels at the receivers were dependent upon the proximity of the receivers to existing roadways in the area, the amount of physical shielding provided by buildings, vegetation, topography, and the presence of non-traffic-related noise. Table 2 shows that none of the receivers evaluated exceeded FHWA/TxDOT NAC limits (NAC Level). Of note, the ambient noise levels for two of the
receiver locations (R-1 and R-2) were estimated at 50 dB(A) Leq based on the distance to the residential receivers from the accessible utility corridor at those locations.

B. Predicted Future Noise Levels

The Build Alternative (Year 2040) modeled noise levels were predicted to range from 52 to 62 dB(A) Leq, as shown in **Table 2**, which are between +1 to +8 dB(A) Leq higher than existing conditions. The increase is attributed to the addition of the proposed new roadway to the area. The Build Alternative is not predicted to approach or exceed the NAC at any receivers.

The predicted noise levels are based only on future traffic modeled for the proposed roadway. Other roadways or noise sources, such as I-45, were not modeled. However, to compare existing and future conditions, the logarithmic function of decibel addition was used to incorporate non-modeled noise sources when the predicted future noise levels were lower or the same as the existing condition ambient measurements. Logarithmic function of decibel addition is the addition of decibels based on the difference in sound levels between two sources. Basically, since decibels are on a logarithmic scale (based on the powers of 10), sound levels cannot be added by ordinary arithmetic means (TxDOT 2011). Therefore, to get a more precise predicted sound level for the receiver locations, the predicted noise levels are logarithmically added to the ambient noise measurements, resulting in the Build Alternative noise levels represented in **Table 2**. The logarithmic addition used for the proposed project was based on the representative examples presented in TxDOT guidance (2011) as shown in **Table 3**.

<table>
<thead>
<tr>
<th>Difference Between Two Sources</th>
<th>For Example</th>
<th>Add to the Higher Level</th>
<th>Resultant Sound Level**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 dB</td>
<td>60 and 60 dB</td>
<td>3 dB</td>
<td>63 dB</td>
</tr>
<tr>
<td>1 dB</td>
<td>60 and 61 dB</td>
<td>2 dB</td>
<td>64 dB</td>
</tr>
<tr>
<td>2 dB</td>
<td>60 and 62 dB</td>
<td>1 dB</td>
<td>66 dB</td>
</tr>
<tr>
<td>3 dB</td>
<td>60 and 63 dB</td>
<td>0 dB</td>
<td>70 dB</td>
</tr>
<tr>
<td>4-9 dB</td>
<td>60 and 65 dB</td>
<td>1 dB</td>
<td>66 dB</td>
</tr>
<tr>
<td>10 dB or more</td>
<td>60 and 70 dB</td>
<td>0 dB</td>
<td>70 dB</td>
</tr>
</tbody>
</table>

* This table only represents approximations of the logarithmic function of decibel addition.

** Accurate within 1 dB

Source: TxDOT, 2011

Specifically, the modeled noise levels at two of the receiver locations (R-9 and R-10) were lower (52 and 53 dB(A) Leq, respectively) than the measured ambient noise levels for the existing conditions (56 and 59 dB(A) Leq, respectively). The R-9 location deviation was attributed to the receiver and measurement being placed
near a playground at the Challenger 7 Memorial Park, which was in use at the time of the measurement, and other ambient noise sources such as distant traffic and birds. The R-10 location deviation was attributed to traffic noise from the existing I-45 (an 8-lane facility with frontage roads) that is located approximately 1,500 feet east/northeast from the receiver at its closest point, and construction/landscaping occurring on the cemetery grounds. The flat topography and lack of shielding at this location likely contributed to the measured ambient noise level as well. Because of these deviations with the modeled noise levels for the Build conditions, the logarithmic function of decibel addition was used to determine the Build Alternative modeled noise levels for R-9 and R-10 reflected in Table 2 (TxDOT 2011).

Additional differences with existing and future conditions included the readings at the R-1 and R-11 locations. The R-1 location had the same reading for the existing conditions as it did for the Build Alternative (50 dB(A) Leq). The existing reading is likely attributed to the receiver’s proximity to FM 518 located approximately 350 feet to the south. Additionally, the R-11 location has similar conditions to R-10 including the receiver’s proximity to I-45 and has existing level readings (59 dB(A) Leq) similar to the modeled level readings (59 dB(A) Leq). Because of these similar ambient readings with the modeled noise levels for the Build Alternative, the logarithmic function of decibel addition was used to determine the Build Alternative modeled noise levels for R-1 and R-10 and is reflected in Table 2 (TxDOT 2011).

4.0 Mitigation

As indicated in Table 2, the proposed project would not result in an absolute or relative traffic noise impact. However, to avoid noise impacts that may result from future development of properties adjacent to the project, local officials responsible for land use control programs must ensure, to the maximum extent possible, no new activities are planned or constructed along or within the predicted (2040) noise impact contours presented in Table 4.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Impact Contour</th>
<th>Distance from Right of Way</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAC Category B & C</td>
<td>66 dB(A)</td>
<td>75 feet</td>
</tr>
<tr>
<td>NAC Category E</td>
<td>71 dB(A)</td>
<td>25 feet</td>
</tr>
</tbody>
</table>

Noise associated with the construction of the project is difficult to predict. Heavy machinery, the major source of noise in construction, is constantly moving in unpredictable patterns. However, construction normally occurs during daylight hours when occasional loud noises are more tolerable. None of the receivers are expected to be exposed to construction noise for a long duration; therefore, any extended disruption of normal activities is not expected. Provisions will be included in the plans and specifications that require the contractor to make every reasonable effort to minimize construction noise through abatement measures such as work-hour controls and proper maintenance of muffler systems.

A copy of this traffic noise analysis will be available to local officials. On the date of approval of this document (Date of Public Knowledge), FHWA and TxDOT are no longer responsible for providing noise abatement for new development adjacent to the project.
5.0 References

APPENDIX A

Exhibits
Exhibit 1. Project Location Map
Exhibit 2. Aerial Map with Project Limits
Exhibit 3. Noise Modeling Locations (South End)
Exhibit 3. Noise Modeling Locations (North End)
APPENDIX B

Traffic Data
<table>
<thead>
<tr>
<th>Section</th>
<th>2040 ADT</th>
<th>K-Factor</th>
<th>Peak Hour Future</th>
<th>Vehicles</th>
<th>Vehicle %</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landing Blvd</td>
<td>34000</td>
<td>0.093</td>
<td>3162</td>
<td>C</td>
<td>0.966</td>
<td>3054</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MT</td>
<td>0.031</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HT</td>
<td>0.003</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>2040</th>
<th>2040 Per/Direction</th>
<th>2040 Per/Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landing Blvd</td>
<td>3054</td>
<td>1527</td>
<td>764</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>49</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
APPENDIX C

Field Data Sheets
FIELD MEASUREMENT DATA SHEET

Project Name: Landing Blvd
Site Identification: #1
Observer(s): Hung Long
Start Date & Time: 02/02/16 12:35pm
End Date & Time: 02/02/16 12:50pm
Address: 380 Amber Ln

Temp: 68 °F
Humidity: 24% R.H.
Wind: Calm Light Moderate Variable
Windspeed: 8 MPH
Skies: Clear Sunny Dark Partly Cloudy Overcast Fog Drizzle Rain Other:

Instrument: BK2238
Type: 1 2
Serial #: 2160297
Calibrator: CAL200
Serial #: 3415
Calibration Check: Pre-Test 93.9 dBA SPL
Post-Test:* **dBA SPL**
Windscreen:

Settings: A-Weighted Slow Fast Frontal Random ANSI Other:

<table>
<thead>
<tr>
<th>Rec #</th>
<th>Start Time / End Time</th>
<th>Leq</th>
<th>Lmax</th>
<th>Lmin</th>
<th>L90</th>
<th>L10</th>
<th>L50</th>
<th>L1</th>
<th>L0</th>
<th>L95</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12:35 / 12:50</td>
<td>53</td>
<td>85</td>
<td>44</td>
<td>46</td>
<td>49</td>
<td>61.5</td>
<td>46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

Primary Noise(s): Traffic Aircraft Rail Industrial Ambient Other

Roadway Type:

Count Duration: Minute Speed (mph) #2 Count: Speed (mph)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Med. Trucks:</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Hyv Trucks:</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Buses:</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Motorcycles:</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Comments:

Terrain: Hard Soft Mixed Flat Other:

Photos:

Other Comments/Sketch:

505 S. Main Street, Suite 900, Orange, CA 92868, 714-835-6886
FIELD MEASUREMENT DATA SHEET

SITE IDENTIFICATION: #2
START DATE & TIME: 1/17 - 11:00
ADDRESS: 2317 Acacia Ct.

TEMP: 50 °F HUMIDITY: 59% R.H. WIND: CALM LIGHT MODERATE VARIABLE
WINDSPEED: 18 MPH DIR: (N) NE E SE S SW W NW STEADY GUSTY _ MPH
SKY: CLEAR SUNNY DARK PARTLY CLOUDY OVRST FOG DRIZZLE RAIN Other:

INSTRUMENT: BK2238 TYPE: 1 2 SERIAL #: 2160297
CALIBRATOR: CAL.200 SERIAL #: 3415
CALIBRATION CHECK: PRE-TEST 93.9 dBA SPL POST-TEST _____ dBA SPL WINDSCREEN __

SETTINGS: A-WEIGHTED SLOW FAST FRONTAL RANDOM ANSI OTHER:

<table>
<thead>
<tr>
<th>Rec #</th>
<th>Start Time</th>
<th>End Time</th>
<th>L eq</th>
<th>L peak</th>
<th>L min</th>
<th>L 90</th>
<th>L 95</th>
<th>L 10</th>
<th>L 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11:00</td>
<td>11:15</td>
<td>56.2</td>
<td>48.4</td>
<td>15.1</td>
<td>47.0</td>
<td>48.5</td>
<td>50.0</td>
<td>47.0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

COMMENTS:

PRIMARY NOISE(S): TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER
ROADWAY TYPE:

COUNT DURATION: -MINUTE SPEED (mph) #2 COUNT: SPEED (mph)
AUTOS: NB / EB / SB / WB NB EB / SB / WB NB / EB / SB / WB
MED. TRUCKS: ______ / ______ / ______ / ______ ______ / ______ / ______ / ______
HYVY TRUCKS: ______ / ______ / ______ / ______ ______ / ______ / ______ / ______
BUSES: ______ / ______ / ______ / ______ ______ / ______ / ______ / ______
MOTORCYCLES: SPEED ESTIMATED BY: RADAR / DRIVING / OBSERVER
OTHER NOISE SOURCES: distant AIRCRAFT overhead / RUSTLING LEAVES / distant BARKING DOGS BIRDS
distant CHILDREN PLAYING / distan TRAFFIC / distant LANDSCAPING / distant TRAINS
OTHER: Wind Chimes

TERRAIN: HARD SOFT MIXED FLAT OTHER:
PHOTOS:
OTHER COMMENTS / SKETCH:

505 S. Main Street, Suite 900, Orange, CA 92868, 714-835-6886
FIELD MEASUREMENT DATA SHEET

Project Name: Larchin Blvd
Job #

SITE IDENTIFICATION: 3
OBSERVER(s):
START DATE & TIME: 1:10 PM (02/07/16)
END DATE & TIME: 1:25 PM (02/07/16)

ADDRESS: Challenger memorial park

TEMP: 72 °F
HUMIDITY: 20 % R.H.
WIND: CALM LIGHT MODERATE VARIABLE
WINDSPEED: MPH
DIR: N NE E SE S SW W NW STEADY GUSTY MPH
SKY: CLEAR SUNNY DARK PARTLY CLOUDY OVRCAST FOG DRIZZLE RAIN Other:

INSTRUMENT: BK2238
TYPE: 1 2
SERIAL #: 2160297
CALIBRATOR: CAL200
SERIAL #: 3415
CALIBRATION CHECK: PRE-TEST dBA SPL POST-TEST dBA SPL WINDSCREEN

SETTINGS: A-WEIGHTED SLOW FAST FRONTAL RANDOM ANSI OTHER:

<table>
<thead>
<tr>
<th>Rec #</th>
<th>Start Time / End Time</th>
<th>L eq</th>
<th>L max</th>
<th>L min</th>
<th>L90</th>
<th>L50</th>
<th>L10</th>
<th>L5</th>
<th>L0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:10 PM / 1:25 PM</td>
<td>55.5</td>
<td>76.5</td>
<td>67.8</td>
<td>70</td>
<td>69</td>
<td>67</td>
<td>65</td>
<td>60</td>
</tr>
</tbody>
</table>

COMMENTS:

PRIMARY NOISE(S): TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER

ROADWAY TYPE:

COUNT DURATION:

<table>
<thead>
<tr>
<th>AUTOS:</th>
<th>SPEED (mph)</th>
<th>#2 COUNT:</th>
<th>SPEED (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB / EB / SB / WB</td>
<td>NB / EB / SB WB</td>
<td>NB / EB / SB WB</td>
<td></td>
</tr>
<tr>
<td>NB / EB / SB WB</td>
<td>NB / EB / SB WB</td>
<td>NB / EB / SB WB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MED. TRUCKS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV TRUCKS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUSES:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTORCYCLES:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPEED ESTIMATED BY: RADAR / DRIVING / OBSERVER

OTHER NOISE SOURCES:
- distant AIRCRAFT overhead / RUSTLING LEAVES / distant BARKING DOGS / BIRDS
- distant CHILDREN PLAYING / distant TRAFFIC / distant LANDSCAPING / distant TRAINS

OTHER:

TERRAIN: HARD SOFT MIXED FLAT OTHER

PHOTOS:

OTHER COMMENTS / SKETCH:

![Sketch](505 S. Main Street, Suite 900, Orange, CA 92868, 714-835-6886)
FIELD MEASUREMENT DATA SHEET

Project Name: Landing Blvd
Job # __________

SITE IDENTIFICATION: #4
OBSERVER(s): Amy Luong + Laura Lopez
START DATE & TIME: 12/27 - 12:13 pm
END DATE & TIME: 12/27 - 12:28 pm
ADDRESS: Forest Park East Cemetery, I-45 Frontage Road

TEMP: 52 °F HUMIDITY: 52 % R.H. WIND: CALM LIGHT MODERATE VARIABLE
WINDSPEED: 14 MPH DIR: NE E SE S SW W NW STEADY GUSTY _______ MPH
SKY: CLEAR SUNNY DARK PARTLY CLOUDY OVERCAST FOG DRIZZLE RAIN Other:_______

INSTRUMENT: BK2238 TYPE: 1 2 SERIAL #: 2160297
CALIBRATOR: CAL200 SERIAL #: 3415
CALIBRATION CHECK: PRE-TEST 93.2 dBA SPL POST-TEST _______ dBA SPL WINDSCREEN ___
SETTINGS: A-WEIGHTED SLOW FAST FRONTAL RANDOM ANSI OTHER: __________

<table>
<thead>
<tr>
<th>Rec #</th>
<th>Start Time / End Time</th>
<th>Leq</th>
<th>Lmax</th>
<th>Lmin</th>
<th>Lmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12:13 - 12:28</td>
<td>59.1</td>
<td>69.4</td>
<td>46.3</td>
<td>59.1</td>
<td>55.5</td>
<td>61.5</td>
<td>59</td>
<td>53.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: __________

PRIMARY NOISE(S): TRAFFIC AIRCRAFT RAIL INDUSTRIAL AMBIENT OTHER ________
ROADWAY TYPE: __________

COUNT DURATION: ______ MINUTE SPEED (mph) #2 COUNT: ___ SPEED (mph)
AUTOS: NB / EB / SB / WB NB / EB / SB / WB NB / EB / SB / WB
MED. TRUCKS: ___ ___ ___ ___
HVY TRUCKS: ___ ___ ___ ___
BUSES: ___ ___ ___ ___
MOTORCYCLES: ___ ___ ___
SPEED ESTIMATED BY: RADAR / DRIVING / OBSERVER

OTHER NOISE SOURCES: distant AIRCRAFT overhead / RUSTLING LEAVES / distant BARKING DOGS / BIRDS

OTHER: Grave construction (motor noise) going on at time of test.

TERRAIN: HARD SOFT MIXED FLAT OTHER: __________
PHOTOS: __________
OTHER COMMENTS / SKETCH: __________

compass:

505 S. Main Street, Suite 900, Orange, CA 92868, 714-835-6886