ADDENDUM ACKNOWLEDGMENT

Each bidder is required to acknowledge receipt of an addendum issued for a specific project. This page is provided for the purpose of acknowledging an addendum.

FAILURE TO ACKNOWLEDGE RECEIPT OF AN ADDENDUM WILL RESULT IN THE BID NOT BEING READ.

In order to properly acknowledge an addendum place a mark in the box next to the respective addendum.

ADDENDUM NO. 1 ☐
ADDENDUM NO. 2 ☐
ADDENDUM NO. 3 ☐
ADDENDUM NO. 4 ☐
ADDENDUM NO. 5 ☐

In addition, the bidder by affixing their signature to the signature page of the proposal is acknowledging that they have taken the addendum(s) into consideration when preparing their bid and that the information contained in the addendum will be included in the contract, if awarded by the Commission or other designees.
This page intentionally left blank.
PROPOSAL TO THE TEXAS TRANSPORTATION COMMISSION

2014 SPECIFICATIONS

WORK CONSISTING OF WIDEN NON-FREEWAY FROM TWO TO FOUR LANES
BRAZORIA COUNTY, TEXAS

The quantities in the proposal are approximate. The quantities of work and materials may be increased or decreased as considered necessary to complete the work as planned and contemplated.

This project is to be completed in 180 working days and will be accepted when fully completed and finished to the satisfaction of the Executive Director or designee.

Provide a proposal guaranty in the form of a Cashier’s Check, Teller’s Check (including an Official Check) or Bank Money Order on a State or National Bank or Savings and Loan Association, or State or Federally chartered Credit Union made payable to the Texas Transportation Commission in the following amount:

ONE HUNDRED THOUSAND (Dollars) ($100,000)

A bid bond may be used as the required proposal guaranty. The bond form may be detached from the proposal for completion. The proposal may not be disassembled to remove the bond form. The bond must be in accordance with Item 2 of the specifications.

Any addenda issued amending this proposal and/or the plans that have been acknowledged by the bidder, become part of this proposal.

By signing the proposal the bidder certifies:

1. the only persons or parties interested in this proposal are those named and the bidder has not directly or indirectly participated in collusion, entered into an agreement or otherwise taken any action in restraint of free competitive bidding in connection with the above captioned project.

2. in the event of the award of a contract, the organization represented will secure bonds for the full amount of the contract.

3. the signatory represents and warrants that they are an authorized signatory for the organization for which the bid is submitted and they have full and complete authority to submit this bid on behalf of their firm.

4. that the certifications and representations contained in the proposal are true and accurate and the bidder intends the proposal to be taken as a genuine government record.

• Signed: **

 (1) ______________________ (2) ______________________ (3) ______________________

Print Name:

 (1) ______________________ (2) ______________________ (3) ______________________

Title:

 (1) ______________________ (2) ______________________ (3) ______________________

Company:

 (1) ______________________ (2) ______________________ (3) ______________________

• Signatures to comply with Item 2 of the specifications.

**Note: Complete (1) for single venture, through (2) for joint venture and through (3) for triple venture.

* When the working days field contains an asterisk (*) refer to the Special Provisions and General Notes.
NOTICE TO CONTRACTORS

ANY CONTRACTORS INTENDING TO BID ON ANY WORK TO BE AWARDED BY THIS DEPARTMENT MUST SUBMIT A SATISFACTORY “AUDITED FINANCIAL STATEMENT” AND “EXPERIENCE QUESTIONNAIRE” AT LEAST TEN DAYS PRIOR TO THE LETTING DATE.

UNIT PRICES MUST BE SUBMITTED IN ACCORDANCE WITH ITEM 2 OF THE STANDARD SPECIFICATIONS OR SPECIAL PROVISION TO ITEM 2 FOR EACH ITEM LISTED IN THIS PROPOSAL.
TEXAS DEPARTMENT OF TRANSPORTATION

BID BOND

KNOW ALL PERSONS BY THESE PRESENTS,

That we, (Contractor Name) ___
__
Hereinafter called the Principal, and (Surety Name) ___
__
a corporation or firm duly authorized to transact surety business in the State of Texas, hereinafter called the
Surety, are held and firmly bound unto the Texas Department of Transportation, hereinafter called the Obligee, in
the sum of not less than two percent (2%) of the department’s engineer’s estimate, rounded to the nearest one
thousand dollars, not to exceed one hundred thousand dollars ($100,000) as a proposal guaranty (amount
displayed on the cover of the proposal), the payment of which sum will and truly be made, the said Principal and
the said Surety, bind ourselves, our heirs, executors, administrators, successors and assigns, jointly and severally,
firmly by these presents.

WHEREAS, the principal has submitted a bid for the following project identified as:

Control: 0188-03-019
Project: STP 2020(057)MM
Highway: SH 36
County: BRAZORIA

NOW, THEREFORE, if the Obligee shall award the Contract to the Principal and the Principal shall enter into
the Contract in writing with the Obligee in accordance with the terms of such bid, then this bond shall be null and
void. If in the event of failure of the Principal to execute such Contract in accordance with the terms of such bid,
this bond shall become the property of the Obligee, without recourse of the Principal and/or Surety, not as a
penalty but as liquidated damages.

Signed this __________________________________ Day of ___________________ 20_________
By: __
 (Contractor/Principal Name)
__
 (Signature and Title of Authorized Signatory for Contractor/Principal)
*By: __
 (Surety Name)
__
 (Signature of Attorney-in-Fact)
*Attach Power of attorney (Surety) for Attorney-in-Fact

Impressed
Surety Seal
Only

This form may be removed from the proposal.
This page intentionally left blank.
BIDDER’S CHECK RETURN

IMPORTANT

The space provided for the return address must be completed to facilitate the return of your bidder’s check. Care must be taken to provide a legible, accurate, and complete return address, including zip code. A copy of this sheet should be used for each different return address.

NOTE

Successful bidders will receive their guaranty checks with the executed contract.

RETURN BIDDERS CHECK TO (PLEASE PRINT):

Control 0188-03-019
Project STP 2020(057)MM
Highway SH 36
County BRAZORIA

IMPORTANT

PLEASE RETURN THIS SHEET IN ITS ENTIRETY

Please acknowledge receipt of this check(s) at your earliest convenience by signing below in longhand, in ink, and returning this acknowledgement in the enclosed self addressed envelope.

Check Received By: ___________________________ Date: ___________________________

Title: __

For (Contractor's Name): __

Project ___________________________ County ___________________________
This page intentionally left blank.
NOTICE TO THE BIDDER

In the space provided below, please enter your total bid amount for this project. Only this figure will be read publicly by the Department at the public bid opening.

It is understood and agreed by the bidder in signing this proposal that the total bid amount entered below is not binding on either the bidder or the Department. It is further agreed that the official total bid amount for this proposal will be determined by multiplying the unit bid prices for each pay item by the respective estimated quantities shown in this proposal and then totaling all of the extended amounts.

$_______________________________________

Total Bid Amount
<table>
<thead>
<tr>
<th>ALT</th>
<th>ITEM</th>
<th>DESC</th>
<th>SP</th>
<th>Bid Item Description</th>
<th>Unit</th>
<th>Quantity</th>
<th>Bid Price</th>
<th>Amount</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>509</td>
<td>REMOV CONC (SDWLK)</td>
<td>SY</td>
<td>266.400</td>
<td></td>
<td>$10.000</td>
<td>$2,664.00</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Total Bid Amount _______$2,664.00________

Signed __
Title __
Date __

Additional Signature for Joint Venture:
Signed __
Title __
Date __

EXAMPLE OF BID PRICES SUBMITTED BY COMPUTER PRINTOUT
EXAMPLES

BID PRICES SUBMITTED BY HAND WRITTEN FORMAT

<table>
<thead>
<tr>
<th>ALT</th>
<th>ITEM-CODE</th>
<th>UNIT BID PRICE ONLY WRITTEN IN WORDS</th>
<th>UNIT</th>
<th>APPROX QUANTITIES</th>
<th>DEPT USE ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM NO</td>
<td>DESC NO</td>
<td>S.P. NO.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>026</td>
<td>RED OAK 1 1/2 - 1 3/4 GAL BB</td>
<td>EA</td>
<td>9.000</td>
<td>1</td>
</tr>
<tr>
<td>249</td>
<td>014</td>
<td>FLEX BASE(DEL)(DENSCOT)(TY A GR4 CL2)</td>
<td>TON</td>
<td>56,787.00</td>
<td>14</td>
</tr>
<tr>
<td>430</td>
<td>001</td>
<td>CL A CONC FOR EXT STR (CULV)</td>
<td>CY</td>
<td>45.000</td>
<td>27</td>
</tr>
<tr>
<td>610</td>
<td>007</td>
<td>RDWY ILL ASSEM(TY ST 50T-8-8)(.4 KW)S</td>
<td>EA</td>
<td>13.000</td>
<td>7</td>
</tr>
</tbody>
</table>

- **Unit price for each** plant in place
- **Unit price for each** ton of Flexible Base
- **Unit price for each** cubic yard of Concrete
- **Unit price of each** Roadway Illumination Assembly
This page intentionally left blank.
<table>
<thead>
<tr>
<th>ALT</th>
<th>ITEM-CODE</th>
<th>UNIT BID PRICE ONLY. WRITTEN IN WORDS</th>
<th>UNIT</th>
<th>APPROX QUANTITIES</th>
<th>DEPT USE ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>6002</td>
<td></td>
<td></td>
<td>PREPARING ROW</td>
<td>STA</td>
</tr>
<tr>
<td>104</td>
<td>6001</td>
<td></td>
<td></td>
<td>REMOVING CONC (PAV)</td>
<td>SY</td>
</tr>
<tr>
<td>104</td>
<td>6009</td>
<td></td>
<td></td>
<td>REMOVING CONC (RIPRAP)</td>
<td>SY</td>
</tr>
<tr>
<td>104</td>
<td>6017</td>
<td></td>
<td></td>
<td>REMOVING CONC (DRIVEWAYS)</td>
<td>SY</td>
</tr>
<tr>
<td>104</td>
<td>6023</td>
<td></td>
<td></td>
<td>REMOVING CONC (CTB)</td>
<td>LF</td>
</tr>
<tr>
<td>105</td>
<td>6037</td>
<td></td>
<td></td>
<td>REMOVING STAB BASE AND ASPH PAV(0"-16")</td>
<td>SY</td>
</tr>
<tr>
<td>105</td>
<td>6084</td>
<td></td>
<td></td>
<td>REM STAB BASE & ASPH (6"-12")</td>
<td>SY</td>
</tr>
<tr>
<td>105</td>
<td>6090</td>
<td></td>
<td></td>
<td>RMV STAB BS & ASPH PAV(11.5"-22")</td>
<td>SY</td>
</tr>
<tr>
<td>110</td>
<td>6001</td>
<td></td>
<td></td>
<td>EXCAVATION (ROADWAY)</td>
<td>CY</td>
</tr>
<tr>
<td>132</td>
<td>6006</td>
<td></td>
<td></td>
<td>EMBANKMENT (FINAL)(DENS CONT)(TY C)</td>
<td>CY</td>
</tr>
<tr>
<td>132</td>
<td>6035</td>
<td></td>
<td></td>
<td>EMBANK(FINAL)(DC)(TY E)(CSBE)</td>
<td>CY</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td>ITEM CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>161</td>
<td>6017</td>
<td></td>
<td></td>
<td>COMPOST MANUF TOPSOIL (4") and DOLLARS CENTS</td>
<td>SY</td>
</tr>
<tr>
<td>162</td>
<td>6002</td>
<td></td>
<td></td>
<td>BLOCK SODDING and DOLLARS CENTS</td>
<td>SY</td>
</tr>
<tr>
<td>162</td>
<td>6003</td>
<td></td>
<td></td>
<td>STRAW OR HAY MULCH and DOLLARS CENTS</td>
<td>SY</td>
</tr>
<tr>
<td>164</td>
<td>6053</td>
<td></td>
<td></td>
<td>DRILL SEEDING (TEMP)(WARM OR COOL) and DOLLARS CENTS</td>
<td>AC</td>
</tr>
<tr>
<td>164</td>
<td>6066</td>
<td></td>
<td></td>
<td>DRILL SEEDING (PERM)(WARM OR COOL) and DOLLARS CENTS</td>
<td>SY</td>
</tr>
<tr>
<td>166</td>
<td>6001</td>
<td></td>
<td></td>
<td>FERTILIZER and DOLLARS CENTS</td>
<td>AC</td>
</tr>
<tr>
<td>168</td>
<td>6001</td>
<td></td>
<td></td>
<td>VEGETATIVE WATERING and DOLLARS CENTS</td>
<td>MG</td>
</tr>
<tr>
<td>260</td>
<td>6006</td>
<td></td>
<td></td>
<td>LIME TRT (EXST MATL) (6") and DOLLARS CENTS</td>
<td>SY</td>
</tr>
<tr>
<td>260</td>
<td>6012</td>
<td></td>
<td></td>
<td>LIME(HYD,COM OR QK)(SLRY)OR QK(DRY) and DOLLARS CENTS</td>
<td>TON</td>
</tr>
<tr>
<td>276</td>
<td>6224</td>
<td></td>
<td></td>
<td>CEM TRT(PLNT MX) (CL N)(TY E)(GR 4)(6") and DOLLARS CENTS</td>
<td>SY</td>
</tr>
<tr>
<td>292</td>
<td>6002</td>
<td></td>
<td></td>
<td>ASPHALT STAB BASE (GR 2)(PG 64) and DOLLARS CENTS</td>
<td>TON</td>
</tr>
<tr>
<td>292</td>
<td>6017</td>
<td></td>
<td></td>
<td>ASPHALT STAB BASE (GR 4)(PG 64) and DOLLARS CENTS</td>
<td>TON</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>305</td>
<td>6014</td>
<td></td>
<td></td>
<td>SALV, HAUL & STKPL RCL APH PV (VAR DEPTH) and</td>
<td>SY</td>
</tr>
<tr>
<td>340</td>
<td>6048</td>
<td>003</td>
<td></td>
<td>D-GR HMA (SQ) TY-C SAC-B PG70-22 and</td>
<td>TON</td>
</tr>
<tr>
<td>340</td>
<td>6119</td>
<td>003</td>
<td></td>
<td>D-GR HMA (SQ) TY-D SAC-A PG70-22 and</td>
<td>TON</td>
</tr>
<tr>
<td>340</td>
<td>6272</td>
<td>003</td>
<td></td>
<td>TACK COAT and</td>
<td>GAL</td>
</tr>
<tr>
<td>360</td>
<td>6004</td>
<td></td>
<td></td>
<td>CONC PVMT (CONT REINF - CRCP) (10") and</td>
<td>SY</td>
</tr>
<tr>
<td>360</td>
<td>6043</td>
<td></td>
<td></td>
<td>CONC PVMT (CONT REINF) (FAST TRK) (13") and</td>
<td>SY</td>
</tr>
<tr>
<td>400</td>
<td>6005</td>
<td></td>
<td></td>
<td>CEM STABIL BKFL and</td>
<td>CY</td>
</tr>
<tr>
<td>400</td>
<td>6006</td>
<td></td>
<td></td>
<td>CUT & RESTORING PAV and</td>
<td>SY</td>
</tr>
<tr>
<td>401</td>
<td>6001</td>
<td></td>
<td></td>
<td>FLOWABLE BACKFILL and</td>
<td>CY</td>
</tr>
<tr>
<td>402</td>
<td>6001</td>
<td></td>
<td></td>
<td>TRENCH EXCAVATION PROTECTION and</td>
<td>LF</td>
</tr>
<tr>
<td>416</td>
<td>6001</td>
<td></td>
<td></td>
<td>DRILL SHAFT (18 IN) and</td>
<td>LF</td>
</tr>
<tr>
<td>416</td>
<td>6004</td>
<td></td>
<td></td>
<td>DRILL SHAFT (36 IN) and</td>
<td>LF</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>---------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>416</td>
<td>6005</td>
<td></td>
<td>DRILL SHAFT (42 IN)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>416</td>
<td>6007</td>
<td></td>
<td>DRILL SHAFT (54 IN)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>416</td>
<td>6015</td>
<td></td>
<td>DRILL SHAFT (NON - REINFORCED) (12 IN)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>416</td>
<td>6031</td>
<td></td>
<td>DRILL SHAFT (TRF SIG POLE) (30 IN)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>416</td>
<td>6034</td>
<td></td>
<td>DRILL SHAFT (TRF SIG POLE) (48 IN)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>6013</td>
<td></td>
<td>CL C CONC (ABUT)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>6029</td>
<td></td>
<td>CL C CONC (CAP)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>6037</td>
<td></td>
<td>CL C CONC (COLUMN)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>6074</td>
<td></td>
<td>CL C CONC (MISC)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>422</td>
<td>6001</td>
<td></td>
<td>REINF CONC SLAB</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>423</td>
<td>6004</td>
<td></td>
<td>RETAINING WALL (CONC BLOCK)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td></td>
<td>425</td>
<td>6035</td>
<td></td>
<td>PRESTR CONC GIRDER (TX28)</td>
<td>DOLLARS CENTS</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
<td>DEPT USE ONLY</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>432</td>
<td>6001</td>
<td>RIPRAP (CONC)(4 IN) DOLLARS CENT</td>
<td>CY</td>
<td>22.500</td>
<td>48</td>
</tr>
<tr>
<td>432</td>
<td>6002</td>
<td>RIPRAP (CONC)(5 IN) DOLLARS CENT</td>
<td>CY</td>
<td>266.800</td>
<td>49</td>
</tr>
<tr>
<td>432</td>
<td>6008</td>
<td>RIPRAP (CONC)(CL B)(RR8&RR9) DOLLARS CENT</td>
<td>CY</td>
<td>198.600</td>
<td>50</td>
</tr>
<tr>
<td>432</td>
<td>6033</td>
<td>RIPRAP (STONE PROTECTION)(18 IN) DOLLARS CENT</td>
<td>CY</td>
<td>934.700</td>
<td>51</td>
</tr>
<tr>
<td>432</td>
<td>6045</td>
<td>RIPRAP (MOW STRIP)(4 IN) DOLLARS CENT</td>
<td>CY</td>
<td>479.600</td>
<td>52</td>
</tr>
<tr>
<td>450</td>
<td>6023</td>
<td>RAIL (TY SSTR) DOLLARS CENT</td>
<td>LF</td>
<td>764.000</td>
<td>53</td>
</tr>
<tr>
<td>454</td>
<td>6018</td>
<td>SEALED EXPANSION JOINT (4 IN) (SEJ - M) DOLLARS CENT</td>
<td>LF</td>
<td>244.000</td>
<td>54</td>
</tr>
<tr>
<td>462</td>
<td>6002</td>
<td>CONC BOX CULV (3 FT X 3 FT) DOLLARS CENT</td>
<td>LF</td>
<td>1,374.000</td>
<td>55</td>
</tr>
<tr>
<td>462</td>
<td>6003</td>
<td>CONC BOX CULV (4 FT X 2 FT) DOLLARS CENT</td>
<td>LF</td>
<td>950.000</td>
<td>56</td>
</tr>
<tr>
<td>462</td>
<td>6004</td>
<td>CONC BOX CULV (4 FT X 3 FT) DOLLARS CENT</td>
<td>LF</td>
<td>102.000</td>
<td>57</td>
</tr>
<tr>
<td>462</td>
<td>6006</td>
<td>CONC BOX CULV (5 FT X 2 FT) DOLLARS CENT</td>
<td>LF</td>
<td>256.000</td>
<td>58</td>
</tr>
<tr>
<td>462</td>
<td>6007</td>
<td>CONC BOX CULV (5 FT X 3 FT) DOLLARS CENT</td>
<td>LF</td>
<td>682.000</td>
<td>59</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>ITEM CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>462</td>
<td>6010</td>
<td>CONC BOX CULV (6 FT X 3 FT) and DOLLARS CENTS</td>
<td>LF</td>
<td>728.000</td>
<td>60</td>
</tr>
<tr>
<td>462</td>
<td>6013</td>
<td>CONC BOX CULV (6 FT X 6 FT) and DOLLARS CENTS</td>
<td>LF</td>
<td>350.000</td>
<td>61</td>
</tr>
<tr>
<td>462</td>
<td>6019</td>
<td>CONC BOX CULV (8 FT X 4 FT) and DOLLARS CENTS</td>
<td>LF</td>
<td>434.000</td>
<td>62</td>
</tr>
<tr>
<td>464</td>
<td>6003</td>
<td>RC PIPE (CL III)(18 IN) and DOLLARS CENTS</td>
<td>LF</td>
<td>3,366.000</td>
<td>63</td>
</tr>
<tr>
<td>464</td>
<td>6005</td>
<td>RC PIPE (CL III)(24 IN) and DOLLARS CENTS</td>
<td>LF</td>
<td>8,546.000</td>
<td>64</td>
</tr>
<tr>
<td>464</td>
<td>6007</td>
<td>RC PIPE (CL III)(30 IN) and DOLLARS CENTS</td>
<td>LF</td>
<td>4,676.000</td>
<td>65</td>
</tr>
<tr>
<td>464</td>
<td>6008</td>
<td>RC PIPE (CL III)(36 IN) and DOLLARS CENTS</td>
<td>LF</td>
<td>852.000</td>
<td>66</td>
</tr>
<tr>
<td>465</td>
<td>6086</td>
<td>001 INLET (COMPL)(PSL)(SH)(3FTX3FT-3FTX-3FT) and DOLLARS CENTS</td>
<td>EA</td>
<td>41.000</td>
<td>67</td>
</tr>
<tr>
<td>465</td>
<td>6127</td>
<td>001 INLET (COMPL)(PSL)(FG)(4FTX4FT-3FTX-3FT) and DOLLARS CENTS</td>
<td>EA</td>
<td>1.000</td>
<td>68</td>
</tr>
<tr>
<td>465</td>
<td>6140</td>
<td>001 INLET (COMPL)(PSL)(FG)(6FTX6FT-3FTX-3FT) and DOLLARS CENTS</td>
<td>EA</td>
<td>1.000</td>
<td>69</td>
</tr>
<tr>
<td>465</td>
<td>6168</td>
<td>001 INLET (COMPL)(TY A) and DOLLARS CENTS</td>
<td>EA</td>
<td>1.000</td>
<td>70</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM-CODE</td>
<td>ITEM NO</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>---------------------------------------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>466</td>
<td>6152</td>
<td>466</td>
<td>WINGWALL (FW - 0) (HW=5 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>2.000</td>
</tr>
<tr>
<td>466</td>
<td>6153</td>
<td>466</td>
<td>WINGWALL (FW - 0) (HW=6 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>2.000</td>
</tr>
<tr>
<td>466</td>
<td>6166</td>
<td>466</td>
<td>WINGWALL (FW - S) (HW=5 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>1.000</td>
</tr>
<tr>
<td>466</td>
<td>6167</td>
<td>466</td>
<td>WINGWALL (FW - S) (HW=6 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>2.000</td>
</tr>
<tr>
<td>466</td>
<td>6171</td>
<td>466</td>
<td>WINGWALL (PW - 1) (HW=10 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>1.000</td>
</tr>
<tr>
<td>466</td>
<td>6179</td>
<td>466</td>
<td>WINGWALL (PW - 1) (HW=4 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>1.000</td>
</tr>
<tr>
<td>466</td>
<td>6180</td>
<td>466</td>
<td>WINGWALL (PW - 1) (HW=5 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>4.000</td>
</tr>
<tr>
<td>466</td>
<td>6181</td>
<td>466</td>
<td>WINGWALL (PW - 1) (HW=6 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>5.000</td>
</tr>
<tr>
<td>466</td>
<td>6182</td>
<td>466</td>
<td>WINGWALL (PW - 1) (HW=7 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>2.000</td>
</tr>
<tr>
<td>466</td>
<td>6184</td>
<td>466</td>
<td>WINGWALL (PW - 1) (HW=9 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>1.000</td>
</tr>
<tr>
<td>466</td>
<td>6208</td>
<td>466</td>
<td>WINGWALL (SW - 0) (HW=5 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>5.000</td>
</tr>
<tr>
<td>466</td>
<td>6209</td>
<td>466</td>
<td>WINGWALL (SW - 0) (HW=6 FT) DOLLARS CENTS</td>
<td>EA</td>
<td>5.000</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM-CODE</td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>466</td>
<td>6210</td>
<td></td>
<td></td>
<td></td>
<td>WINGWALL (SW - 0) (HW=7 FT) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6106</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S=3 FT)(HW=3FT)(4:1)(C) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6118</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S=3 FT)(HW= 5 FT)(4:1)(C) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6122</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S=3 FT)(HW= 6 FT)(4:1)(C) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6124</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S=3 FT)(HW= 7 FT)(3:1)(C) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6126</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S = 3 FT)(HW= 7 FT)(6:1) (P) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6134</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S= 4 FT)(HW= 2 FT)(6:1) (P) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6150</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S= 4 FT)(HW= 5 FT)(4:1) (C) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6155</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S= 4 FT)(HW= 6 FT)(4:1) (C) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6172</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S= 5 FT)(HW= 3 FT)(4:1) (C) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6174</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S= 5 FT)(HW= 3 FT)(6:1) (P) DOLLARS CENTS</td>
</tr>
<tr>
<td>467</td>
<td>6182</td>
<td></td>
<td></td>
<td></td>
<td>SET (TY I)(S= 5 FT)(HW= 5 FT)(4:1) (C) DOLLARS CENTS</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM-NO</td>
<td>ITEM CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>---------------------------------------</td>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>467</td>
<td>6356</td>
<td>SET (TY II) (18 IN) (RCP) (3: 1) (C) DOLLARS CENTS</td>
<td>EA</td>
<td>4.000</td>
<td>95</td>
</tr>
<tr>
<td>467</td>
<td>6358</td>
<td>SET (TY II) (18 IN) (RCP) (4: 1) (C) DOLLARS CENTS</td>
<td>EA</td>
<td>40.000</td>
<td>96</td>
</tr>
<tr>
<td>467</td>
<td>6363</td>
<td>SET (TY II) (18 IN) (RCP) (6: 1) (P) DOLLARS CENTS</td>
<td>EA</td>
<td>49.000</td>
<td>97</td>
</tr>
<tr>
<td>467</td>
<td>6390</td>
<td>SET (TY II) (24 IN) (RCP) (4: 1) (C) DOLLARS CENTS</td>
<td>EA</td>
<td>34.000</td>
<td>98</td>
</tr>
<tr>
<td>467</td>
<td>6395</td>
<td>SET (TY II) (24 IN) (RCP) (6: 1) (P) DOLLARS CENTS</td>
<td>EA</td>
<td>247.000</td>
<td>99</td>
</tr>
<tr>
<td>467</td>
<td>6419</td>
<td>SET (TY II) (30 IN) (RCP) (4: 1) (C) DOLLARS CENTS</td>
<td>EA</td>
<td>40.000</td>
<td>100</td>
</tr>
<tr>
<td>467</td>
<td>6423</td>
<td>SET (TY II) (30 IN) (RCP) (6: 1) (P) DOLLARS CENTS</td>
<td>EA</td>
<td>71.000</td>
<td>101</td>
</tr>
<tr>
<td>467</td>
<td>6450</td>
<td>SET (TY II) (36 IN) (RCP) (4: 1) (C) DOLLARS CENTS</td>
<td>EA</td>
<td>12.000</td>
<td>102</td>
</tr>
<tr>
<td>467</td>
<td>6454</td>
<td>SET (TY II) (36 IN) (RCP) (6: 1) (P) DOLLARS CENTS</td>
<td>EA</td>
<td>26.000</td>
<td>103</td>
</tr>
<tr>
<td>496</td>
<td>6002</td>
<td>REMOV STR (INLET) DOLLARS CENTS</td>
<td>EA</td>
<td>41.000</td>
<td>104</td>
</tr>
<tr>
<td>496</td>
<td>6004</td>
<td>REMOV STR (SET) DOLLARS CENTS</td>
<td>EA</td>
<td>54.000</td>
<td>105</td>
</tr>
<tr>
<td>496</td>
<td>6007</td>
<td>REMOV STR (PIPE) DOLLARS CENTS</td>
<td>LF</td>
<td>605.000</td>
<td>106</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM-CODE</td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>496</td>
<td>6008</td>
<td>004</td>
<td>REMOV STR (BOX CULVERT) and DOLLARS CENTS</td>
<td>LF</td>
<td>87.000</td>
</tr>
<tr>
<td>496</td>
<td>6010</td>
<td>004</td>
<td>REMOV STR (BRIDGE 100 - 499 FT LENGTH) and DOLLARS CENTS</td>
<td>EA</td>
<td>1.000</td>
</tr>
<tr>
<td>500</td>
<td>6001</td>
<td>007</td>
<td>MOBILIZATION and DOLLARS CENTS</td>
<td>LS</td>
<td>1.000</td>
</tr>
<tr>
<td>502</td>
<td>6001</td>
<td>004</td>
<td>BARRICADES, SIGNS AND TRAFFIC HANDLING and DOLLARS CENTS</td>
<td>MO</td>
<td>52.000</td>
</tr>
<tr>
<td>506</td>
<td>6002</td>
<td>004</td>
<td>ROCK FILTER DAMS (INSTALL) (TY 2) and DOLLARS CENTS</td>
<td>LF</td>
<td>2,043.000</td>
</tr>
<tr>
<td>506</td>
<td>6011</td>
<td>004</td>
<td>ROCK FILTER DAMS (REMOVE) and DOLLARS CENTS</td>
<td>LF</td>
<td>2,043.000</td>
</tr>
<tr>
<td>506</td>
<td>6020</td>
<td>004</td>
<td>CONSTRUCTION EXITS (INSTALL) (TY 1) and DOLLARS CENTS</td>
<td>SY</td>
<td>1,232.000</td>
</tr>
<tr>
<td>506</td>
<td>6024</td>
<td>004</td>
<td>CONSTRUCTION EXITS (REMOVE) and DOLLARS CENTS</td>
<td>SY</td>
<td>1,232.000</td>
</tr>
<tr>
<td>506</td>
<td>6038</td>
<td>004</td>
<td>TEMP SEDMT CONT FENCE (INSTALL) and DOLLARS CENTS</td>
<td>LF</td>
<td>13,902.000</td>
</tr>
<tr>
<td>506</td>
<td>6039</td>
<td>004</td>
<td>TEMP SEDMT CONT FENCE (REMOVE) and DOLLARS CENTS</td>
<td>LF</td>
<td>13,902.000</td>
</tr>
<tr>
<td>506</td>
<td>6040</td>
<td>004</td>
<td>BIODEG EROSN CONT LOGS (INSTL) (8") and DOLLARS CENTS</td>
<td>LF</td>
<td>574.000</td>
</tr>
<tr>
<td>506</td>
<td>6043</td>
<td>004</td>
<td>BIODEG EROSN CONT LOGS (REMOVE) and DOLLARS CENTS</td>
<td>LF</td>
<td>574.000</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>ITEM-CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>---------------------------------------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>508</td>
<td>6003</td>
<td>CONSTRUCTING DETOURS (TY 1) DOLLARS CENTS</td>
<td>SY</td>
<td>22,261.000</td>
</tr>
<tr>
<td></td>
<td>508</td>
<td>6004</td>
<td>CONSTRUCTING DETOURS (TY 2) DOLLARS CENTS</td>
<td>SY</td>
<td>11,292.000</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>6010</td>
<td>PORT CTB (FUR & INST)(LOW PROF)(TY 2) DOLLARS CENTS</td>
<td>LF</td>
<td>360.000</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>6013</td>
<td>PORT CTB (DES SOURCE)(SGL SLP)(TY 1) DOLLARS CENTS</td>
<td>LF</td>
<td>8,670.000</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>6021</td>
<td>PORT CTB (DES SOURCE)(LOW PROF)(TY 1) DOLLARS CENTS</td>
<td>LF</td>
<td>1,540.000</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>6025</td>
<td>PORT CTB (MOVE)(SGL SLP)(TY 1) DOLLARS CENTS</td>
<td>LF</td>
<td>14,220.000</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>6033</td>
<td>PORT CTB (MOVE)(LOW PROF)(TY 1) DOLLARS CENTS</td>
<td>LF</td>
<td>460.000</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>6034</td>
<td>PORT CTB (MOVE)(LOW PROF)(TY 2) DOLLARS CENTS</td>
<td>LF</td>
<td>120.000</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>6037</td>
<td>PORT CTB (STKPL)(SGL SLP)(TY 1) DOLLARS CENTS</td>
<td>LF</td>
<td>8,670.000</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>6045</td>
<td>PORT CTB (STKPL)(LOW PROF)(TY 1) DOLLARS CENTS</td>
<td>LF</td>
<td>1,540.000</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>6046</td>
<td>PORT CTB (STKPL)(LOW PROF)(TY 2) DOLLARS CENTS</td>
<td>LF</td>
<td>360.000</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>6080</td>
<td>PORT CTB CONNECT HARDWARE DOLLARS CENTS</td>
<td>EA</td>
<td>79.000</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>ITEM CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>---------------------------------------</td>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>530</td>
<td>6004</td>
<td>DRIVeways (CONC) DOLLARS and CENTS</td>
<td>SY</td>
<td>10,430.000</td>
<td>131</td>
</tr>
<tr>
<td>530</td>
<td>6005</td>
<td>DRIVeways (ACP) DOLLARS and CENTS</td>
<td>SY</td>
<td>2,324.000</td>
<td>132</td>
</tr>
<tr>
<td>533</td>
<td>6001</td>
<td>RUMBLE STRIPS (SHOULDER) DOLLARS and CENTS</td>
<td>LF</td>
<td>109,570.000</td>
<td>133</td>
</tr>
<tr>
<td>540</td>
<td>6001</td>
<td>MTL W-BEAM GD FEN (TIM POST) DOLLARS and CENTS</td>
<td>LF</td>
<td>6,562.500</td>
<td>134</td>
</tr>
<tr>
<td>540</td>
<td>6006</td>
<td>MTL BEAM GD FEN TRANS (THRIE-BEAM) DOLLARS and CENTS</td>
<td>EA</td>
<td>4.000</td>
<td>135</td>
</tr>
<tr>
<td>540</td>
<td>6016</td>
<td>DOWNSTREAM ANCHOR TERMINAL SECTION DOLLARS and CENTS</td>
<td>EA</td>
<td>28.000</td>
<td>136</td>
</tr>
<tr>
<td>540</td>
<td>6017</td>
<td>MTL BM GD FEN (LONG SPAN SYSTEM) DOLLARS and CENTS</td>
<td>LF</td>
<td>600.000</td>
<td>137</td>
</tr>
<tr>
<td>540</td>
<td>6018</td>
<td>MTL BM GD FEN TRANS (NON - SYM) DOLLARS and CENTS</td>
<td>EA</td>
<td>4.000</td>
<td>138</td>
</tr>
<tr>
<td>540</td>
<td>6020</td>
<td>MTL W - BEAM GD FEN (LOW FILL CULVERT) DOLLARS and CENTS</td>
<td>LF</td>
<td>50.000</td>
<td>139</td>
</tr>
<tr>
<td>542</td>
<td>6001</td>
<td>REMOVE METAL BEAM GUARD FENCE DOLLARS and CENTS</td>
<td>LF</td>
<td>2,801.000</td>
<td>140</td>
</tr>
<tr>
<td>544</td>
<td>6001</td>
<td>GUARDRAIL END TREATMENT (INSTALL) DOLLARS and CENTS</td>
<td>EA</td>
<td>43.000</td>
<td>141</td>
</tr>
<tr>
<td>544</td>
<td>6003</td>
<td>GUARDRAIL END TREATMENT (REMOVE) DOLLARS and CENTS</td>
<td>EA</td>
<td>1.000</td>
<td>142</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>545</td>
<td>6003</td>
<td></td>
<td>CRASH CUSH ATTEN (MOVE & RESET) DOLLARS AND CENTS</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>545</td>
<td>6005</td>
<td></td>
<td>CRASH CUSH ATTEN (REMOVE) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>545</td>
<td>6007</td>
<td></td>
<td>CRASH CUSH ATTEN (INSTL) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>560</td>
<td>6001</td>
<td></td>
<td>MAILBOX INSTALL-S (TWG-POST) TY I DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>618</td>
<td>6025</td>
<td></td>
<td>CONDT (PVC) (SCH 40) (2") (CONC ENCSE) DOLLARS CENTS</td>
<td>LF</td>
</tr>
<tr>
<td></td>
<td>618</td>
<td>6031</td>
<td></td>
<td>CONDT (PVC) (SCH 40) (3") (CONC ENCSE) DOLLARS CENTS</td>
<td>LF</td>
</tr>
<tr>
<td></td>
<td>618</td>
<td>6046</td>
<td></td>
<td>CONDT (PVC) (SCH 80) (2") DOLLARS CENTS</td>
<td>LF</td>
</tr>
<tr>
<td></td>
<td>618</td>
<td>6047</td>
<td></td>
<td>CONDT (PVC) (SCH 80) (2") (BORE) DOLLARS CENTS</td>
<td>LF</td>
</tr>
<tr>
<td></td>
<td>618</td>
<td>6053</td>
<td></td>
<td>CONDT (PVC) (SCH 80) (3") DOLLARS CENTS</td>
<td>LF</td>
</tr>
<tr>
<td></td>
<td>618</td>
<td>6054</td>
<td></td>
<td>CONDT (PVC) (SCH 80) (3") (BORE) DOLLARS CENTS</td>
<td>LF</td>
</tr>
<tr>
<td></td>
<td>618</td>
<td>6074</td>
<td></td>
<td>CONDT (RM) (3") DOLLARS CENTS</td>
<td>LF</td>
</tr>
<tr>
<td></td>
<td>620</td>
<td>6002</td>
<td></td>
<td>ELEC CONDR (NO.14) INSULATED DOLLARS CENTS</td>
<td>LF</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>ITEM CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>---------------------------------------</td>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>620</td>
<td>6003</td>
<td>ELEC CONDR (NO.12) BARE DOLLARS and CENTS</td>
<td>LF</td>
<td>2,969.000</td>
<td>155</td>
</tr>
<tr>
<td>620</td>
<td>6004</td>
<td>ELEC CONDR (NO.12) INSULATED DOLLARS and CENTS</td>
<td>LF</td>
<td>5,938.000</td>
<td>156</td>
</tr>
<tr>
<td>620</td>
<td>6005</td>
<td>ELEC CONDR (NO.10) BARE DOLLARS and CENTS</td>
<td>LF</td>
<td>3,937.000</td>
<td>157</td>
</tr>
<tr>
<td>620</td>
<td>6006</td>
<td>ELEC CONDR (NO.10) INSULATED DOLLARS and CENTS</td>
<td>LF</td>
<td>7,874.000</td>
<td>158</td>
</tr>
<tr>
<td>620</td>
<td>6007</td>
<td>ELEC CONDR (NO.8) BARE DOLLARS and CENTS</td>
<td>LF</td>
<td>1,025.000</td>
<td>159</td>
</tr>
<tr>
<td>620</td>
<td>6009</td>
<td>ELEC CONDR (NO.6) BARE DOLLARS and CENTS</td>
<td>LF</td>
<td>560.000</td>
<td>160</td>
</tr>
<tr>
<td>620</td>
<td>6011</td>
<td>ELEC CONDR (NO.4) BARE DOLLARS and CENTS</td>
<td>LF</td>
<td>105.000</td>
<td>161</td>
</tr>
<tr>
<td>620</td>
<td>6012</td>
<td>ELEC CONDR (NO.4) INSULATED DOLLARS and CENTS</td>
<td>LF</td>
<td>210.000</td>
<td>162</td>
</tr>
<tr>
<td>620</td>
<td>6014</td>
<td>ELEC CONDR (NO.3) INSULATED DOLLARS and CENTS</td>
<td>LF</td>
<td>3,075.000</td>
<td>163</td>
</tr>
<tr>
<td>621</td>
<td>6005</td>
<td>TRAY CABLE (4 CONDR) (12 AWG) DOLLARS and CENTS</td>
<td>LF</td>
<td>825.000</td>
<td>164</td>
</tr>
<tr>
<td>624</td>
<td>6002</td>
<td>GROUND BOX TY A (122311)W/APRON DOLLARS and CENTS</td>
<td>EA</td>
<td>79.000</td>
<td>165</td>
</tr>
<tr>
<td>624</td>
<td>6009</td>
<td>GROUND BOX TY D (162922) DOLLARS and CENTS</td>
<td>EA</td>
<td>2.000</td>
<td>166</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>ITEM CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>---------------------------------------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>624</td>
<td>6010</td>
<td>GROUND BOX TY D (162922)W/APRON DOLLARS and CENTS</td>
<td>EA</td>
<td>6.000</td>
<td>167</td>
</tr>
<tr>
<td>628</td>
<td>6131</td>
<td>ELC SRV TY D 120/240 060(NS)GS(N)SP(O) DOLLARS and CENTS</td>
<td>EA</td>
<td>1.000</td>
<td>168</td>
</tr>
<tr>
<td>628</td>
<td>6250</td>
<td>ELC SRV TY D 120/240 100(NS)SS(N)SP(O) DOLLARS and CENTS</td>
<td>EA</td>
<td>24.000</td>
<td>169</td>
</tr>
<tr>
<td>636</td>
<td>6002</td>
<td>ALUMINUM SIGNS (TY G) DOLLARS and CENTS</td>
<td>SF</td>
<td>32.000</td>
<td>170</td>
</tr>
<tr>
<td>644</td>
<td>6001</td>
<td>IN SM RD SN SUP&AM TY10BWG(1)SA(P) DOLLARS and CENTS</td>
<td>EA</td>
<td>235.000</td>
<td>171</td>
</tr>
<tr>
<td>644</td>
<td>6002</td>
<td>IN SM RD SN SUP&AM TY10BWG(1)SA(P-BM) DOLLARS and CENTS</td>
<td>EA</td>
<td>34.000</td>
<td>172</td>
</tr>
<tr>
<td>644</td>
<td>6004</td>
<td>IN SM RD SN SUP&AM TY10BWG(1)SA(T) DOLLARS and CENTS</td>
<td>EA</td>
<td>49.000</td>
<td>173</td>
</tr>
<tr>
<td>644</td>
<td>6008</td>
<td>IN SM RD SN SUP&AM TY10BWG(1)SA(U-EXAL) DOLLARS and CENTS</td>
<td>EA</td>
<td>4.000</td>
<td>174</td>
</tr>
<tr>
<td>644</td>
<td>6028</td>
<td>IN SM RD SN SUP&AM TYS80(1)SA(P-BM) DOLLARS and CENTS</td>
<td>EA</td>
<td>29.000</td>
<td>175</td>
</tr>
<tr>
<td>644</td>
<td>6030</td>
<td>IN SM RD SN SUP&AM TYS80(1)SA(T) DOLLARS and CENTS</td>
<td>EA</td>
<td>1.000</td>
<td>176</td>
</tr>
<tr>
<td>644</td>
<td>6033</td>
<td>IN SM RD SN SUP&AM TYS80(1)SA(U) DOLLARS and CENTS</td>
<td>EA</td>
<td>3.000</td>
<td>177</td>
</tr>
<tr>
<td>644</td>
<td>6038</td>
<td>IN SM RD SN SUP&AM TYS80(1)SA(U-EXAL) DOLLARS and CENTS</td>
<td>EA</td>
<td>4.000</td>
<td>178</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>---------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>644</td>
<td>6068</td>
<td>6068</td>
<td></td>
<td>RELOCATE SM RD SN SUP&AM TY 10BWG DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>644</td>
<td>6076</td>
<td>6076</td>
<td></td>
<td>REMOVE SM RD SN SUP&AM DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>647</td>
<td>6001</td>
<td>6001</td>
<td></td>
<td>INSTALL LRSS (STRUCT STEEL) DOLLARS and CENTS</td>
<td>LB</td>
</tr>
<tr>
<td>650</td>
<td>6021</td>
<td>6021</td>
<td></td>
<td>INS OH SN SUP(25 FT BAL TEE) DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>650</td>
<td>6025</td>
<td>6025</td>
<td></td>
<td>INS OH SN SUP(25 FT CANT) DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>654</td>
<td>6004</td>
<td>001</td>
<td></td>
<td>SIGN WALKWAY (36 IN) WITH HNDRL DOLLARS and CENTS</td>
<td>LF</td>
</tr>
<tr>
<td>658</td>
<td>6013</td>
<td>6013</td>
<td></td>
<td>INSTL DEL ASSM (D-SW)SZ (BRF)CTB DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>658</td>
<td>6026</td>
<td>6026</td>
<td></td>
<td>INSTL DEL ASSM (D-SY)SZ (BRF)CTB DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>658</td>
<td>6044</td>
<td>6044</td>
<td></td>
<td>INSTL DEL ASSM (D-DY)SZ 2(WC)GND DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>658</td>
<td>6061</td>
<td>6061</td>
<td></td>
<td>INSTL DEL ASSM (D-SW)SZ 1(BRF)GF2 DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>658</td>
<td>6062</td>
<td>6062</td>
<td></td>
<td>INSTL DEL ASSM (D-SW)SZ 1(BRF)GF2(BI) DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>658</td>
<td>6064</td>
<td>6064</td>
<td></td>
<td>INSTL DEL ASSM (D-SY)SZ 1(BRF)GF2 DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM-CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
<td>DEPT USE ONLY</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------------------------------------</td>
<td>------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>662</td>
<td>6016</td>
<td>WK ZN PAV MRK NON-REMOV (W)24"(SLD) DOLLARS CENTS</td>
<td>LF</td>
<td>81.000</td>
<td>191</td>
</tr>
<tr>
<td>662</td>
<td>6034</td>
<td>WK ZN PAV MRK NON-REMOV (Y)4"(SLD) DOLLARS CENTS</td>
<td>LF</td>
<td>575.000</td>
<td>192</td>
</tr>
<tr>
<td>662</td>
<td>6061</td>
<td>WK ZN PAV MRK REMOV (W)4"(DOT) DOLLARS CENTS</td>
<td>LF</td>
<td>532.000</td>
<td>193</td>
</tr>
<tr>
<td>662</td>
<td>6063</td>
<td>WK ZN PAV MRK REMOV (W)4"(SLD) DOLLARS CENTS</td>
<td>LF</td>
<td>179,990.000</td>
<td>194</td>
</tr>
<tr>
<td>662</td>
<td>6071</td>
<td>WK ZN PAV MRK REMOV (W)8"(SLD) DOLLARS CENTS</td>
<td>LF</td>
<td>1,174.000</td>
<td>195</td>
</tr>
<tr>
<td>662</td>
<td>6075</td>
<td>WK ZN PAV MRK REMOV (W)24"(SLD) DOLLARS CENTS</td>
<td>LF</td>
<td>588.000</td>
<td>196</td>
</tr>
<tr>
<td>662</td>
<td>6080</td>
<td>WK ZN PAV MRK REMOV (W)(ARROW) DOLLARS CENTS</td>
<td>EA</td>
<td>18.000</td>
<td>197</td>
</tr>
<tr>
<td>662</td>
<td>6090</td>
<td>WK ZN PAV MRK REMOV (W)(WORD) DOLLARS CENTS</td>
<td>EA</td>
<td>10.000</td>
<td>198</td>
</tr>
<tr>
<td>662</td>
<td>6093</td>
<td>WK ZN PAV MRK REMOV (Y)4"(BRK) DOLLARS CENTS</td>
<td>LF</td>
<td>17,008.000</td>
<td>199</td>
</tr>
<tr>
<td>662</td>
<td>6095</td>
<td>WK ZN PAV MRK REMOV (Y)4"(SLD) DOLLARS CENTS</td>
<td>LF</td>
<td>77,539.000</td>
<td>200</td>
</tr>
<tr>
<td>668</td>
<td>6077</td>
<td>PREFAB PAV MRK TY C (W) (ARROW) DOLLARS CENTS</td>
<td>EA</td>
<td>115.000</td>
<td>201</td>
</tr>
<tr>
<td>668</td>
<td>6085</td>
<td>PREFAB PAV MRK TY C (W) (WORD) DOLLARS CENTS</td>
<td>EA</td>
<td>109.000</td>
<td>202</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td>ITEM-CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>668</td>
<td>6092</td>
<td></td>
<td></td>
<td>PREFAB PAV MRK TY C (W) (36") (YLD TRI) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>668</td>
<td>6116</td>
<td></td>
<td></td>
<td>PREFAB PAV MRK TY C (EVAC SYM, BLUE/ WHT) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>672</td>
<td>6007</td>
<td></td>
<td></td>
<td>REFL PAV MRKR TY I-C DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>672</td>
<td>6009</td>
<td></td>
<td></td>
<td>REFL PAV MRKR TY II-A-A DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>672</td>
<td>6010</td>
<td></td>
<td></td>
<td>REFL PAV MRKR TY II-C-R DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>677</td>
<td>6001</td>
<td></td>
<td></td>
<td>ELIM EXT PAV MRK & MRKS (4") DOLLARS CENTS</td>
<td>LF</td>
</tr>
<tr>
<td>677</td>
<td>6007</td>
<td></td>
<td></td>
<td>ELIM EXT PAV MRK & MRKS (24") DOLLARS CENTS</td>
<td>LF</td>
</tr>
<tr>
<td>680</td>
<td>6003</td>
<td>006</td>
<td></td>
<td>INSTALL HWY TRF SIG (SYSTEM) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>680</td>
<td>6004</td>
<td>006</td>
<td></td>
<td>REMOVING TRAFFIC SIGNALS DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>681</td>
<td>6001</td>
<td></td>
<td></td>
<td>TEMP TRAF SIGNALS DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>682</td>
<td>6003</td>
<td></td>
<td></td>
<td>VEH SIG SEC (12") LED (YEL) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>682</td>
<td>6005</td>
<td></td>
<td></td>
<td>VEH SIG SEC (12") LED (RED) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>ITEM CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>682</td>
<td>6006</td>
<td>VEH SIG SEC (12")LED(RED ARW) DOLLARS and CENTS</td>
<td>EA</td>
<td>1.000</td>
<td>215</td>
</tr>
<tr>
<td>682</td>
<td>6021</td>
<td>BACK PLATE (12") (1 SEC) DOLLARS and CENTS</td>
<td>EA</td>
<td>7.000</td>
<td>216</td>
</tr>
<tr>
<td>684</td>
<td>6033</td>
<td>TRF SIG CBL (TY A)(14 AWG)(7 CONDR) DOLLARS and CENTS</td>
<td>LF</td>
<td>1,470.000</td>
<td>217</td>
</tr>
<tr>
<td>686</td>
<td>6025</td>
<td>INS TRF SIG PL AM (S)1 ARM(24') DOLLARS and CENTS</td>
<td>EA</td>
<td>1.000</td>
<td>218</td>
</tr>
<tr>
<td>686</td>
<td>6055</td>
<td>INS TRF SIG PL AM(S)1 ARM(50')LUM DOLLARS and CENTS</td>
<td>EA</td>
<td>1.000</td>
<td>219</td>
</tr>
<tr>
<td>686</td>
<td>6067</td>
<td>INS TRF SIG PL AM(S)1 ARM(65')LUM DOLLARS and CENTS</td>
<td>EA</td>
<td>1.000</td>
<td>220</td>
</tr>
<tr>
<td>687</td>
<td>6001</td>
<td>PED POLE ASSEMBLY DOLLARS and CENTS</td>
<td>EA</td>
<td>12.000</td>
<td>221</td>
</tr>
<tr>
<td>730</td>
<td>6106003</td>
<td>STRIP MOWING DOLLARS and CENTS</td>
<td>CYC</td>
<td>12.000</td>
<td>222</td>
</tr>
<tr>
<td>734</td>
<td>6002</td>
<td>LITTER REMOVAL DOLLARS and CENTS</td>
<td>CYC</td>
<td>12.000</td>
<td>223</td>
</tr>
<tr>
<td>735</td>
<td>6001</td>
<td>DEBRIS REMOVAL (CNTR MEDIANS/ MAINLANES) DOLLARS and CENTS</td>
<td>CYC</td>
<td>12.000</td>
<td>224</td>
</tr>
<tr>
<td>738</td>
<td>6003</td>
<td>CLEANING / SWEEPING (OUTSIDE MAIN LANE) DOLLARS and CENTS</td>
<td>CYC</td>
<td>12.000</td>
<td>225</td>
</tr>
<tr>
<td>3020</td>
<td>6001</td>
<td>REMOVE SHOULDER TEXTURING DOLLARS and CENTS</td>
<td>LF</td>
<td>3,409.000</td>
<td>226</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>ITEM CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>---------------------------------------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>3021</td>
<td>6001</td>
<td>WIDE FLANGE PAVEMENT TERMINALS DOLLARS and CENTS</td>
<td>LF</td>
<td>178.000</td>
</tr>
<tr>
<td></td>
<td>6001</td>
<td>6001</td>
<td>PORTABLE CHANGEABLE MESSAGE SIGN DOLLARS and CENTS</td>
<td>DAY</td>
<td>240.000</td>
</tr>
<tr>
<td></td>
<td>6007</td>
<td>6011</td>
<td>FIBER OPTIC CBL (SINGLE-MODE)(12 FIBER) DOLLARS and CENTS</td>
<td>LF</td>
<td>185,437.000</td>
</tr>
<tr>
<td></td>
<td>6007</td>
<td>6017</td>
<td>FIBER OPTIC CBL (SINGLE-MODE)(144 FIBER) DOLLARS and CENTS</td>
<td>LF</td>
<td>68,869.000</td>
</tr>
<tr>
<td></td>
<td>6007</td>
<td>6021</td>
<td>FIBER OPTIC SPLICE ENCLOSURE DOLLARS and CENTS</td>
<td>EA</td>
<td>4.000</td>
</tr>
<tr>
<td></td>
<td>6007</td>
<td>6023</td>
<td>FIBER OPTIC PATCH PANEL (12 POSITION) DOLLARS and CENTS</td>
<td>EA</td>
<td>30.000</td>
</tr>
<tr>
<td></td>
<td>6007</td>
<td>6027</td>
<td>FIBER OPTIC PATCH PANEL (144 POSITION) DOLLARS and CENTS</td>
<td>EA</td>
<td>4.000</td>
</tr>
<tr>
<td></td>
<td>6007</td>
<td>6094</td>
<td>FIBER OPTIC FUSION SPLICER DOLLARS and CENTS</td>
<td>EA</td>
<td>396.000</td>
</tr>
<tr>
<td></td>
<td>6008</td>
<td>6043</td>
<td>ITS GRND MNT CAB (TY 6) (CONF 2) DOLLARS and CENTS</td>
<td>EA</td>
<td>4.000</td>
</tr>
<tr>
<td></td>
<td>6010</td>
<td>6001</td>
<td>CCTV FIELD EQUIPMENT (ANALOG) DOLLARS and CENTS</td>
<td>EA</td>
<td>14.000</td>
</tr>
<tr>
<td></td>
<td>6010</td>
<td>6004</td>
<td>CCTV MOUNT (POLE) DOLLARS and CENTS</td>
<td>EA</td>
<td>14.000</td>
</tr>
<tr>
<td></td>
<td>6016</td>
<td>6008</td>
<td>ITS MULTI-DUCT CND (PVC-40)(CONC ENCSE) DOLLARS and CENTS</td>
<td>LF</td>
<td>128,098.000</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM-CODE</td>
<td>DESCRIPTION</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>6016</td>
<td>6011</td>
<td>ITS MULTI-DUCT CND (PVC-80)(BORE) DOLLARS and CENTS</td>
<td>LF</td>
<td>10,481.000</td>
<td>239</td>
</tr>
<tr>
<td>6016</td>
<td>6013</td>
<td>ITS MULTI-DUCT CND (RMC) DOLLARS and CENTS</td>
<td>LF</td>
<td>530.000</td>
<td>240</td>
</tr>
<tr>
<td>6028</td>
<td>6002</td>
<td>INSTALL DMS (FOUNDATION MTD CABINET) DOLLARS and CENTS</td>
<td>EA</td>
<td>3.000</td>
<td>241</td>
</tr>
<tr>
<td>6035</td>
<td>6001</td>
<td>FIBER OPTIC VIDEO DATA TRANSMITTER DOLLARS and CENTS</td>
<td>EA</td>
<td>14.000</td>
<td>242</td>
</tr>
<tr>
<td>6035</td>
<td>6002</td>
<td>FIBER OPTIC VIDEO DATA RECEIVER DOLLARS and CENTS</td>
<td>EA</td>
<td>16.000</td>
<td>243</td>
</tr>
<tr>
<td>6038</td>
<td>6004</td>
<td>MULTIPOLYMER PAV MRK (W)(6")(SLD) DOLLARS and CENTS</td>
<td>LF</td>
<td>138,984.000</td>
<td>244</td>
</tr>
<tr>
<td>6038</td>
<td>6005</td>
<td>MULTIPOLYMER PAV MRK (W)(6")(BRK) DOLLARS and CENTS</td>
<td>LF</td>
<td>33,189.000</td>
<td>245</td>
</tr>
<tr>
<td>6038</td>
<td>6007</td>
<td>MULTIPOLYMER PAV MRK (W)(8")(SLD) DOLLARS and CENTS</td>
<td>LF</td>
<td>44,652.000</td>
<td>246</td>
</tr>
<tr>
<td>6038</td>
<td>6009</td>
<td>MULTIPOLYMER PAV MRK (W)(8")(DOT) DOLLARS and CENTS</td>
<td>LF</td>
<td>146.000</td>
<td>247</td>
</tr>
<tr>
<td>6038</td>
<td>6013</td>
<td>MULTIPOLYMER PAV MRK (W)(24")(SLD) DOLLARS and CENTS</td>
<td>LF</td>
<td>498.000</td>
<td>248</td>
</tr>
<tr>
<td>6038</td>
<td>6017</td>
<td>MULTIPOLYMER PAV MRK (Y)(6")(SLD) DOLLARS and CENTS</td>
<td>LF</td>
<td>144,799.000</td>
<td>249</td>
</tr>
<tr>
<td>6038</td>
<td>6018</td>
<td>MULTIPOLYMER PAV MRK (Y)(6")(BRK) DOLLARS and CENTS</td>
<td>LF</td>
<td>5,208.000</td>
<td>250</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM-CODE</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
<td>DEPT USE ONLY</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--</td>
<td>------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6058</td>
<td>6001</td>
<td></td>
<td></td>
<td>BBU SYSTEM (EXTERNAL BATT CABINET) DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>6063</td>
<td>6007</td>
<td></td>
<td></td>
<td>SPS-INS (40W) 960W (500AH) 2X50A(1) DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>6064</td>
<td>6048</td>
<td></td>
<td></td>
<td>ITS POLE (55 FT)(130 MPH) DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>6064</td>
<td>6072</td>
<td></td>
<td></td>
<td>ITS POLE MNT CAB (TY 1)(CONF 1) DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>6064</td>
<td>6080</td>
<td></td>
<td></td>
<td>ITS POLE MNT CAB (TY 2)(CONF 1) DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>6185</td>
<td>6002</td>
<td></td>
<td></td>
<td>TMA (STATIONARY) DOLLARS and CENTS</td>
<td>DAY</td>
</tr>
<tr>
<td>6185</td>
<td>6003</td>
<td></td>
<td></td>
<td>TMA (MOBILE OPERATION) DOLLARS and CENTS</td>
<td>HR</td>
</tr>
<tr>
<td>6186</td>
<td>6002</td>
<td></td>
<td></td>
<td>ITS GND BOX(PCAST) TY 1 (243636)W/APRN DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>6304</td>
<td>6001</td>
<td></td>
<td></td>
<td>ITS RVSD (DATA COLLECT ONLY) SYS DOLLARS and CENTS</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>7017</td>
<td>0000</td>
<td></td>
<td>IMATED PRICES FOR THE FOLLOWING ITEM DOLLARS and CENTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7017</td>
<td>6005</td>
<td></td>
<td>SANITARY SEWER (8IN) (PVC) (C900) DOLLARS and CENTS</td>
<td>LF</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM-CODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM NO</td>
<td>DESCR CODE</td>
<td>S.P. NO.</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
<td>APPROX QUANTITIES</td>
</tr>
<tr>
<td>7017</td>
<td>6007</td>
<td>LF</td>
<td>SANITARY SEWER (12IN) (PVC) (C900) DOLLARS CENTS</td>
<td>LF</td>
<td>6,372.000</td>
</tr>
<tr>
<td>7017</td>
<td>6041</td>
<td>LF</td>
<td>CASING (STEEL) (SANITARY SEWER) (12 IN) DOLLARS CENTS</td>
<td>LF</td>
<td>46.000</td>
</tr>
<tr>
<td>7017</td>
<td>6042</td>
<td>LF</td>
<td>CASING (STEEL) (SANITARY SEWER) (16 IN) DOLLARS CENTS</td>
<td>LF</td>
<td>104.000</td>
</tr>
<tr>
<td>7017</td>
<td>6047</td>
<td>EA</td>
<td>MANHOLES (SAN SEWER) (TY 1) DOLLARS CENTS</td>
<td>EA</td>
<td>28.000</td>
</tr>
<tr>
<td>7017</td>
<td>6133</td>
<td>LF</td>
<td>ABAND/FILL EXIST SAN SWR PIPE (8IN) DOLLARS CENTS</td>
<td>LF</td>
<td>2,606.000</td>
</tr>
<tr>
<td>7017</td>
<td>6134</td>
<td>LF</td>
<td>ABAND/FILL EXIST SAN SWR PIPE (10IN) DOLLARS CENTS</td>
<td>LF</td>
<td>2,591.000</td>
</tr>
<tr>
<td>7049</td>
<td>6002</td>
<td>LF</td>
<td>WATER MAIN PIPE (PVC) (2IN) DOLLARS CENTS</td>
<td>LF</td>
<td>125.000</td>
</tr>
<tr>
<td>7049</td>
<td>6004</td>
<td>LF</td>
<td>WATER MAIN PIPE (PVC) (6IN) DOLLARS CENTS</td>
<td>LF</td>
<td>8,490.000</td>
</tr>
<tr>
<td>7049</td>
<td>6005</td>
<td>LF</td>
<td>WATER MAIN PIPE (PVC) (8IN) DOLLARS CENTS</td>
<td>LF</td>
<td>3,904.000</td>
</tr>
<tr>
<td>7049</td>
<td>6042</td>
<td>LF</td>
<td>CASING STEEL (12IN) DOLLARS CENTS</td>
<td>LF</td>
<td>355.000</td>
</tr>
<tr>
<td>7049</td>
<td>6080</td>
<td>EA</td>
<td>TAPPING VALVE AND VALVE (6IN X 6IN) DOLLARS CENTS</td>
<td>EA</td>
<td>1.000</td>
</tr>
<tr>
<td>7049</td>
<td>6083</td>
<td>EA</td>
<td>TAPPING SLEEVE AND VALVE (8IN X 8IN) DOLLARS CENTS</td>
<td>EA</td>
<td>3.000</td>
</tr>
<tr>
<td>ALT</td>
<td>ITEM NO</td>
<td>DESC CODE</td>
<td>S.P. NO.</td>
<td>UNIT BID PRICE ONLY. WRITTEN IN WORDS</td>
<td>UNIT</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>7049</td>
<td>6104</td>
<td></td>
<td></td>
<td>FIRE HYDRANT ASSEMBLY DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>7049</td>
<td>6118</td>
<td></td>
<td></td>
<td>REMOVING AND SALVAGING WATER METER DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>7049</td>
<td>6119</td>
<td></td>
<td></td>
<td>REMOVING AND SALVAGING FIRE HYDRANT DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>7049</td>
<td>6124</td>
<td></td>
<td></td>
<td>CUT AND PLUG WATER MAIN (2IN) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>7049</td>
<td>6126</td>
<td></td>
<td></td>
<td>CUT AND PLUG WATER MAIN (6IN) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>7049</td>
<td>6127</td>
<td></td>
<td></td>
<td>CUT AND PLUG WATER MAIN (8IN) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>7049</td>
<td>6137</td>
<td></td>
<td></td>
<td>WET CONNECTION (2IN) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>7049</td>
<td>6139</td>
<td></td>
<td></td>
<td>WET CONNECTION (6IN) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>7049</td>
<td>6140</td>
<td></td>
<td></td>
<td>WET CONNECTION (8IN) DOLLARS CENTS</td>
<td>EA</td>
</tr>
<tr>
<td>7049</td>
<td>6185</td>
<td></td>
<td></td>
<td>CASING STEEL (16 IN) DOLLARS CENTS</td>
<td>LF</td>
</tr>
</tbody>
</table>
CERTIFICATION OF INTEREST IN OTHER BID PROPOSALS FOR THIS WORK

By signing this proposal, the bidding firm and the signer certify that the following information, as indicated by checking “Yes” or “No” below, is true, accurate, and complete.

A. Quotation(s) have been issued in this firm’s name to other firm(s) interested in this work for consideration for performing a portion of this work.

_______ YES
_______ NO

B. If this proposal is the low bid, the bidder agrees to provide the following information prior to award of the contract.

1. Identify firms which bid as a prime contractor and from which the bidder received quotations for work on this project.
2. Identify all the firms which bid as a prime contractor to which the bidder gave quotations for work on this project.
DISCLOSURE OF LOBBYING ACTIVITIES

Complete this form to disclose lobbying activities pursuant to 31 U.S.C. 1352 (See reverse for public burden disclosure.)

<table>
<thead>
<tr>
<th>1. Type of Federal Action:</th>
<th>2. Status of Federal Action:</th>
<th>3. Report Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. contract</td>
<td>a. bid/offer/application</td>
<td>a. initial filing</td>
</tr>
<tr>
<td>b. grant</td>
<td>b. initial award</td>
<td>b. grant</td>
</tr>
<tr>
<td>c. cooperative agreement</td>
<td>c. post-award</td>
<td>For material change only:</td>
</tr>
</tbody>
</table>
| d. loan | | year _______ quarter _______
| e. loan guarantee | | date of last report ___________
| f. loan insurance | | |

<table>
<thead>
<tr>
<th>4. Name and Address of Reporting Entity:</th>
<th>5. If Reporting Entity in No. 4 is Subawardee, Enter Name and Address of Prime:</th>
</tr>
</thead>
<tbody>
<tr>
<td>? Prime</td>
<td>Congressional District, if known:</td>
</tr>
<tr>
<td>? Subawardee</td>
<td></td>
</tr>
<tr>
<td>Tier __________, if known:</td>
<td></td>
</tr>
<tr>
<td>Congressional District, if known:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Federal Department/Agency:</th>
<th>7. Federal Program Name/Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFDA Number, if applicable:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Federal Action Number, if known:</th>
<th>9. Award Amount, if known:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$ _______________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. a. Name and Address of Lobbying Entity (if individual, last name, first name, MI):</th>
<th>b. Individuals Performing Services (including address if different from No. 10a) (last name, first name, MI):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(attach Continuation Sheet(s) SF-LLL-A, if necessary)</td>
<td>(attach Continuation Sheet(s) SF-LLL-A, if necessary)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Amount of Payment (check all that apply):</th>
<th>12. Form of Payment (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ _______________________ actual planned</td>
<td>a. cash</td>
</tr>
<tr>
<td></td>
<td>b. in-kind; specify: nature _____________</td>
</tr>
<tr>
<td></td>
<td>value ____________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Type of Payment (check all that apply):</th>
<th>14. Brief Description of Services Performed or to be Performed and Date(s) of Service, including officer(s), employee(s), or Member(s) contacted, for Payment Indicated in Item 11:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. retainer</td>
<td>(attach Continuation Sheet(s) SF-LLL-A, if necessary)</td>
</tr>
<tr>
<td>b. one-time fee</td>
<td></td>
</tr>
<tr>
<td>c. commission</td>
<td></td>
</tr>
<tr>
<td>d. contingent fee</td>
<td></td>
</tr>
<tr>
<td>e. deferred</td>
<td></td>
</tr>
<tr>
<td>f. other; specify:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Continuation Sheet(s) SF-LLL-A attached:</th>
<th>? Yes</th>
<th>? No</th>
</tr>
</thead>
</table>

| 16. Information requested through this form is authorized by title 31 U.S.C. section 1352. This disclosure of lobbying activities is a material representation of fact upon which reliance was placed by the tier above when this transaction was made or entered into. This disclosure is required pursuant to 31 U.S.C. 1352. This information will be reported to the Congress semi-annually and will be available for public inspection. Any person who fails to file the required disclosure shall be subject to a civil penalty of not less than $10,000 and not more than $100,000 for each such failure. |
|---|-------|------|
| Signature: _______________________________ | Print Name: ____________________________|
| Print Name: _____________________________ | Title: ________________________________|
| Title: _________________________________ | Telephone No: __________ Date: __________|

Authorized for Local Reproduction
Standard Form - LLL
INSTRUCTIONS FOR COMPLETION OF SF-LLL, DISCLOSURE OF LOBBYING ACTIVITIES

This disclosure form shall be completed by the reporting entity, whether subawardee or prime Federal recipient, at the initiation or receipt of a covered Federal action, or a material change to a previous filing, pursuant to title 31 U.S.C section 1352. The filing of a form is required for each payment or agreement to make payment to any lobbying entity for influencing or attempting to influence an officer or employee of any agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with a covered Federal action. Use the SF-LLL-A Continuation Sheet for additional information if the space on the form is inadequate. Complete all items that apply for both the initial filing and material change report. Refer to the implementing guidance published by the Office of Management and Budget for additional information.

1. Identify the type of covered Federal action for which lobbying activity is and/or has been secured to influence the outcome of a covered Federal action.
2. Identify the status of the covered Federal action.
3. Identify the appropriate classification of this report. If this is a follow-up report caused by a material change to the information previously reported, enter the year and quarter in which the change occurred. Enter the date of the last previously submitted report by this reporting entity or this covered Federal action.
4. Enter the full name, address, city, state and zip code of the reporting entity. Include Congressional District, if known. Check the appropriate classification of the reporting entity that designates if it is, or expects to be, a prime or subaward recipient. Identify the tier of the subawardee, e.g., the first subawardee of the prime is the 1st tier. Subawards include but are not limited to subcontracts, subgrants and contract awards under grants.
5. If the organization filing the report in item 4 checks "Subawardee", then enter the full name, address, city, state and zip code of the prime Federal recipient. Include Congressional District, if known.
6. Enter the name of the Federal agency making the award or loan commitment. Include at least one organizational level below agency name, if known. For example, Department of Transportation, United States Coast Guard.
7. Enter the Federal program name or description for the covered Federal action (item 1). If known, enter the full Catalog of Federal Domestic Assistance (CFDA) number for grants, cooperative agreements, loans, and loan commitments.
8. Enter the most appropriate Federal identifying number available for the Federal action identified in item 1 (e.g., Request for Proposal (RFP) number; Invitation for Bid (IFB) number; grant announcement number, the contract, grant, or loan award number; the application/proposal control number assigned by the Federal agency). Include prefixes, e.g., "RFP-DE-90-001."
9. For a covered Federal action where there has been an award or loan commitment by the Federal agency, enter the Federal amount of the award/loan commitment for the prime entity identified in item 4 or 5.
10. (a) Enter the full name, address, city, state and zip code of the lobbying entity engaged by the reporting entity identified in item 4 to influence the covered Federal action.
(b) Enter the full names of the individual(s) performing services, and include full address if different from 10(a). Enter Last Name, First Name, and Middle Initial (MI).
11. Enter the amount of compensation paid or reasonably expected to be paid by the reporting entity (item 4) to the lobbying entity (item 10). Indicate whether the payment has been made (actual) or will be made (planned). Check all boxes that apply. If this is a material change report, enter the cumulative amount of payment made or planned to be made.
12. Check the appropriate box(es). Check all boxes that apply. If payment is made through an in-kind contribution, specify the nature and value of the in-kind payment.
13. Check the appropriate box(es). Check all boxes that apply. If other, specify nature.
14. Provide a specific and detailed description of the services that the lobbyist has performed, or will be expected to perform, and the date(s) of any services rendered. Include all preparatory and related activity, not just time spent in actual contact with Federal officials. Identify the Federal official(s) or employee(s) contacted or the officer(s), employee(s), or Member(s) of Congress that were contacted.
15. Check whether or not a SF-LLL-A Continuation Sheet(s) is attached.
16. The certifying official shall sign and date the form, print his/her name, title, and telephone number.

Public reporting burden for this collection of information is estimated to average 30 minutes per response, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Office of Management and Budget, Paperwork Reduction Project (0348-0046), Washington, D.C. 20503.
DISCLOSURE OF LOBBYING ACTIVITIES

CONTINUATION SHEET

Reporting Entity: ________________________________ Page _____ of _____

Authorized for Local Reproduction
Standard Form - LLL-A
CONTRACTOR’S ASSURANCE
(Subcontracts-Federal Aid Projects)

By signing this proposal, the contractor is giving assurances that all subcontract agreements will incorporate the Standard Specification and Special Provisions to Section 9.9., Payment Provisions for Subcontractors, all subcontract agreements exceeding $2,000 will incorporate the applicable Wage Determination Decision, and all subcontract agreements will incorporate the following:

Special Provision Certification of Nondiscrimination in Employment

Special Provision Notice of Requirement for Affirmative Action to Ensure Equal Employment Opportunity (Executive Order 11246)

Form FHWA 1273 Required Contract Provisions Federal-aid Construction Contracts (Form FHWA 1273 must also be physically attached to subcontracts and all lower-tier subcontracts)
The enclosed Texas Department of Transportation Specifications, Special Specifications, Special Provisions, General Notes and Specification Data in this document have been selected by me, or under my responsible supervision as being applicable to this project. Alteration of a sealed document without proper notification to the responsible engineer is an offense under the Texas Engineering Practice Act.

The seal appearing on this document was authorized by
RAJESH JANARTHANAN, P.E.
JULY 31, 2019
General Notes:

General:

Contractor questions on this project are to be addressed to the following individual(s):

(Michelle Milliard, PE (Area Engineer) / michelle.milliard@txdot.gov)
(Godfried Duodu PE (Assistant Area Engineer) / godfried.duodu@txdot.gov)

Contractor questions will be accepted through email, phone, and in person by the above individuals. Contractor questions will be reviewed by the Area Engineer or Assistant Area Engineer. Once a response is developed, it will be posted to TxDOT’s Public FTP at the following address:

https://ftp.dot.state.tx.us/pub/txdot-info/Pre-Letting%20Responses/

Questions submitted that generate a response will be posted through this site. The site is organized by District, Project Type (Construction or Maintenance), Letting Date, and CCSJ/Project Name.

The proposed design baseline(s) for construction purposes may or may not match the right of way baseline(s) as referenced in the corresponding right of way map(s) for this project. All right of way map(s) for this project shall be obtained from the Engineer.

Unless otherwise shown on the plans, RAP generated by this project will become the property of the Contractor for use in the current construction project or in future projects.

If fixed features require, the governing slopes shown may vary between the limits shown and to the extent determined by the Engineer.

Superelevate the curves to match the existing surface.

Notify the Engineer immediately if discrepancies are discovered in the horizontal control or the benchmark data.

The following standard detail sheets are modified:

Modified Standards

Treatment for Various Edge Conditions
Inlet Type A: HIL-A
Common Foundation Details: FD
Shear Key Details – Prestr Concrete I-Girders: IGSK
References to manufacturer’s trade name or catalog numbers are for the purpose of identification only. Similar materials from other manufacturers are permitted if they are of equal quality, comply with the specifications for this project, and are approved, except for roadway illumination, electrical, and traffic signal items.

The cost for materials, labor, and incidentals to provide for traffic across the roadway and for ingress and egress to private property in accordance with Section 7.2.4 of the standard specifications is subsidiary to the various bid items. Restore access roadways to their original condition upon completing construction.

Grade street intersections and median openings for surface drainage.

If a foundation is to be placed where a riprap surface or an asphalt concrete surface presently exists, use caution in breaking out the existing surface for placement. Break out no greater area than is required to place the foundation. After placing the foundation, wrap the periphery with 0.5 in. pre-molded mastic expansion joint. Then replace the remaining portion of the broken out surface with Class A or Class C concrete or cold mix asphalt concrete to the exact slope, pattern, and thickness of the existing riprap or asphalt. Payment for breaking out the existing surface, wrapping the foundation, and replacing the surface is subsidiary to the various bid items.

The lengths of the posts for ground mounted signs and the tower legs for the overhead sign supports are approximate. Verify the lengths before ordering these materials to meet the existing field conditions and to conform to the minimum sign mounting heights shown in the plans.

Furnish aluminum Type A signs instead of plywood signs for signs shown on the Summary of Small Signs sheet.

Stencil the National Bridge Inventory (NBI) number on each existing bridge shown on these plans. The NBI number is shown above the title block for each bridge layout.

Clearly mark or highlight on the shop drawings, the items being furnished for this project. Submit required shop drawings in accordance with the shop drawing distribution list shown in the note for Item 5 for review and distribution.

Right of way parcels or utility adjustments shown to be unclear on the plans but not listed on the special provisions will have no effect on construction. Contractor shall follow the approved Management Plan as directed by the engineer.

Make requests for additional soil information for this project at the Area Engineer’s office. Unless otherwise shown on the plans or otherwise directed, commence work after sunrise and ensure construction equipment is off the road by sunset.

Procure permits and licenses, which are to be issued by the City, County, or Municipal Utility District.
The existing bridge located at Varner Creek has been tested for Asbestos Containing Materials (ACM) and found to contain 1% or less ACM. No mitigation was required.

Any groundwater elevation information provided is representative of conditions existing on the day when and for the specific location where this information was collected. The actual groundwater elevation may fluctuate with time, climatic conditions, and construction activity.

General: Roadway Illumination and Electrical

For roadway illumination and electrical items, use materials from pre-qualified producers as shown on the Construction Division (CST) of the Department’s material producers list. Check the latest link on the Department’s website for this list. The category/item is “Roadway Illumination and Electrical Supplies.” No substitutions will be allowed for materials found on this list.

Perform electrical work in conformance with the National Electrical Code (NEC) and the Department’s standard sheets.

General: Traffic Signals

For traffic signal items, use materials from the Pre-Qualified Producers List (located at http://www.dot.state.tx.us/GSD/purchasing/supps.htm) and the materials pre-qualified for illumination and electrical items (located at http://ftp.dot.state.tx.us/pub/txdot-info/cmd/mpl/riaes.pdf) as shown on the Department’s Material Producers List and the Roadway Illumination and Electrical Supplies List. Check the latest links on the Department’s website for these lists. No substitutions will be allowed for materials found on these lists.

General: Site Management

Mark stations every 100 ft. and maintain the markings for the project duration. Remove the station markings at the completion of the project. This work is subsidiary to the various bid items.

Do not mix or store materials, or store or repair equipment, on top of concrete pavement or bridge decks unless authorized by the Engineer. Permission will be granted to store materials on surfaces if no damage or discoloration will result.

Personal vehicles of employees are not permitted to park within the right of way, including sections closed to public traffic. Employees may park on the right of way at the Contractor’s office, equipment, and materials storage yard sites.

Assume ownership of debris and dispose of at an approved location. Do not dispose of debris on private property unless approved in writing by the District Engineer.
Control the dust caused by construction operations. For sweeping the base material in preparation for laying asphalt and for sweeping the finished concrete pavement, use one of the following types of sweepers or approved equal:

<table>
<thead>
<tr>
<th>Tricycle Type</th>
<th>Truck Type - 4 Wheel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne Series 900</td>
<td>M-B Cruiser II</td>
</tr>
<tr>
<td>Elgin White Wing</td>
<td>Wayne Model 945</td>
</tr>
<tr>
<td>Elgin Pelican</td>
<td>Mobile TE-3</td>
</tr>
<tr>
<td></td>
<td>Mobile TE-4</td>
</tr>
<tr>
<td></td>
<td>Murphy 4042</td>
</tr>
</tbody>
</table>

General: Traffic Control and Construction

Schedule construction operations such that preparing individual items of work follows in close sequence to constructing storm drains in order to provide as little inconvenience as practical to the businesses and residents along the project.

Schedule work so that the base placement operations follow the subgrade work as closely as practical to reduce the hazard to the traveling public and to prevent undue delay caused by wet weather.

This project requires extensive grading operations in an environmentally sensitive area.

If relocating mailboxes, place them with the post firmly in the ground at nearby locations. Upon completing the project, the Engineer will locate the final mailbox placement. Perform this work in accordance with the requirements of the Item, “Mailbox Assemblies,” except for measurement and payment. This work is subsidiary to the various bid items.

If fences cross construction easements shown on the plans and work is required beyond the fences, remove and replace the fences as directed. This work and the materials are subsidiary to the various bid items.

When design details are not shown on the plans, provide signs and arrows conforming to the latest “Standard Highway Sign Designs for Texas” manual.

General: Utilities

Consider the locations of underground utilities depicted in the plans as approximate and employ responsible care to avoid damaging utility facilities. Depending upon scope and magnitude of planned construction activities, advanced field confirmation by the utility owner or operator may be prudent. Where possible, protect and preserve permanent signs, markers, and designations of underground facilities.
If the Contractor damages or causes damage (breaks, leaks, nicks, dents, gouges, etc.) to the utility, contact the utility facility owner or operator immediately.

Be aware that an operational Computerized Transportation Management System (CTMS) exists within the limits of this project and that the system must remain operational throughout construction. If the Contractor damages or causes damage to this system, repair such damage within 8 hours of occurrence at no cost to the Department. In the event of system damage, notify the Director of Traffic Management Systems at 713-881-3283 within one hour of occurrence. Failure of the Contractor to repair damage to the main fiber optic cable and CCTV cable trunk lines, which convey all corridor information to TranStar, will result in the Contractor being billed for the full cost of emergency repairs.

At least 48 hours before starting work, make arrangements for locating existing Department-owned above ground and underground fiber optic, communications, power, illumination, and traffic signal cabling and conduit. Do this by calling the Department’s Houston District Traffic Signal Operations Office at 713-802-5663 to schedule marking of underground lines on the ground. Use caution if working in these areas to avoid damaging or interfering with existing facilities.

Notify the Engineer at least 48 hours before constructing junction boxes at storm drain and utility intersections.

Install or remove poles and luminaires located near overhead or underground electrical lines using established industry and utility safety practices. Consult the appropriate utility company before beginning such work.

If overhead or underground power lines need to be de-energized, contact the electrical service provider to perform this work. Costs associated with de-energizing the power lines or other protective measures required are at no expense to the Department.

If working near power lines, comply with the appropriate sections of Texas State Law and Federal Regulations relating to the type of work involved.

Perform electrical work in conformance with the National Electrical Code (NEC) and Department’s standard sheets.

Utility Company Notes

Enterprise Notes

General Recommendations:
• Enterprise requires 48-hour notice before construction begins.
Enterprise reserves the right to have a pipeline representative stationed where the proposed pipeline right-of-way encroachment activities are being performed.

At encroaching entity’s expense, Enterprise requires physical verification of the pipeline depth of cover and alignment prior to construction being performed near the pipeline. The method of physical verification, whether hydro-excavation or other means, shall be coordinated and approved by Enterprise’s field representative. If the pipeline is not at the anticipated alignment or depth, encroaching entity shall adjust accordingly at no expense to Enterprise or its affiliates.

No permanent structures shall be constructed inside pipeline right-of-way, other than the approved encroachments.

Landscaping inside the pipeline right-of-way shall be maintained to a height no taller than 18-inches. No trees are allowed in the pipeline right-of-way and canopy on trees located adjacent to pipeline right-of-way shall be kept trimmed to avoid overhanging into the pipeline right-of-way.

No medium to large vibratory compaction equipment is allowed within minimum 10-feet from the pipeline, only walk-behind vibratory rollers/compactors are allowed.

Enterprise requires hand excavation, or other approved non-mechanical means, when reaching a distance of 18-inches plus half the diameter of the pipeline as measured from the pipeline outside wall; however, at no point shall mechanical excavation be performed when less than 24-inches from pipeline outside wall. All mechanical digging equipment approved to work within the pipeline right-of-way shall have the teeth removed or barred with a plate welded across the teeth, no detachable implements will be allowed.

No excavation or removal of cover will be permitted within the pipeline right-of-way without prior approval.

Foreign utilities crossing Enterprise’s pipeline should include warning tape in accordance with the American Public works Association (APWA) Uniform Color Code, above the foreign utility, 12-inches below ground and shall extend at least 20-feet each direction measured from the crossing point.

Heavy Equipment Encroachment Recommendations:

- Enterprise requires minimum 4-feet of stable soil cover above the pipeline at locations where construction activities require crossing over the pipeline with heavy construction equipment.
- At the discretion of the pipeline representative, require the use of minimum 8-inch thick timber mats over the pipeline at locations where heavy construction equipment is anticipated to cross over the pipeline.

ExxonMobil Notes

In a continuing effort to provide a safe environment for persons working on or near pipelines operated by ExxonMobil Pipeline Company (EMPCo), the following restrictions will apply to all work. Deviations from these restrictions will not be allowed without the express written consent of EMPCo. EMPCo operates its pipelines in accordance with the regulations of the U.S.
Department of Transportation and other state and local agencies and will enforce any restrictions necessary to protect the pipelines, properties, and safety of the public.

Detailed plans (plan and profile) for proposed construction must be submitted to ExxonMobil Pipeline Company (EMPCo) for review and approval to determine to what extent, if any, the pipeline right-of-way will be affected by the proposed construction or development. See submission addresses below.

These restrictions apply only to EMPCo operated pipelines. Other ExxonMobil affiliates should be contacted to determine requirements for their rights-of-way.

GENERAL RESTRICTIONS & REQUIREMENTS

- In accordance with law, constructors must contact the appropriate ONE CALL system(s) prior to work and comply with all applicable laws and regulations.

- No work may commence in or around EMPCo’s right of way until an EMPCo representative has authorized it to begin. Notice of desired work start date should be given to EMPCo a minimum of 72 hours in advance.

- A Third Party Excavation Safe Work Checklist should be signed each day prior to beginning work on EMPCo’s right of way.

- If it is determined that your project impacts EMPCo’s facilities a non-refundable advance fee may be required to conduct preliminary engineering design work. Any work performed by EMPCo to remedy such impacts will be entirely at the requestor’s expense, which will first require the full execution of EMPCo’s standard Reimbursement Agreement. Any necessary inspection, protection, lowering, adjustment, casing, re-coating, and/or relocation of the pipelines will not be scheduled until: (A) all prerequisite data is compiled; (B) the appropriate agreements are executed; and (C) sufficient funds are received. It is EMPCo’s minimum practice to inspect and recondition the pipeline(s) at proposed driveway, roadway or railroad crossings, the costs for which will be borne by the developer or owner.

- EMPCo’s right of way should not be used as temporary workspace (which includes its use for the staging, storage or laydown of equipment, materials or spoil) without proper approval from EMPCo.

- No encroachments of any kind, including but in no way limited to signs, monuments, buildings, parking lots, structures, patios, decks, slabs, trees, shrubs, manholes, swimming pools, wells, leach beds, septic systems, cesspools, impoundments or large debris (such as cars, boats, trailers, tanks, scrap metal or boulders) shall be located within the pipeline right of way. The intention of this restriction is to maintain an unobstructed right of way.
A driveway, roadway, or railroad may be allowed to cross the right-of-way perpendicular, and will require an agreement to be signed by the party responsible for the crossing.

Any change in the surface grade or elevation over or along the pipeline(s) and right-of-way must be approved in advance.

Blasting activities within 500 feet of an EMPCo pipeline will require an approved blasting plan in advance.

Any crossings of EMPCo’s pipelines with vehicles or heavy equipment shall be approved by EMPCo and may require ramping, matting or air bridging at requestor’s expense. An EMPCo inspector should be present when temporary materials are installed and removed on EMPCo right of way.

The constructor shall assume full liability for any damages to EMPCo facilities due to construction/excavation activities. Be advised that our pipelines are cathodically protected and may have an effect on utility lines that are made of electrically conductive material.

EXCAVATION/CONSTRUCTION RESTRICTIONS & REQUIREMENTS

No holes are to be bored or excavated within the boundaries of the right of way without prior approval of EMPCo.

All heavy equipment will have a spotter with it at all times while working within 10 feet of EMPCo’s pipeline or on EMPCo’s right of way.

The excavator shall install a bar across the teeth of the bucket to be used during excavation.

Excavation to initially expose the pipeline shall be parallel with the pipeline.

Mechanical excavation will cease once the earth has been removed to within (24”) twenty-four inches of EMPCo pipeline, appurtenances and at all valve/stopple sites until exposed.

Shovels or other soft digging techniques will be used to manually clean the area above and below the line. After the line has been initially located, the line shall be kept visible to the equipment operator during the excavation process.

No excavations shall be made on land adjacent to the pipeline that will in anyway impair or withdraw the lateral support and cause any subsidence or damage to the pipeline.
Driving of sheet piling or any other vibration inducing activities in the vicinity of EMPCo Right of Way must be reviewed and approved by EMPCo.

All backfill on EMPCo’s right of way shall be approved by EMPCo’s on-site inspector.

If EMPCo’s line is exposed during the excavation, the excavation will be made safe for entry and left open until EMPCo installs test lead or performs other visual inspection that may be required.

Constructor shall abide by all State & Federal Safety Rules and Regulations and shall operate equipment that is in good working condition and in a manner that is conductive to a safe working environment while working in or around EMPCo’s facilities. An ExxonMobil representative has the authority to suspend all excavation/construction activities in and around EMPCo facilities if the equipment operator appears to be unqualified or equipment maintenance is not in accordance with applicable regulations.

PIPELINE & UTILITY CROSSINGS

All pipelines, utility lines and other underground facilities constructed across EMPCo facilities shall cross the pipeline easement at an angle as close to 90 degrees as is possible but not less than 45 degrees, must be installed under the pipelines with a minimum vertical separation of 24 inches between structures, and installed in a manner acceptable to EMPCo’s on-site representative. If the installer elects to install its pipelines/utilities across EMPCo’s easement by any method of boring, then the installer at the request of EMPCo’s representative, shall verify the vertical separation between EMPCo’s facilities and the installer’s pipelines/utilities (See Bore Crossings).

An approved crossing ABOVE an EMPCo pipeline will need to clear EMPCo’s pipeline by 24 inches and require a crossing agreement to be signed by the company responsible for that crossing.

When approved by EMPCo, all electrical, fiber optic, and communications cables crossing above an EMPCo pipeline should be cased across the width of EMPCo’s right of way and covered with concrete 6” to 8” thick and a minimum width of 6 inches on each side and above the conduit.

Permanent aboveground markers identifying the crossing pipeline or utility shall be installed and maintained at the limits of EMPCo’s right of way and/or at the crossing.

If it is impractical to install and maintain aboveground markers due to the crossing location, plastic marker shall be installed below cultivation level and over EMPCo’s pipeline, extending the width of the right of way.
BORE CROSSINGS

- Bored crossings without a wire guide or with a clearance of 10’ or less will require the installation of peepholes on the incoming sides of EMPCo’s pipeline, at the point of intersection as to view the drill stem clearance prior to crossing.

HYDRO-VAC EXCAVATION

- Hydro-Excavation (Hydro-Vac) may be required in some situations to reduce the risk of damage to a pipeline if so deemed by EMPCo.
- Grounding of the vacuum truck and wand is required and should be tested; downwind venting of the truck is required.
- The water wand tip is to be an oscillation type (circular pattern) to prevent a concentrated water stream; stream nozzles are not allowed. The vacuum wand tip must have a neoprene or equivalent tip to prevent damage to the pipeline coating and surrounding structures.
- If the excavation site is suspected to contain hydrocarbon-impacted soil, a plan must be developed for testing and disposal of soil/water slurry (e.g., lined roll-off bin.) at requestor’s expense.

FENCE POST/UTILITY POLES

- Fences may be allowed to cross EMPCo’s easement, but will not be allowed along and within EMPCo’s easement. Fence posts shall not be placed within 4 feet horizontally of the pipeline(s). Fences should not be installed in manner that would obstruct EMPCo’s line of sight or access to EMPCo’s facilities. Flag poles, Utility poles and guy wires shall not be placed within EMPCo’s right of way within 8 feet horizontally of EMPCo’s pipeline(s).
- Overhead electrical or telephone lines shall be installed so that a minimum of 20 feet vertical clearance is maintained between the lowest point of the overhead crossing and the natural ground level above EMPCo’s pipeline.

OFFSHORE/OPEN WATER CROSSINGS

- EMPCo should be notified of any crossings of EMPCo pipelines located offshore or in open water. Upon notification of a proposed offshore or open water crossing an EMPCo representative will inform you of the crossing requirements.

NOTIFICATIONS
County: Brazoria

Highway: SH 36

All improvement, construction, or encroachment notifications and/or requests for information pertaining to assets operated by ExxonMobil Pipeline Company must be directed, in writing, to the appropriate address noted below:

Requests should include:

1. A brief description of the project or work to be performed
2. Appropriate vicinity map page(s) and coordinates
3. Three (3) copies of pertinent plan and profile drawings
4. Estimated timing of your project or special timing requirements
5. A contact name, company name, mailing address, and telephone number

Once received, your request will be logged, researched and responded to as soon as possible (minimum 45 days). Large requests for information may require substantially more time. Inclusion of all of the above information will help to expedite your request.

Submission Address by Area

<table>
<thead>
<tr>
<th>State</th>
<th>Company</th>
<th>Area</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT</td>
<td>ExxonMobil Pipeline Company</td>
<td>All</td>
<td>ROW & Claims: ENCROACHMENTS 2277 Springwoods Village Parkway E3.5A.552 Spring, TX 77389 Phone (406) 670-3979</td>
</tr>
<tr>
<td>AR, IL, MA, MO, RI, TN, IN, MI, MN, OK, CA, TX</td>
<td>Mobil Pipe Line Company ExxonMobil Pipe Line Company</td>
<td>All All</td>
<td>ROW & Claims: ENCROACHMENTS 2277 Springwoods Village Parkway E3.5A.552 Spring, TX 77389 Phone (281) 922-2024</td>
</tr>
<tr>
<td>LA</td>
<td>ExxonMobil Pipeline Company</td>
<td>All</td>
<td>ROW & Claims: ENCROACHMENTS 108 Business Park Avenue, Suite E Denham Springs, LA 70726 Phone (225) 715-9381</td>
</tr>
</tbody>
</table>

Item 5: Control of Work

Before contract letting, cross-section data for this project will be available to the prospective bidders in PDF format on the Department’s Houston District website located at:

https://ftp.dot.state.tx.us/pub/txdot-info/Pre-Letting%20Responses/Houston%20District/Construction%20Projects/

General Notes Sheet K
The cross-section data provided above is for non-construction purposes only and it is the responsibility of the prospective bidder to validate the data with the appropriate plans, specifications, and estimates for the projects.

Submit shop drawings electronically for the fabrication of items as documented in Table 2 below. Information and requirements for electronic submittals can be viewed in the “Guide to Electronic Shop Drawing Submittal” which can be accessed through the following web link, ftp://ftp.dot.state.tx.us/pub/txdot-info/library/pubs/bus/bridge/e_submit_guide.pdf. References to 11 in. x 17 in. sheets in individual specifications for structural items imply electronic CAD sheets.

<table>
<thead>
<tr>
<th>Spec Item No.'s</th>
<th>Product</th>
<th>Submittal Required</th>
<th>Approval Required (Y/N)</th>
<th>Contractor/Fabricator P.E. Seal Required</th>
<th>Reviewing Party</th>
<th>Shop or Working Drawing (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.16.18.2</td>
<td>Construction Load Analyses</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>WD</td>
</tr>
<tr>
<td>400</td>
<td>Excavation and Backfill for Structures (cofferdams)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>D</td>
<td>WD</td>
</tr>
<tr>
<td>403</td>
<td>Temporary Special Shoring</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>D</td>
<td>WD</td>
</tr>
<tr>
<td>420</td>
<td>Formwork/Falsework</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>D</td>
<td>WD</td>
</tr>
<tr>
<td>423</td>
<td>Retaining Walls, (calcs req'd.)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>425</td>
<td>Optional Design Calculations (Prstrs Bms)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>425</td>
<td>Prestr Concr Sheet Piling</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>425</td>
<td>Prestr Concr Beams</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>425</td>
<td>Prestr Concr Bent</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>426</td>
<td>Post Tension Details</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>434</td>
<td>Elastomeric Bearing Pads (All)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>441</td>
<td>Bridge Protective Assembly</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>441</td>
<td>Misc Steel (various steel assemblies)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>441</td>
<td>Steel Pedestals (bridge raising)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>441</td>
<td>Steel Bearings</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>441</td>
<td>Steel Bent</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>441</td>
<td>Steel Diaphragms</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>441</td>
<td>Steel Finger Joint</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>441</td>
<td>Steel Plate Girder</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>441</td>
<td>Steel Tub-Girders</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>441</td>
<td>Erection Plans, including Falsework</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>D</td>
<td>WD</td>
</tr>
<tr>
<td>449</td>
<td>Sign Structure Anchor Bolts</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>WD</td>
</tr>
<tr>
<td>450</td>
<td>Railing</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>462</td>
<td>Concrete Box Culvert</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>462</td>
<td>Concrete Box Culvert (Alternate Designs Only, calcs req'd.)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>464</td>
<td>Reinforced Concrete Pipe (Jack and Bore only; ONLY when requested)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
</tbody>
</table>
County: Brazoria
Highway: SH 36

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Y</th>
<th>Y</th>
<th>N</th>
<th>D</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>465</td>
<td>Pre-cast Junction Boxes, Grates, and Inlets</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>465</td>
<td>Pre-cast Junction Boxes, Grates, and Inlets (Alternate Designs Only, calcs req'd.)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>466</td>
<td>Pre-cast Headwalls and Wingwalls</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>467</td>
<td>Pre-cast Safety End Treatments</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>495</td>
<td>Raising Existing Structure (calcs req'd.)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>610</td>
<td>Roadway Illumination Supports (Non-Standard only, calcs req'd.)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>613</td>
<td>High Mast Illumination Poles (Non-standard only, calcs req'd.)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>627</td>
<td>Treated Timber Poles</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>644</td>
<td>Special Non-Standard Supports (Bridge Mounts, Barrier Mounts, Etc.)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>647</td>
<td>Large Roadside Sign Supports</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>650</td>
<td>Cantilever Sign Structure Supports - Alternate Design Calcs.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>650</td>
<td>Sign Structures</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>680</td>
<td>Installation of Highway Traffic Signals</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>682</td>
<td>Vehicle and Pedestrian Signal Heads</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>684</td>
<td>Traffic Signal Cables</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>685</td>
<td>Roadside Flashing Beacon Assemblies</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>686</td>
<td>Traffic Signal Pole Assemblies (Steel) (Non-Standard only)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>687</td>
<td>Pedestal Pole Assemblies</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>688</td>
<td>Detectors</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>784</td>
<td>Repairing Steel Bridge Members</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>WD</td>
</tr>
<tr>
<td>SS</td>
<td>Prestress Concrete Span</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>SS</td>
<td>Sound Barrier Walls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>SS</td>
<td>Camera Poles</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>TMS</td>
<td>SD</td>
</tr>
<tr>
<td>SS</td>
<td>Pedestrian Bridge (Calcs req'd.)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>SS</td>
<td>Screw-In Type Anchor Foundations</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>SS</td>
<td>Fiber Optic/Communication Cable</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>TMS</td>
<td>SD</td>
</tr>
<tr>
<td>SS</td>
<td>Spread Spectrum Radios for Signals</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>SS</td>
<td>VIVDS System for Signals</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>D</td>
<td>SD</td>
</tr>
<tr>
<td>SS</td>
<td>CTMS Equipment</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>TMS</td>
<td>SD</td>
</tr>
</tbody>
</table>

Notes:
1. Document flow for Working Drawings differs from Shop Drawings in that Working Drawings must be submitted to the Engineer rather than the Engineer of Record and they are for the information of the Engineer only; an approval stamp and distribution to all project offices is not required.

Key to Reviewing Party

- **D** – Consultant: Submit to Engineer of Record at rajesh.janarthanan@aecom.com
- **TMS** – Traffic Management System

General Notes
Sheet M
Item 7: Legal Relations and Responsibilities

Do not initiate activities in a Project Specific Location (PSL), associated with a U.S. Army Corps of Engineers (USACE) permit area, that have not been previously evaluated by the USACE as part of the permit review of this project. Such activities include those pertaining to, but are not limited to, haul roads, equipment staging areas, borrow and disposal sites. Associated defined here means materials are delivered to or from the PSL. The permit area includes the waters of the U.S. or associated wetlands affected by activities associated with this project. Special restrictions may be required for such work. Assume responsibility for consultations with the USACE regarding activities, including PSLs that have not been previously evaluated by the USACE. Provide the Department with a copy of consultations or approvals from the USACE before initiating activities.

The Contractor may proceed with activities in PSLs that do not affect a USACE permit area if a self-determination has been made that the PSL is non-jurisdictional or if proper USACE clearances have been obtained in jurisdictional areas or have been previously evaluated by the USACE as part of the permit review of this project. The Contractor is solely responsible for documenting any determinations that their activities do not affect a USACE permit area. Maintain copies of their determinations for review by the Department or any regulatory agency.

Document and coordinate with the USACE, if required, before hauling any excavation from or hauling any embankment to a USACE permit area by either 1 or 2 below:

1. Restricted Use of Materials for the Previously Evaluated Permit Areas.
 Document both the Project Specific Locations (PSL) and their authorization. Maintain copies for review by the Department or any regulatory agency. When an area within the project limits has been evaluated by the USACE as part of the permit process for this project:
 a. Suitable excavation of required material in the areas shown on the plans and cross sections as specified in the Item, “Excavation” is used for permanent or temporary fill (under the Item, “Embankment”) within a USACE permit area.
 b. Suitable embankment (under the Item, “Embankment”) from within the USACE permit area is used as fill within a USACE evaluated area.
 c. Unsuitable excavation or excess excavation, “Waste” (under the Item, “Excavation”), that is disposed of at a location approved within a USACE evaluated area.

2. Contractor Materials from Areas Other than Previously Evaluated Areas.
 Provide the Department with a copy of USACE coordination or approvals before
initiating any activities for an area within the project limits that has not been evaluated by the USACE or for any off right of way locations used for the following, but not limited to, haul roads, equipment staging areas, borrow and disposal sites:

a. The Item, “Embankment” used for temporary or permanent fill within a USACE permit area.

b. Unsuitable excavation or excess excavation, “Waste” (under the Item, “Excavation”), that is disposed of outside a USACE evaluated area.

The total area disturbed for this project is 332 acres. The disturbed area in this project, the project locations in the Contract, and Contractor project specific locations (PSLs) within 1 mile of the project limits for the Contract, will further establish the authorization requirements for storm water discharges. The Department will obtain an authorization to discharge storm water from the Texas Commission on Environmental Quality (TCEQ) for the construction activities shown on the plans. The Contractor is to obtain required authorization from the TCEQ for Contractor PSLs for construction support activities on or off the ROW. When the total area disturbed in the Contract and PSLs within 1 mile of the project limits exceeds 5 acres, provide a copy of the Contractor NOI for PSLs on the ROW to the Engineer (to the appropriate MS4 operator when on an off-state system route) and to the local government that operates a separate storm drain system.

During staging and construction operations, equipment is not allowed in the Waters of the United States.

Do not place temporary fill in areas determined to be wetlands. This prohibition includes constructing staging areas, temporary fills or other actions that would result in placing fill in wetlands within the right of way, which are not addressed in the plans. The Engineer will coordinate with the Houston District Environmental Section to determine if wetlands are present on this project before placing temporary fill. If wetlands exist, obtain the appropriate permits from the U.S. Army Corps of Engineers.

This project does not require a U.S. Army Corps of Engineers (USACE) Section 404 Permit before letting, but if a permit is needed during construction, assume responsibility for preparing the permit application. Submit the permit application to the Department’s District Environmental Section for approval. Once the permit application is approved, the Department will submit it to the USACE. Assume responsibility for the requested revisions, in coordination with the Department’s District Environmental Section.

Maintain the roadway slope stability. Maintaining slope stability is subsidiary to the various bid items.

The nesting / breeding season for migratory birds is February 15 through September 30.

Conduct any tree removal outside of the migratory bird nesting season. If this is not possible due to scheduling, then exercise caution to remove only those trees with no active nests. Do not
destroy nests on structures or in trees within the project limits during the nesting / breeding season.

Take measures to prevent the building of nests on any structures or trees within the project limits throughout the duration of the construction if work / removal will be performed during the nesting / breeding season. This can be accomplished by application of bird repellent gel, netting by hand every 3 to 4 days, or any other non-threatening method approved by the Houston District Environmental Section. Obtain this approval well in advance of the planned use. Contact the Houston District Environmental Section at 713-802-5244. The cost of this work is subsidiary to the various bid items.

This project is on a hurricane evacuation route. Provide at the pre-construction meeting a written plan outlining procedures to suspend work, secure the job site, and safely handle traffic through and across the project in the event of a hurricane evacuation.

During the hurricane season (June 1 through November 30), do not close any travel lanes except when the Contractor can demonstrate that he/she can provide labor, equipment, material, a work plan, and quality of work to satisfactorily return all lanes to an open, all-weather travel surface within 3 days of receiving written or verbal notice but no later than 3 days before the predicted hurricane landfall. Construction of temporary lanes to an all-weather surface will be paid for in accordance with Article 9.7, “Payment for Extra Work and Force Account Method.”

In addition to lane closures, cease work 3 days before the predicted hurricane landfall on or near the roadway that adversely impacts the flow of traffic and reduces the capacity of the highway during an evacuation. Vehicles of the Contractor, subcontractors, or material suppliers will not be allowed to enter or exit the traffic stream, including those for the purpose of material hauling and delivery, and mobilization or demobilization of equipment. When directed, this prohibition will include a reasonable time period for the evacuees to return to their point of origin.

No significant traffic generator events have been identified.

Item 8: Prosecution and Progress

Create, maintain, and submit for approval, a Critical Path Method (CPM) project schedule using computer software that is fully compatible with the latest version of Primavera Systems, Inc. or Primavera Project Planner (P3 or P6).

The Department will supply bidders, upon written request, one electronic copy of the time determination schedule. The time determination schedule provided is for informational use only and is not intended for bidding or construction purposes.

The Department will not adjust the number of days for the project and milestones, if any, due to differences in opinion regarding any assumptions made in the preparation of the schedule or for errors, omissions, or discrepancies found in the time determination schedule.
Working days will be computed and charged based on a 5 day workweek in accordance with Section 8.3.1.4.

Provide a virus-free computer disk or other acceptable electronic media containing the Primavera construction schedule.

The maximum number of days the time charges on this contract may be suspended due to contractor mobilization, and material fabrication/accumulation or processing delays is 90 days. The Engineer and the Contractor may mutually agree, in writing, to increase or decrease this maximum number of days. If contractor is not cleared to work in certain areas due to ROW or utility conflicts, the contractor shall follow the approved Management Plan as directed by the engineer.

The Lane Closure Assessment Fee is $200.00. This fee applies to the Contractor for closures or obstructions that overlap into restricted hour traffic for each hour or portion thereof, per lane, regardless of the length of lane closure or obstruction. For Restricted Hours subject to Lane Assessment Fee refer to the Item, “Barricades, Signs, and Traffic Handling.”

Item 100: Preparing Right of Way

Clean existing ditches under fill sections of undesirable materials including grass, muck, and trash. Perform this work in accordance with the Construction section of the Item, “Preparing Right of Way.” This work is subsidiary to this bid Item.

The Item, “Preparing Right of Way” will be measured for payment only in those designated areas shown on the plans. Preparing right of way necessary to perform construction that is outside designated areas is subsidiary to this bid Item.

Remove abandoned utilities that are in conflict with the new utilities, at no expense to the Department.

Reestablish and maintain right of way stakes after completing the right of way preparation activities and until the new utilities are in place.

Remove and assume ownership of the existing ground mounted signs within the limits of roadway construction unless otherwise noted or directed. This work is subsidiary to the Item, “Preparing Right of Way.”

Item 104: Removing Concrete

Removing concrete curb is paid as a separate bid item if the existing pavement on which it rests is not removed at the same time.

Item 105: Removing Treated and Untreated Base and Asphalt Pavement
Removing curb on cement-treated and untreated base or on cement treatment being removed at the same time is subsidiary to this bid Item.

Item 104: Removing Concrete
Item 105: Removing Treated and Untreated Base and Asphalt Pavement
Item 305: Salvaging, Hauling, and Stockpiling Reclaimable Asphalt Pavement

Case 1 - ACP over asphalt treatment
Removing the Asphalt Concrete Pavement (ACP) and the asphalt treatment/asphalt stabilized base are paid for under the Item, “Salvaging, Hauling, and Stockpiling Reclaimable Asphalt Pavement.”

Case 2 - ACP over cement or lime treatment
Removing the Asphalt Concrete Pavement (ACP) material is paid under the Item, “Salvaging, Hauling, and Stockpiling Reclaimable Asphalt Pavement.”

Removing the cement or lime treatment is paid under the Item, “Removing Treated and Untreated Base and Asphalt Pavement.”

Remove the ACP separately from the cement or lime treatment. Make the removed depth as uniform as possible during each removal pass if the pavement depth being removed is composed of different asphalt layers. Unless otherwise approved, stockpile the RAP of differing types of quality separately by its intended use such as for the asphalt treatment, cement treatment, lime treatment, or asphalt concrete pavement. Break, crush, or mill the stockpiled materials so that 100 percent pass the 2-in. sieve.

Case 5 - Concrete pavement over base
Removing the concrete pavement material is paid under the Item, “Removing Concrete.”

Removing the base material and any asphalt bondbreaker material is paid under the Item, “Removing Treated and Untreated Base and Asphalt Pavement.”

Item 110: Excavation

If manipulating the excavated material requires moving the same material more than once to accomplish the desired results, the excavation is measured and paid for only once regardless of the manipulation required.

Transition the ditch grades and channel bottom widths at structure locations. Use only approved channel excavation in the embankment.

Item 132: Embankment

If salvaged base is used for the embankment material, break it into small pieces to achieve the required density and to facilitate placing in the embankment. Obtain approval of the material before placing in the embankment.
Furnish Type C material with a maximum Liquid Limit (LL) of 65, a minimum Plasticity Index (PI) of 5, and composed of suitable earth material such as loam, clay, or other materials that form a suitable embankment.

The embankment material used on the project which has a Liquid Limit exceeding 45 will be tested for Liquid Limits at the rate of one test per 20,000 cu. yd. or per total quantity less than 20,000 cu. yd., unless otherwise directed. Only use material that passes the above tests.

Furnish material with a maximum Liquid Limit (LL) of 65.

Item 161: Compost
Item 162: Sodding for Erosion Control
Item 164: Seeding for Erosion Control
Item 166: Fertilizer
Item 168: Vegetative Watering

Refer to the “Fertilizer, Seed, Sod, Straw, Compost, and Water” plan sheet for material specifications, application rates, and for watering requirements.

Item 204: Sprinkling

Perform subsidiary sprinkling as required under various other items in accordance with the Item, “Sprinkling.”

Sprinkling for dust control is subsidiary to the various bid items.

Item 210: Rolling

Use a medium pneumatic roller meeting the requirements of Item 210 as directed. This work is subsidiary to the various bid items. On every asphalt shot, use a minimum of 3 pneumatic rollers or as directed. Use approved rolling patterns. Successive asphalt shots will not be allowed until acceptable rolling has been accomplished on the preceding asphalt shot.

Item 247: Flexible Base

Place the flexible base in courses a maximum of 8 in. thick (loose measurement). Mix flexible base that requires 2 or more mixtures of material, in an approved stationary pugmill type mixer. Material passing the No. 40 sieve is known as soil binder.

Tolerances relating to a specified gradation and to a plasticity index under this specification are permitted.

Furnish one type of the base material unless otherwise authorized.
Compact the courses to a minimum density of 95 percent of the maximum density as determined using test method TEX-113-E.

Sandstone aggregate is not permitted.

Item 260: Lime Treatment (Road-Mixed)

For slurry placing, before discharging through the distributors, sufficiently agitate or mix the lime and water to place the lime in suspension and to obtain a uniform mixture.

The Engineer will observe the lime treatment that the Contractor elects to open to construction traffic immediately after compaction. If the construction traffic damages the subgrade, route the traffic off the damaged section in accordance with the standard specification. If the construction traffic does not damage the subgrade, cure the subgrade until other courses of material cover it. Apply these courses within 14 days with a maximum curing period of 7 days.

Place the hydrated and the commercial lime as a water suspension or slurry according to the slurry placing method shown in Section 260.4.3.2, “Slurry Placement.”

Use the type of lime at particular locations as directed.

Place the quicklime dry or as a slurry.

For the dry quicklime, a spreader box is not required if the lime material is evenly distributed.

In limited areas, the Contractor may construct the lime slurry subgrade under a sequence of work in which the application, mixing, and compaction are completed in the same working day, if approved by the Engineer.

Provide documentation from certified public scales showing gross, tare, and net weights. Provide producer’s delivery tickets also showing gross, tare, and net weights. Completely empty the lime trailers at the project site. The Engineer may direct the Contractor to reweigh any shipment of lime on certified scales. The cost of this operation is subsidiary to the Item, “Lime Treatment (Road-Mixed).”

The percentage of lime shown on the plans is estimated on the basis of engineering tests. If soil tests made during construction indicate properties different than those originally anticipated, the Engineer may vary the percentage of the lime to provide soil characteristics similar to those of the preliminary tests.

Mix the lime with the new base material in an approved pug mill type stationary mixer.

If using Type A aggregate in accordance with the Item, “Flexible Base,” use only crushed stone, Grade 1.

Item 276: Cement Treatment (Plant-Mixed)
Before placing the new base, wet and coat the vertical construction joints between the new base and the previously placed base with dry cement.

If the total thickness of the cement treatment is greater than 8 in., compact it in multiple lifts in accordance with Section 276.4.3, “Compaction.” Place the courses in the same working day unless otherwise approved.

Use Class N Cement Treatment containing 4.5 percent cement based on the dry weight of the aggregate. There is no minimum compressive strength requirement for this Item.

The requirement for core drilling to determine the thickness of cement treatment is waived if using less than 500 sq. yd. at one location.

For widening the existing pavement, the Engineer may waive the requirements for preparing the subgrade by scarifying and compacting if the as-cut subgrade can be maintained to the density of the natural ground and to a uniform consistency when placing the base course. Keep the subgrade wet.

Compact in accordance with the standard specifications and complete the finishing operations within a period of 5 hours after adding the cement to the base material.

Cure the final course of cement treatment using an asphalt distributor that distributes the approved curing material and water mixture material at a rate of 0.25 gallons per square-yard evenly and smoothly or as recommended by the manufacturer at the recommended dilution rate, under a pressure necessary for proper distribution. Provide a curing material meeting the requirements of the Item, “Asphalts, Oils, and Emulsions” for curing the cement treatment. Use the following materials for curing the courses of cement treatment:

<table>
<thead>
<tr>
<th>Curing Material</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>All courses, except final course</td>
</tr>
<tr>
<td>PCE</td>
<td>Final course</td>
</tr>
</tbody>
</table>

Continue curing until placing another course or opening the finished section to traffic.

Spread the material so that the layers of base are uniform in depth and in loose density before compacting.

Type E material consists of Type A material, crushed concrete (except under flexible pavement), or Reclaimed Asphalt Pavement (RAP) meeting the requirements of the Item, “Flexible Base.” If approved, the 50 percent maximum RAP limitation may be waived.

Unless otherwise directed, place the next pavement layer within 7 working days of placing the base.
If using crushed stone for the Type E material under this Item, ensure it meets the requirements for the Item, “Flexible Base,” Type A, Grade 1-2. Texas Test Method TEX-117-E is not required for this Item.

If using Recycled Type E cement treatment under proposed flexible pavement, produce it using the existing base salvaged from within this project or from other approved Department projects and salvaged asphalt concrete pavement. Do not use crushed concrete under flexible pavement.

If using Recycled Type E cement treatment under proposed concrete pavement, produce it using the existing base salvaged from within this project or from other approved Department projects, salvaged asphalt concrete pavement, or crushed concrete. If using crushed concrete as an aggregate, meet the requirements of Grade 3.

If using salvaged existing base and asphalt concrete pavement as described above, size it so that all the material, except the existing individual aggregate, passes the 2-in. sieve and is of a gradation that allows satisfactory compaction. Provide salvaged material that does not contain deleterious material such as clay or organic material. Provide material passing the No. 40 sieve, defined as soil binder, with a maximum Plasticity Index of 10 and a maximum Liquid Limit of 35 when tested in accordance with test method TEX-106-E.

Meet the following additional requirements if the base and ACP are salvaged from other Department projects:

1. Obtain written approval before using the material.
2. Salvage and stockpile by approved methods.
3. Stockpile the material for exclusive use by the Department.

Item 292: Asphalt Treatment (Plant-Mixed)
Item 341: Dense-Graded Hot Mix Asphalt

Unless otherwise shown on the plans, RAP generated by this project will become the property of the Contractor for use in the current construction project or in future projects.

Item 292: Asphalt Treatment (Plant-Mixed)

If using the iron ore topsoil as the primary aggregate, meaning 80 percent or more by weight of the total mixture, the requirements for the water susceptibility test are waived.

Mixtures containing the iron ore topsoil are exempted from test methods TEX-217-F (Part I, separation of deleterious material and Part II, decantation test for coarse aggregate) and TEX-203-F (Sand Equivalent Test).

Assume responsibility for proportioning the materials entering the asphalt mixture, regardless of the type of plant used.
Furnish the mix designs for approval.

Meet the following grading requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3/4 in.</td>
<td>-</td>
</tr>
<tr>
<td>1 in.</td>
<td>-</td>
</tr>
<tr>
<td>1/2 in.</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>30 - 70</td>
</tr>
<tr>
<td>No. 40</td>
<td>15 - 45</td>
</tr>
</tbody>
</table>

Physical requirements are as follows:

- Maximum Plasticity Index (PI) = 8
- Maximum Liquid Limit (LL) = 35
- Maximum Wet Ball Mill = 50 (crushed stone)
- Maximum LA Abrasion = 50 (iron ore)

If blending the materials, perform the Wet Ball Mill test for the composite aggregate.

Form bituminous mix incorporating 3.5 to 7 percent asphaltic binder by dry weight. For nominal aggregate size less than 0.5 in., design the mix in accordance with test method TEX-204-F. The minimum stability in accordance with TEX-208-F is 30 percent with a laboratory molded density of 96 percent plus or minus 1.5 percent.

If the layer thickness after placing is 1.25 in. or less, the bondbreaker is exempt from the in-place density control described in Section 292.4.5, “Compaction.”

Item 305: Salvaging, Hauling, and Stockpiling Reclaimable Asphalt Pavement

Unless otherwise shown on the plans, RAP generated by this project will become the property of the Contractor for use in the current construction project or in future projects.

Item 340: Dense-Graded Hot Mix Asphalt (Small Quantity)

Taper the asphalt concrete pavement at the beginning and ending points. Use a maximum 6H:1V slope for the asphalt concrete pavement edge.

Where the 6H:1V ACP edge taper extends over onto the unsurfaced shoulders, blade off the loose existing shoulder material to provide a solid base for the outside taper edge. After placing the ACP overlay, blade this material back against the edge taper. This work is subsidiary to the various bid items.
The stockpile will be the point of sampling of coarse aggregate for test method TEX-217-F (Part II, decantation).

Place the asphalt concrete pavement in courses as shown on the typical sections.

Do not use petroleum-based solvents in the beds of hot mix asphalt delivery vehicles.

Dilution of tack coat is not allowed.

For determining the Asphalt Content, only ignition ovens will be allowed.

Item 360: Concrete Pavement

Where the pavement curb is left off for a later tie, provide the dowels or the tie bars as indicated on the paving detail sheets. The dowel bars and tie bars are subsidiary to the various bid items.

Repair portions of the concrete pavement surfaces that are damaged while in a plastic state before that area receives permanent pavement markings and opens to traffic. Perform repairs that are structurally equivalent to and cosmetically uniform with the adjacent undamaged areas. Do not repair by grouting onto the surface.

On pavement widening, hand finishing in place of the longitudinal float will be permitted.

Where existing pavement is widened with new pavement, place the new pavement a minimum of 2 ft. wide.

Equip the batching plants to proportion by weight, aggregates and bulk cement, using approved proportioning devices and approved automatic scales.

For mono curb, the curb height transitions will be paid at the contract unit price of the larger curb height in the transition. The 2.5-in. laydown curbs for driveways will be paid at the unit price bid for the Item, “Conc Curb (Mono) (Ty II).”

High-early strength cement may be used for frontage road and city street intersection construction.

Do not use limestone dust of fracture as fine aggregate.

If the concrete design requires greater than 5.5 sacks of cementitious material per cubic yard, obtain written approval. If placing concrete pavement mixes from April 1 to October 31, inclusive, use Mix Design Option 1 as specified in Section 421.4.2.6.1.

Perform saw cutting as shown on the plans in accordance with Section 360.4.10, “Sawing Joints.” This saw cutting is subsidiary to this bid Item.
Complete the entire Fast Track Concrete construction process, from the time the Fast Track Work Area is closed to traffic, to the time the Fast Track Work Area is opened to traffic. The Fast Track operation includes, but is not limited to, traffic control, existing pavement and subgrade removal, preparation of subgrade, placement of steel, placement of Fast Track concrete pavement, cure time, striping, etc. Perform work in the Fast Track Work Area in an expeditious manner, within the allowable time period for any area shown below:

<table>
<thead>
<tr>
<th>Fast Track Work Area</th>
<th>Allowable Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SH 36 / Houston St Intersection (Phase 1 Step 2)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>2. SH 36 / Woodward St Intersection (Phase 1 Step 2)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>3. SH 36 / Mulcahy Ave Intersection (Phase 1 Step 2)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>4. SH 36 / Bryan St Intersection (Phase 1 Step 2)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>5. SH 36 / Gus Schlitskus Rd Intersection (Phase 1 Step 2, constructed in halves)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>6. SH 36 / CR 5 Intersection (Phase 1 Step 2, constructed in halves)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>7. SH 36 / FM 1462 Intersection (Phase 1 Step 3, constructed in halves)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>8. SH 36 / CR 15 Intersection (Phase 1 Step 3, constructed in halves)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>9. SH 36 / CR 21 Intersection (Phase 2, constructed in halves)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>10. SH 36 / CR 23 Intersection (Phase 2, constructed in halves)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>11. SH 36 / CR 828 Intersection (Phase 2, constructed in halves)</td>
<td>2 weekend days maximum</td>
</tr>
<tr>
<td>12. SH 36 / Driveway STA 2069+83.94 (Phase 3, constructed in halves)</td>
<td>2 weekend days maximum</td>
</tr>
</tbody>
</table>

Failure to perform any Fast Track Work Area construction within the above time frames will be cause for the Engineer to require the Contractor to shut down all other construction operations to ensure all resources are directed toward the completion of the Fast Track operation. This shutdown will remain in force until the Fast Track operation is complete. Such a shutdown will not warrant additional time, time suspension, or any additional costs to the Department.

Unless otherwise directed in writing, provide Class HES concrete with a minimum average flexural strength of 425 psi or a minimum average compressive strength of 3,000 psi in 16 hours.

When directed in writing, open the pavement to traffic before the minimum requirements have been attained.

When needed, place and remove forms in accordance with Section 360.4.5, except do not remove forms until at least 6 hours after concrete has been placed. The time for the form removal
may be extended with the direction of the Engineer if weather or other conditions make it advisable.

Sprinkling and rolling, required for the compaction of the rough subgrade in advance of fine-grading are subsidiary to this Item. Maintenance of a moist condition of the subgrade in advance of fine-grading and concrete is subsidiary work, as provided above.

Items 360, 420, and 421: All Concrete Items

For the Department’s concrete cylinder split samples, transport the test cylinders to the Houston District Laboratory located at 7600 Washington Avenue in Houston, or to the appropriate Area Laboratory, when applicable. Transporting the test cylinders is subsidiary to the various bid items.

The approach pavement is paid for under the Item, “Concrete Pavement.”

Item 400: Excavation and Backfill for Structures

Plugging existing pipe culverts is subsidiary to the various bid items.

If Recycled Cement Treatment (Type D) is included in the plans, the following additional requirements apply:

1. Use only approved sand, crushed concrete, or salvaged base free from deleterious matter, as aggregate for cement-stabilized backfill.

2. Provide crushed concrete or salvaged base backfill material in accordance with the Item, “Cement Treatment (Plant-Mixed)(Type D)” (base or crushed concrete), except the recycled Type D material must not contain Reclaimed Asphalt Pavement (RAP).

3. For backfill material below the spring line of pipes, use cement-stabilized sand rather than Recycled Type D backfill material.

4. For the cement-stabilized sand backfill, use a minimum of 7 percent of hydraulic cement based on the dry weight of backfill material. The cement content for the crushed concrete and salvaged base is specified in the Item, “Cement Treatment (Plant-Mixed) (Type D).”

5. Place and compact the stabilized backfill material using a gradation that provides a dense mass without segregating and is impervious to passing of water.

Item 416: Drilled Shaft Foundations

Include the cost for furnishing and installing anchor bolts mounted in the drilled shafts in the unit bid price for the various diameter drilled shafts.
The Department may test using ultrasonic methods the anchor bolts for overhead sign supports, light standards, and traffic signal poles after they are installed. Replace faulty anchor bolts as directed. Do not weld the anchor bolts.

Item 420: Concrete Substructures

Unless otherwise noted, use Class C concrete with an ordinary surface finish for signal, lighting, or sign structure foundations.

Item 421: Hydraulic Cement Concrete

Entrained air is required in all slip formed concrete (bridge rail, concrete traffic barrier, pavement, etc.), but is not required for other structural concrete. Adjust the dosage of air entraining agent for low air content as directed or allowed by the Engineer. If entrained air is provided where not required, do not exceed the manufacturer’s recommended dosage.

Item 423: Retaining Walls

Place concrete riprap mow strips for retaining walls as shown on the plans and in accordance with the Item, “Riprap.” Use Class B concrete reinforced with No. 4 bars spaced at 18 in. centers each direction and placed 2 in. below the surface. This work is paid for under the Item, “Riprap.”

Provide and maintain positive drainage away from the earth wall system, including the leveling pad, for the contract duration.

Approved Concrete Block Retaining Wall Systems are listed at the website below or from the Department’s home page>Business>Bridge>Retaining Walls>Approved Concrete Block Retaining Wall Systems:

http://www.txdot.gov/business/resources/approved-systems/retaining-system.html

Item 427: Surface Finishes for Concrete

Provide a Surface Area I finish for structures. Use concrete paint for the surface finish.

Item 432: Riprap

If stone riprap is shown on the plans, use common stone riprap in accordance with Section 432.2.3.3, placed dry in accordance with Section 432.3.2.3. Do not grout. Crushed concrete may also be used.

Item 442: Metal for Structures

Prestressed concrete panels will not be allowed on steel structures.

Item 449: Anchor Bolts
Pipe joint compound, as used in this Item, is an electrically conducting protective thread lubricant compound to be used on the foundation anchor bolts for illuminations poles (Crouse-Hinds TL-2, 0z/Gedney Stl, or Thomas & Betts Kopr-Shield).

Item 462: Concrete Box Culverts and Drains
Item 464: Reinforced Concrete Pipe

Rubber gaskets are required for concrete pipe joints except for connections of safety end treatments, driveway culverts, and joints between the existing pipes and extensions.

If performing the work under the Item, “Jacking, Boring, or Tunneling Pipe or Box,” use tongue and groove pipe instead of rubber gaskets at these locations.

Open, install, and backfill each section, or a portion of a section, in the same day at locations requiring pipe culverts under existing roadways.

Place the pipe drains across existing roadways half at a time to allow passage of traffic. No trenches may remain open overnight.

Known locations of existing stub-outs are shown on the plans, but these stub-outs may be in a different position or condition. Delays, inconveniences, or additional work required will not be a basis for additional compensation.

Provide leave-outs or holes in the proposed storm drain structures and pipes for drainage during interim construction. This work is subsidiary to the various bid items.

The flowline elevations of side road structures are based on the proposed ditches. Field-verify these elevations and adjust them as necessary to meet the field conditions. Before placing these structures, prepare and submit for approval, the data (revised elevation, alignment, length, etc.) for the adjusted structures.

Item 465: Junction Boxes, Manholes, and Inlets

If required on the plans, build manholes and inlets to stage 1 construction, cover with temporary pavement, and complete in a later phase of construction. This temporary covering and pavement are subsidiary to the various bid items.

Construct manholes and inlets in graded areas, first to an elevation at least 4 in. above the top of the highest entering pipe and cover with a wooden cover. Complete the construction of such manholes and inlets to the finished elevation when completing the grading work for such manholes and inlets. Adjust the final elevation, if required, since this elevation is approximate.

Construct manholes and inlets in paved areas to an elevation so their temporary wooden covers are flush with the surface of the base material.

Do not leave excavations or trenches open overnight.
Items 496: Removing Structures

Assume ownership and remove from the project site, items salvaged from the existing bridge decks and steel beams.

Do not permit debris resulting from the structure removal or construction activities to enter a natural or manmade waterway such as drainage channels, rivers, streams, bays, etc. Remove debris which falls into such waterways. This work is subsidiary to the Item, “Removing Structures.”

Item 502: Barricades, Signs, and Traffic Handling

Use a traffic control plan for handling traffic through the various phases of construction. Follow the phasing sequence unless otherwise agreed upon by the Area Engineer and the Project Manager. Ensure this plan conforms to the latest “Texas Manual on Uniform Traffic Control Devices” and the latest Barricade and Construction (BC) Standard Sheets. The latest versions of Work Zone Standard Sheets WZ (BTS-1) and WZ (BTS-2) are the traffic control plan for the signal installations.

Submit changes to the traffic control plan to the Area Engineer. Provide a layout showing the construction phasing, signs, striping, and signalizations for changes to the original traffic control plan.

Furnish and maintain the barricades and warning signs, including the necessary temporary and portable traffic control devices, during the various phases of construction. Place and construct these barricades and warning signs in accordance with the latest “Texas Manual on Uniform Traffic Control Devices” for typical construction layouts.

Cover work zone signs when work related to the signs is not in progress, or when any hazard related to the signs no longer exists.

Keep the delineation devices, signs, and pavement markings clean. This work is subsidiary to the Item, “Barricades, Signs, and Traffic Handling.”

If a section is not complete before the end of the workday, pull back the base material to the existing pavement edge on a 6H: 1V slope. Edge drop-offs during the hours of darkness are not permitted.

Before detouring traffic onto the mainlane shoulders, remove dirt, debris, vegetation, and other deleterious material from the surface of the shoulders. Appropriately sign the detour in an approved manner. This work is subsidiary to the various bid items.

Cover or remove the permanent signs and construction signs that are incorrect or that do not apply to the current situation for a particular phase.
Replace the overhead signs, informational signs, and exit signs to be removed, with temporary signs providing the correct information to the traveling public. Size the replacement signs and include them in the traffic control plan.

Do not mount signs on drums or barricades, except those listed in the latest Barricades and Construction standard sheets.

Use traffic cones for daytime work only. Replace the cones with plastic drums during nighttime hours.

Place positive barriers to protect drop-off conditions greater than 2 ft. within the clear zone that remain overnight.

Do not reduce the existing number of lanes open to traffic except as shown on the following time schedule:

<table>
<thead>
<tr>
<th>Day</th>
<th>Daytime Closure Hours</th>
<th>Nighttime Closure Hours</th>
<th>Restricted Hours Subject to Lane Assessment Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>9:00 AM – 3:00 PM</td>
<td>Engineer Approval</td>
<td>5:00 AM – 9:00 AM 3:00 PM – 7:00 PM</td>
</tr>
<tr>
<td>Tuesday</td>
<td>9:00 AM – 3:00 PM</td>
<td>Engineer Approval</td>
<td>5:00 AM – 9:00 AM 3:00 PM – 7:00 PM</td>
</tr>
<tr>
<td>Wednesday</td>
<td>9:00 AM – 3:00 PM</td>
<td>Engineer Approval</td>
<td>5:00 AM – 9:00 AM 3:00 PM – 7:00 PM</td>
</tr>
<tr>
<td>Thursday</td>
<td>9:00 AM – 3:00 PM</td>
<td>Engineer Approval</td>
<td>5:00 AM – 9:00 AM 3:00 PM – 7:00 PM</td>
</tr>
<tr>
<td>Friday</td>
<td>9:00 AM – 3:00 PM</td>
<td>Emergency Only</td>
<td>5:00 AM – 9:00 AM 3:00 PM – 7:00 PM</td>
</tr>
<tr>
<td>Saturday</td>
<td>9:00 AM – 3:00 PM</td>
<td>Emergency Only</td>
<td>5:00 AM – 9:00 AM 3:00 PM – 7:00 PM</td>
</tr>
<tr>
<td>Sunday</td>
<td>Emergency Only</td>
<td>Engineer approval</td>
<td>None</td>
</tr>
</tbody>
</table>

The above times are approved for the traffic control conditions listed. The Area Engineer may approve other closure times if traffic counts warrant. The Area Engineer may reduce the above times for special events.

Law enforcement assistance will be required for this project and is expected to be required for major traffic control changes and lane closures. Coordinate with local law enforcement and arrange for law enforcement as directed or agreed by the Engineer. Before payment will be made, complete the “Daily Report on Law Enforcement Force Account Work” (Form 318), provided by the Department and submit daily invoices that agree with this form for any day during the month in which approved services were provided.

Provide full-time, off-duty, uniformed, certified peace officers, as part of traffic control operations. The peace officers must be able to show proof of certification by the Texas
Commission on Law Enforcement Officers Standards. The cost of the officers is paid for on a force account basis.

A minimum of 7 days in advance of any total closure, notify the Houston District Public Information Office of which roadways, ramps, intersections, or lanes will be closed, the dates they will remain closed, and when they will be opened again to traffic.

A minimum of 7 days in advance of any total closure, place a portable changeable message (PCM) sign at the location of each total closure which informs the traveling public of the details of the closure. Alternately, if the Traffic Control Plan provides a positive barrier at the location, a non-trailer mounted static message board sign behind the positive barrier may be used in place of a PCM.

Minimize the number of working days for street closures. The following table lists the maximum number of working days allowed for each street closure. The closure period for each intersection occurs only during the phase when constructing that street, unless otherwise directed. Reopen the street within the number of working days allowed; otherwise the Engineer may cease construction activities not affiliated with reopening the closed street, until it fully reopens to the traveling public. Time charges will not be suspended nor increased to compensate for this occurrence.

<table>
<thead>
<tr>
<th>Street Name</th>
<th>Number of Working Days Allowed for Closure*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 264N Houston St</td>
<td>2</td>
</tr>
<tr>
<td>CR 264U Woodward St</td>
<td>2</td>
</tr>
<tr>
<td>CR 264 Mulcahy Ave</td>
<td>2</td>
</tr>
<tr>
<td>CR 264W Bryan St</td>
<td>2</td>
</tr>
</tbody>
</table>

*Or as approved by the Engineer

The Contractor Force Account “Safety Contingency” that has been established for this project is intended to be utilized for work zone enhancements, to improve the effectiveness of the Traffic Control Plan, that could not be foreseen in the project planning and design stage. These enhancements will be mutually agreed upon by the Engineer and the Contractor’s Responsible Person based on weekly or more frequent traffic management reviews on the project. The Engineer may choose to use existing bid items if it does not slow the implementation of enhancement.

Item 504: Field Office and Laboratory

Furnish one Type A structure for the laboratory. Ensure the windows for the structure have burglar bars.

Furnish a Type D structure for the asphalt mix control laboratory for the Engineer’s exclusive use. In addition to the requirements of this Item, “Field Office and Laboratory,” ensure this
structure has a minimum height of 8 ft. Also ensure it has a minimum of 400 sq. ft. of gross floor area suitable for permanently located asphalt plants or 200 sq. ft. for temporarily located asphalt plants serving one project. Partition the floor area into a minimum of 2 interconnected rooms, and provide each room with an exterior door and a minimum of 2 windows. Construct the floor of sufficient strength to support the testing equipment and with an impervious covering.

Adequately air condition the Type D structure and furnish it with a minimum of one desk, 3 chairs, one file cabinet, a telephone, and one built-in equipment-storage cabinet suitable for storing nuclear equipment. Ensure the cabinet is a minimum of 3 ft. wide by 2 ft. deep by 3 ft. high and has a secure lock. Provide the structure with a 240-volt electrical service entrance. Use a licensed electrician to determine the service size and service entrance conductors. Provide a minimum service of four 120-volt circuits with 20 amp breakers, and a maximum of 2 grounded convenience outlets per circuit and a minimum of two 220-volt ovens with vents to the outside. Provide a structure with a minimum of 2 convenience outlets per wall and a utility sink with an adequate, clean potable water supply for testing. Do not use space heaters to heat the structure. Use support blocks for the portable structures, tie them down, and securely attach them to the ground.

Determine the asphalt content by the ignition method and meet the requirements of Section 504.2.2.4.1, “Asphalt Content by Ignition Method” except provide a NEMA 6-50R (204/240 volt, 50 A) outlet within 2.25 ft. of the ignition oven location.

If an asphalt mix plant is located at the project site, provide a Type D structure with the dimensions of a Type C structure, at the project site to perform the asphalt mix quality control tests.

If a commercial source is used for the asphalt mix, provide a Type D structure with the dimensions of a Type C structure, at the commercial source site to perform the asphalt mix quality control tests.

Equip each lab with a first aid kit and at least a 20 lb. ABC type fire extinguisher. Also equip the labs with an eye wash station. Provide equipment that meets the minimum OSHA requirements.

Furnish one Type E structure for the field office. Ensure the windows for the structure have burglar bars.

Provide a Type E field office meeting the requirements of a Type C structure. Provide this as a single structure with a minimum of 500 sq. ft. of floor space and 3 rooms. Provide the structure with the following facilities. The cost of providing these items is subsidiary to this bid Item:

1. Three desks with 3 swivel chairs, two 5-drawer file cabinets and 3 straight back chairs.
2. Telephone service and equipment consisting of a minimum of one telephone with one extension. Include the call-waiting feature in the service.
3. Potable water with an electric water cooler, a cup dispenser, and cups.
4. Adequate heating, air conditioning, lighting, and a sufficient number of electrical outlets.
5. A commercially available toilet or equivalent facility for the field office and each laboratory.
6. A suitable printer/copier/fax machine for the field office as approved by the Engineer.

Provide a fenced enclosure approximately 100 ft. by 200 ft. Provide an appropriate parking area covered with a suitable base material and with a minimum of 2 security lights, one on each end of the lot. Cost of the work and materials to provide the enclosure are subsidiary to the various bid items.

Piped in water to the Engineer’s building will not be required, but furnish water for curing concrete test specimens.

The above requirements are subsidiary to the various bid items.

Assume ownership of temporary chain link security fences.

Equip each field office with a first aid kit and at least a 20 lb. ABC type fire extinguisher.

Item 506: Temporary Erosion, Sedimentation and Environmental Controls

A Storm Water Pollution Prevention Plan (SWP3) is required. Since the disturbed area is more than 5 acres, a “Notice of Intent” (NOI) is also required.

Use appropriate measures to prevent, minimize, and control the spill of hazardous materials in the construction staging area. Remove and dispose of materials in compliance with State and Federal laws.

Before starting construction, review with the Engineer the SWP3 used for temporary erosion control as outlined on the plans. Before construction, place the temporary erosion and sedimentation control features as shown on the SWP3.

Schedule the seeding or sodding work as soon as possible. The project schedule provides for a vegetation management plan.

After completing earthwork operations, restore and reseed the disturbed areas in accordance with the Department’s specifications for permanent or temporary erosion control.

Implement temporary and permanent erosion control measures to comply with the National Pollution Discharge Elimination System (NPDES) general permit under the Clean Water Act.

Before starting grading operations and during the project duration, place the temporary or permanent erosion control measures to prevent sediment from leaving the right of way.
Item 512: Portable Traffic Barrier

Transport Low Profile Concrete Barriers (LPCB) used for traffic handling from the Department’s stockpile located on the north side of IH 610 at Long Drive.

Where required by the Engineer, provide anchor pins for Type 2 Low Profile Concrete Barriers (LPCB) as shown on the current LPCB standard. Anchor pins are subsidiary to the Low Profile Concrete Barrier.

Transport Standard Height Portable Traffic Barriers (including J-J Hook and Safety Shape) used for traffic handling from the Department’s stockpile located on the south side of IH 610 at Cedar Crest Blvd. (located across IH 610 from Long Drive).

Use only the J-J Hook type connection between barriers.

After completing the project, return Low Profile Concrete Barriers (LPCB) used for traffic handling, to the Department’s stockpile located on the north side of IH 610 at Long Drive. After completing the project, return the associated LPCB connecting hardware to the area office or as directed.

After completing the project, return Standard Height Portable Traffic Barriers (including J-J Hook and Single Slope) used for traffic handling, to the Department’s stockpile located on the south side of at IH 610 at Cedar Crest Blvd. (located across IH 610 from Long Drive). After completing the project, return the associated Single Slope barrier connecting hardware to the area office or as directed.

After completing the project, Standard Height Safety Shape Portable Traffic Barriers used for traffic handling and the associated connecting hardware will become the property of the Contractor.

If placing the portable traffic barrier on pre-stressed concrete box beams with exposed reinforcing steel, protect the reinforcing steel by supporting the portable traffic barrier on 4 in. by 4 in. timbers. Place the timbers transversely and space them on 4 ft. centers. The cost of the labor and materials to perform this work are subsidiary to the Item, “Portable Traffic Barrier.”

Item 530: Intersections, Driveways, and Turnouts

For driveways and turnouts, coarse aggregate Grade No. 3 through No. 8 conforming to the gradation requirements specified in the Item, “Hydraulic Cement Concrete” will be permitted.

Item 540: Metal Beam Guard Fence

Painting the timber posts is not required.
Use timber posts for galvanized steel metal beam guard fence, except for anchorage at turned down ends.

Furnish and install wood blocks between the rail elements and the timber posts as detailed on the plans. These block-outs are subsidiary to this bid Item.

The quantity of the metal beam guard fence is subject to change.

Provide a mow strip as shown on the plans, at metal beam guard fence locations, including any guardrail end treatments.

Galvanize the rail elements supplied for this project by using a Type II Zinc Coating.

At locations requiring attachment of Metal Beam Guard Fence (MBGF) to concrete railing or concrete traffic barrier, repair and fill any existing holes in the railing or barrier that are not in the correct location for attaching the new MBGF. Perform this work in accordance with the Item, “Concrete Structure Repair.” Existing anchor bolt holes that cannot be utilized must be filled with an epoxy grout before drilling new holes. Then core-drill new holes in the correct locations and repair any resulting spalls at no expense to the Department. This work is considered subsidiary to the MBGF transition section (Item 540).

Item 542: Removing Metal Beam Guard Fence

The Contractor is to assume ownership of all removed MBGF elements and posts.

Item 545: Crash Cushion Attenuators

The Contractor is to assume ownership of all removed or unused crash cushion attenuators. Temporary stockpile locations can be on the project site or at the field office. A MASH compliant crash cushion attenuator is required for every temporary and permanent installation.

Item 556: Pipe Underdrains

Do not use crushed blast furnace slag.

Lay the underdrain pipe on a slope to insure proper drainage.

Tie the under drain pipe into the inlets as shown on the plans.

Item 585: Ride Quality for Pavement Surfaces

To eliminate the need for corrective action due to excessive deviations in the final surface layers, exercise caution to ensure satisfactory profile results in the intermediate paving layers (mixture).
Milling will not be allowed as a corrective action for excessive deviations in the final surface layer of hot-mix asphalt.

For Continuously Reinforced Concrete Pavement (CRCP) mainlanes and direct connectors, use Surface Test Type B and Pay Adjustment Schedule 2.

For all other roads (cross streets and intersections), use Surface Test Type A.

Item 618: Conduit

Item 620: Electrical Conductors

Item 628: Electrical Services

If the specifications for electrical items require UL-listed products, this means UL-listed or CSA-listed.

Item 618: Conduit

When backfilling bore pits, ensure that the conduit is not damaged during installation or due to settling backfill material. Compact select backfill in 3 equal lifts to the bottom of the conduit; or if using sand, place it 2 in. above the conduit. Ensure backfill density is equal to that of the existing soil. Prevent material from entering the conduit.

Construct bore pits a minimum of 5 ft. from the edge of the base or pavement. Close the bore pit holes overnight.

Unless otherwise shown on the plans, install underground conduit a minimum of 24 in. deep. Install the conduit in accordance with the latest National Electrical Code (NEC) and applicable Department standard sheets. Place conduit under driveways or roadways a minimum of 24 in. below the pavement surface.

If using casing to place bored conduit, the casing is subsidiary to the conduit.

If placing the conduit under existing pavement to reach the service poles, bore the conduit in place and extend it a minimum distance of 5 ft. beyond the edge of shoulder or the back of curb.

Where PVC, duct cable, and HDPE conduit 1 in. and larger is allowed and installed per Department standards, provide a PVC elbow in place of the galvanized rigid metal elbow required by the Electrical Details standards. Ensure the PVC elbow is of the same schedule rating as the conduit to which it is connected. Use only a flat, high tensile strength polyester fiber pull tape to pull conductors through the PVC conduit system.

Remove conductor and conduit to be abandoned to 1 ft. below the ground level. This work is subsidiary to the various bid items.

Do not use cast iron junction boxes in concrete traffic barriers and single slope traffic barriers. Use polymer concrete junction boxes in place of the cast iron junction boxes shown on standard
sheets CTBI (3), CTBI (4), and SSCB (4). Mount the junction boxes flush (+ 0 in., - 1/2 in.) with the concrete surface of the concrete barrier.

Locate the underground utilities within the project limits. Provide the equipment necessary for locating these utilities, locate, and mark them before starting any excavation work in the area. This work is subsidiary to the various bid items. If the Contractor damages or cause damage to any existing underground utilities, repair such damage at no cost to the Department.

Ensure the interconnection of new equipment to the existing system does not interfere with the operation of the remaining system components. Ensure the system remains completely operational between the hours of 6:00 a.m. Monday and 12:00 a.m. (midnight) Saturday.

Do not interrupt system operation without coordinating with the Department’s operations personnel at Houston Transtar (Mr. Carlton Allen) at (713) 881-3285.

Perform work to be done on cables during weekends only.

Provide Liquid-Tight Flexible Metal (LTFM) conduit if the plans refer to flexible metal conduit. Do not use flexible metal conduit.

Unless otherwise shown on the plans, place conduit runs behind curbs at locations where curbs exist.

Use schedule 80 PVC conduit to house conductor runs under paved riprap, roadway, or driveways, unless otherwise shown on the plans.

Use Rigid Metal Conduit (RMC) for exposed conduit.

Before backfilling conduit trenches, place a detectable underground metalized mylar marking tape above the conduit and concrete encasement. Imprint the marking tape with, “TxDOT CONDUIT AND FIBER OPTIC CABLE SYSTEM. CALL (713) 802-5909 BEFORE PROCEEDING” every 18 in. Supplying and installing the marking tapes is subsidiary to the various bid items.

Conduit elbows and rigid metal extensions required when installing PVC conduit systems are subsidiary to the various bid items.

Install a continuous bare or green insulated copper wire No. 8 AWG or larger in every conduit throughout the electrical system in accordance with the Electrical Detail Standard Sheets, and the latest edition of the NEC.

Item 620: Electrical Conductors

Test each wire of each cable or conductor after installation. Incomplete circuits or damage to the wire or the cable are cause for immediate rejection of the entire cable being tested. Remove and
replace the entire cable at no expense to the Department. Also test the replacement cable after installation.

When pulling cables or conductors through the conduit, do not exceed the manufacturer’s recommended pulling tensions. Lubricate the cables or conductors with a lubricant recommended by the cable manufacturer.

For both transformer and shoe-base type illumination poles, provide double-pole breakaway fuse holders as shown on the Department’s Construction Division (CST) material producers list. Check the latest link on the Department’s website for this list. The category is “Roadway Illumination and Electrical Supplies.” The fuse holder is shown on the list under Items 610 and 620. Provide 10 Amp time delay fuses.

Ensure that circuits test clear of faults, grounds, and open circuits.

Split bolt connectors are allowed only for splices on the grounding conductors.

For Roadside Flashing Beacon Assemblies (Item 685) and Pedestal Pole Assemblies (Item 687) within the project, provide single-pole breakaway disconnects as shown on the Construction Division (CST) material producers list. Check the latest link on the Department’s website for this list. The category is “Roadway Illumination and Electrical Supplies.” The fuse holder is shown on the list under Item 685. For underground (hot) conductors, install a breakaway connector with a dummy fuse (slug). Provide dummy fuse (slug). For grounded (neutral) conductors, install a breakaway connector with a white colored marking and a permanently installed dummy fuse (slug).

For electrical licensing and electrical certification requirements for this project, see Item 7 of the Standard Specifications and any applicable special provisions to Item 7.

Item 624: Ground Boxes

The ground box locations are approximate. Alternate ground box locations may be used as directed, to avoid placing in sidewalks or driveways.

Ground metal ground box covers. Bond the ground box cover and ground conductors to a ground rod located in the ground box and to the system ground.

Ground the existing metal ground box covers as shown on the latest standard sheet ED (4)-14.

During construction and until project completion, provide personnel and equipment necessary to remove ground box lids for inspection. Provide this assistance within 24 hours of notification.

Construct concrete aprons in accordance with the latest standard sheet ED (4)-14. Make the depth of the concrete apron the same as the depth of the ground box, except for Type 1 and Type
2 ground boxes. For Type 1 or Type 2 ground boxes, construct the concrete apron in accordance with details shown on the “Ground Box Details Installations” standard.

Item 628: Electrical Services

Verify and coordinate the electrical service location with the engineering section of the appropriate utility district or company.

Identify the electrical service pole with an address number assigned by the Utility Service Provider. Provide 2-in. numerals visible from the highway. Provide numbers cut out aluminum figures nailed to wood poles or painted figures on steel poles or service cabinets.

Item 636: Signs

For design details not shown on the plans, provide signs and arrows conforming to the latest “Standard Highway Sign Designs for Texas” manual.

Item 644: Small Roadside Sign Assemblies

Sign locations shown on the plans are approximate. Before placing them, obtain approval of and then stake the exact locations for these signs.

Use the Texas Universal Triangular Slip Base with the concrete foundation for small ground mounted signs, unless otherwise shown in the plans.

Remove existing street name signs from existing stop signs and re-install them above the new stop signs. Removing and re-installing existing street name signs is subsidiary to the Item, “Small Roadside Sign Assemblies.”

When design details are not shown on the plans, provide signs and arrows conforming to the latest “Standard Highway Sign Designs for Texas” manual.

Provide and install the materials for speed limit signs. For speed limit signs that are indicated with “XX,” the Area Engineer will request a speed study through the Director of Transportation Operations to determine the legal speeds to be posted. This request will be made as soon as possible after the roadway opens to traffic. After the speed limit to be posted is determined, this information will be provided to the Contractor by the Area Engineer.

Use Type E Super High Specific Intensity (Fluorescent Prismatic) yellow green reflective sheeting background to fabricate school signs (S1-1, S3-1, S4-3, S5-1, W16-2, SW16-9p, and SW16-7pL(R)).

Assume ownership of the removed existing signs.

Locations of the relocated signs are approximate. Before placing them, obtain approval of and then stake the exact locations for these signs.
County: Brazoria
Highway: SH 36

Replace existing signs that become damaged during relocation at no expense to the Department.

Item 647: Large Roadside Sign Supports and Assemblies

Locations of the relocated signs are approximate. Before placing them, obtain approval of and then stake the exact locations for these signs.

Replace existing signs that become damaged during relocation at no expense to the Department.

Assume ownership of the removed existing signs.

Item 656: Foundations for Traffic Control Devices

Using ready mix concrete for sign foundations is optional.

Item 662: Work Zone Pavement Markings

At the end of each workday, mark roadways that remain open to traffic during construction operations with standard pavement markings, in accordance with the latest “Texas Manual on Uniform Traffic Control Devices.”

Using raised markers for removable work zone pavement markings on final concrete surfaces is optional.

Do not use raised pavement markers as optional work zone pavement markings on final asphalt surfaces.

For transition lane lines and detour lane lines, use raised pavement markers as shown for solid lines on the latest Barricade and Construction standard sheet for “Work Zone Pavement Marking Details.”

Item 662: Work Zone Pavement Markings
Item 666: ReflectORIZED Pavement Markings
Item 668: Prefabricated Pavement Markings
Item 6038: Multipolymer Pavement Markings (MPM)

Use Type III glass beads for thermoplastic and multipolymer pavement markings.

Use a 0.100 in. (100 mil) thickness for thermoplastic pavement markings, measured to the top of the thermoplastic, not including the exposed glass beads.

Use a 0.022 in. (22 mil) thickness for multipolymer pavement markings, measured to the top of the multipolymer, not including the exposed glass beads.

Purchase the traffic paint from the open market.
If the Type II markings become dirty and require cleaning by washing, brushing, compressed air, or other approved methods before applying the Type I thermoplastic markings, this additional cleaning is subsidiary to the Item, “Reflectorized Pavement Markings.”

Establish the alignment and layout for work zone striping and permanent striping.

Stripe all roadways before opening them to traffic.

Place pavement markings under these items in accordance with details shown on the plans, the latest “Texas Manual on Uniform Traffic Control Devices,” or as directed.

When design details are not shown on the plans, provide pavement markings for arrows, words, and symbols conforming to the latest “Standard Highway Sign Designs for Texas” manual.

Item 672: Raised Pavement Markers

If other operations are complete on the project and if the curing time period is not yet elapsed, the contract time will be suspended until the curing is done.

Before placing the raised pavement markers on concrete pavement, blast clean the surface using an abrasive-blasting medium. This work is subsidiary to the Item, “Raised Pavement Markers.”

Provide epoxy adhesive that is machine-mixed or nozzle-mixed and dispensed. Equip the machine or nozzle with a mechanism to ensure positive mix measurement control.

Item 677: Eliminating Existing Pavement Markings and Markers

Remove existing pavement markings on concrete or asphalt surfaces by flail milling or as directed.

Item 678: Pavement Surface Preparation for Markings

Do not blast clean asphalt concrete pavement. Clean asphalt concrete pavement as required under the applicable specifications or as directed.

On new concrete pavement or on existing concrete pavement when placing a new stripe on a new location, remove the curing compounds and contamination from the pavement surface by flail milling or as directed. In addition, air-blast the surface with compressed air just before placing the new stripe.

On existing concrete pavement when placing a new stripe on an existing location, after removing the existing stripe under the Item, “Eliminating Existing Pavement Markings and Markers,” air-blast the surface with compressed air just before placing the new stripe.

Do not clean concrete pavement by grinding.

Item 680: Highway Traffic Signals
Clearly mark or highlight on the shop drawings the items being furnished for this project.

Furnish labor, tools, equipment, and materials as shown on the plans and specifications for a complete and operating signal installation.

Furnish the type of controller cabinet specified on the plans. Refer to the table shown in the Departmental Material Specifications (DMS-11170, Fully Actuated, Solid-State Traffic Signal Controller Assembly), Section 11170.6.A, Type 2 cabinet, page 4 of 39, regarding the size of the cabinet, back panel configuration, and the size of the load bay. Use the following website to view this specification: http://www.txdot.gov/business/resources/dms.html

Complete traffic signal construction work, including correcting discrepancies shown on the Department inspector’s “Traffic Signal Installation Inspection Report” before the beginning of the test period.

Provide a full-time qualified traffic signal technician responsible for installing, maintaining, or replacing traffic signal devices.

Staking in the field is subject to approval.

Make adjustments in project construction, if needed, due to conflicts with underground utilities.

Do not aim the luminaire arms mounted on traffic signal poles into the intersection. Aim each arm perpendicular to the centerline of the roadway it is intended to cover, to develop the proper illumination pattern for the intersection.

Allow the electrical work to be inspected by the City. Complying with the provisions and requirements of the City electrical ordinance is not required. Such inspection does not make the City a party to this contract.

Provide continuous conductors without splices from signal controller to signal heads. Route the conductors for luminaires to the service enclosure. Splices or attachments to the terminal block in the access compartment of the mast arm pole are not permitted except for the luminaire cable.

Abrasions to the conductor insulation caused while pulling cable for the traffic signal system are cause for immediate rejection. Remove and replace the entire damaged cable at no expense to the Department.

When pulling cables or conductors through conduit, do not exceed the manufacturer’s recommended pulling tensions. Lubricate the cables or conductors with a lubricant as recommended by the cable manufacturer.

Bond the controller housing, signal poles, conduit, and spans to a minimum No. 6 AWG stranded copper conductor. An equipment grounding conductor is required in every conduit to form a
continuous grounding system. Effectively connect the grounding system to ground rods or concrete encased grounding electrodes as indicated in the plans.

Wrap signal heads with dark plastic or suitable material to conceal the signal faces from the time of installation until placing into operation. Do not use burlap.

Furnish signal heads from the same manufacturer.

Use Type C High Specific Intensity grade sheeting for signs mounted under or adjacent to the signal heads.

Furnish and attach compression type connectors. Install the connectors with a compression mechanical release hand-crimping tool to each individual conductor before making connections to the terminal strips.

The Contractor may use ready mix concrete.

Apply membrane curing on concrete work in accordance with Section 420.4.10.3, “Membrane Curing.”

The standard 4.5-in. galvanized pipe type poles, except the breakaway type, are subject only to the Engineer’s inspection for their acceptance. Mill test reports or documentation will not be required.

Item 682: Vehicle and Pedestrian Signal Heads

Install two set screws on vehicle signal head mounting hardware fittings.

Item 686: Traffic Signal Pole Assemblies (Steel)

For a steel mast arm or steel strain pole assembly, hold the anchor bolts and conduits rigidly in place with a welded steel template.

Leave a minimum of one full diameter thread exposed on each anchor bolt securing a signal pole.

Set the anchor bolts for the steel strain poles so that two are in compression and two are in tension.

Use a Texas Cone Penetrometer reading of 10. The drilled shaft length is from the surface elevation to the bottom of the drilled shaft. Provide an additional length of the pole foundation from the surface level to the roadway level, if required for unusual locations. Provide the drilled shaft depth regardless of the length of the pole foundation. The pole foundation depth from the surface level to the roadway level is a maximum of 4 ft., or as approved.

Locate mast arm pole assemblies a minimum of 4 ft. from the roadway curb or pavement edge.
County: Brazoria
Highway: SH 36

Place steel strain poles at a 10 ft. desirable minimum distance from the roadway curb or pavement edge.

After the traffic signal pole assembly is plumb and the nuts are tight, tack-weld each anchor bolt nut in two places to its washer. Tack-weld each washer to the base plate in two places. Do not weld components to the bolt. Perform tack-welding in accordance with the Item, “Steel Structures.” After tack-welding, repair galvanizing damage on bolts, nuts, and washers in accordance with Section 445.3.5, “Repairs.”

The Department may test the anchor bolts using ultrasonic methods for traffic signal poles after they are installed. Replace faulty anchor bolts as directed. Do not weld the anchor bolts.

Furnish black powder coated traffic signal poles. Apply powder coated finish over the galvanized surface. Prepare galvanized surfaces for powder coating in accordance with the powder coating manufacturer’s recommendations. Do not water-quench or chromate-quench galvanized surfaces to be powder coated. After preparing galvanized surfaces, powder coat with a minimum of 2.0 mils dry film thickness (DFT) of urethane powder or triglycidyl isocyanurate (TGIC) polyester powder. Provide powder coat adhesion meeting the 5A or 5B classifications of ASTM D3359. Ensure powder coating is uniform in appearance and free of scratches.

If the loop sealant supplied by the Contractor is not on the Department’s pre-qualified product list, before applying the sealant provide a 5-gal. container of loop sealant for testing.

Item 730: Roadside Mowing
Item 734: Litter Removal
Item 735: Debris Removal
Item 738: Cleaning and Sweeping Highways

Mow areas of existing vegetation, collect and dispose of litter, and sweep the roadway within the project limits according to the following chart for the duration of the project or as directed. This work is paid for under their respective bid items.

<table>
<thead>
<tr>
<th>Roadside Mowing</th>
<th>Litter Removal</th>
<th>Debris Removal</th>
<th>Cleaning and Sweeping Highways</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 cycles</td>
<td>12 cycles</td>
<td>12 cycles</td>
<td>12 cycles</td>
</tr>
</tbody>
</table>

Item 6185: Truck Mounted Attenuator (TMA) and Trailer Attenuator (TA)

A shadow vehicle with Truck Mounted Attenuators (TMA) or Trailer Attenuators (TAs) is required as shown on the appropriate Traffic Control Plan (TCP) sheets. TMAs/TAs must meet the requirements of the Compliant Work Zone Traffic Control Device List.

Level 3 Compliant TMAs are required for this project.

In addition to the shadow vehicles with TMAs that are specified as being required on the TCP layout sheets for this project, provide additional shadow vehicles with TMAs as shown on the
TCP Standard sheets. The Contractor is responsible for determining if one or more of these operations will be ongoing at the same time to determine the total number of TMAs needed on the project.

Item 7017: Sanitary Sewer

Provide a record of the locations of stacks, stubs, etc. to the owner of the sanitary sewer facility.

Maintain a 12-in. minimum vertical clearance at crossings between the sanitary sewers and culverts, unless otherwise noted.

Item 7049: Water Mains

Construct water mains with Class A concrete in accordance with the Item, “Hydraulic Cement Concrete.” This work is subsidiary to this bid Item.

Assume ownership of removed fire hydrants, valves, and boxes.

Cutting and plugging tees, if called for on the plans, are subsidiary to the Item, “Remove Existing Fire Hydrant.”

Install only new fire hydrants, valves, and boxes conforming to the requirements of this specification. Install fire hydrants, valves, and boxes in accordance with the requirements of Section 3.13 of this specification.

Provide valves that open in a \((\text{counter})\)clockwise direction only.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Limit and Rate</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>Lime Treatment (Road-Mixed) For materials used as subgrade *</td>
<td>6 % by weight based on 100 Lb. / Cu. Ft. subgrade</td>
<td>TON</td>
</tr>
<tr>
<td></td>
<td>• Lime(HYD, COM, or QK)(SLRY) or QK(DRY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>292</td>
<td>Asphalt Treatment (Plant-Mixed)</td>
<td>110 Lb. / Sq. Yd.-In.</td>
<td>TON</td>
</tr>
<tr>
<td></td>
<td>• Asphalt</td>
<td>5 % by weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aggregate</td>
<td>95 % by weight</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>Dense-Graded Hot Mix Asphalt (Small Quantity)</td>
<td>110 Lb. / Sq. Yd.-In.</td>
<td>TON</td>
</tr>
<tr>
<td></td>
<td>• Asphalt</td>
<td>6 % by weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aggregate</td>
<td>94 % by weight</td>
<td></td>
</tr>
</tbody>
</table>

* If used in existing roadway base, rate will be determined on a case by case basis.
GOVERNING SPECIFICATIONS AND SPECIAL PROVISIONS

ALL SPECIFICATIONS AND SPECIAL PROVISIONS APPLICABLE TO THIS PROJECT ARE IDENTIFIED AS FOLLOWS:

STANDARD SPECIFICATIONS: ADOPTED BY THE TEXAS DEPARTMENT OF TRANSPORTATION NOVEMBER 1, 2014. STANDARD SPECIFICATIONS ARE INCORPORATED INTO THE CONTRACT BY REFERENCE.

ITEMS 1 TO 9 INCL., GENERAL REQUIREMENTS AND COVENANTS
ITEM 100 PREPARING RIGHT OF WAY (103)
ITEM 104 REMOVING CONCRETE
ITEM 105 REMOVING TREATED AND UNTREATED BASE AND ASPHALT PAVEMENT
ITEM 110 EXCAVATION (132)
ITEM 132 EMBANKMENT (100)(160)(204)(210)(216)(260)(400)
ITEM 161 COMPOST (160)
ITEM 162 SODDING FOR EROSION CONTROL (166)(168)
ITEM 164 SEEDING FOR EROSION CONTROL (162)(166)(168)
ITEM 166 FERTILIZER (520)
ITEM 168 VEGETATIVE WATERING
ITEM 276 CEMENT TREATMENT (PLANT-MIXED) (204)(210)(216)(247)(300)(310)
ITEM 292 ASPHALT TREATMENT (PLANT-MIXED) (300)(301)(320)(520)(585)
ITEM 305 SALVAGING, HAULING, AND STOCKPILING RECLAIMABLE ASPHALT PAVEMENT
ITEM 340 DENSE-GRADED HOT-MIX ASPHALT (SMALL QUANTITY) (300)(301)(320)(520)(585)
ITEM 360 CONCRETE PAVEMENT (421)(422)(438)(440)(529)(585)
ITEM 401 FLOWABLE BACKFILL (421)
ITEM 402 TRENCH EXCAVATION PROTECTION
ITEM 416 DRILLED SHAFT FOUNDATIONS (405)(420)(421)(423)(440)(448)
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>423</td>
<td>Retaining Walls</td>
</tr>
<tr>
<td>424</td>
<td>Precast Prestressed Concrete Structural Members</td>
</tr>
<tr>
<td>425</td>
<td>Riprap</td>
</tr>
<tr>
<td>426</td>
<td>Concrete Box Culverts and Drains</td>
</tr>
<tr>
<td>427</td>
<td>Reinforced Concrete Pipe</td>
</tr>
<tr>
<td>428</td>
<td>Junction Boxes, Manholes, and Inlets</td>
</tr>
<tr>
<td>429</td>
<td>Bridge Expansion Joints</td>
</tr>
<tr>
<td>430</td>
<td>Headwalls and Wingwalls</td>
</tr>
<tr>
<td>431</td>
<td>Safety End Treatments</td>
</tr>
<tr>
<td>432</td>
<td>Removing Structures</td>
</tr>
<tr>
<td>433</td>
<td>Mobilization</td>
</tr>
<tr>
<td>434</td>
<td>Barricades, Signs, and Traffic Handling</td>
</tr>
<tr>
<td>435</td>
<td>Field Office and Laboratory</td>
</tr>
<tr>
<td>436</td>
<td>Temporary Erosion, Sedimentation, and Environmental Controls</td>
</tr>
<tr>
<td>437</td>
<td>Constructing Detours</td>
</tr>
<tr>
<td>438</td>
<td>Temporary Traffic Signals</td>
</tr>
<tr>
<td>439</td>
<td>Portable Traffic Barrier</td>
</tr>
<tr>
<td>440</td>
<td>Intersections, Driveways, and Turnouts</td>
</tr>
<tr>
<td>441</td>
<td>Milling Rumble Strips</td>
</tr>
<tr>
<td>442</td>
<td>Metal Beam Guard Fence</td>
</tr>
<tr>
<td>443</td>
<td>Guardrail End Treatments</td>
</tr>
<tr>
<td>444</td>
<td>Crash Cushion Attenuators</td>
</tr>
<tr>
<td>445</td>
<td>Mailbox Assemblies</td>
</tr>
<tr>
<td>446</td>
<td>Conduit</td>
</tr>
<tr>
<td>447</td>
<td>Electrical Conductors</td>
</tr>
<tr>
<td>448</td>
<td>Tray Cable</td>
</tr>
<tr>
<td>449</td>
<td>Ground Boxes</td>
</tr>
<tr>
<td>450</td>
<td>Electrical Services</td>
</tr>
<tr>
<td>451</td>
<td>Signs</td>
</tr>
<tr>
<td>452</td>
<td>Small Roadside Sign Assemblies</td>
</tr>
<tr>
<td>453</td>
<td>Large Roadside Sign Supports and Assemblies</td>
</tr>
<tr>
<td>454</td>
<td>Overhead Sign Supports</td>
</tr>
<tr>
<td>455</td>
<td>Sign Walkways</td>
</tr>
<tr>
<td>456</td>
<td>Delineator and Object Marker Assemblies</td>
</tr>
<tr>
<td>457</td>
<td>Work Zone Pavement Markings</td>
</tr>
<tr>
<td>458</td>
<td>Prefabricated Pavement Markings</td>
</tr>
<tr>
<td>459</td>
<td>Raised Pavement Markers</td>
</tr>
<tr>
<td>460</td>
<td>Eliminating Existing Pavement Markings and Markers</td>
</tr>
<tr>
<td>461</td>
<td>Highway Traffic Signals</td>
</tr>
<tr>
<td>462</td>
<td>Temporary Traffic Signals</td>
</tr>
</tbody>
</table>
ITEM 682 VEHICLE AND PEDESTRIAN SIGNAL HEADS
ITEM 684 TRAFFIC SIGNAL CABLES
ITEM 686 TRAFFIC SIGNAL POLE ASSEMBLIES (STEEL) (416)(421)(441)
(442)(445)(449)
ITEM 687 PEDESTAL POLE ASSEMBLIES (445)(449)(656)(682)
ITEM 730 ROADSIDE MOWING
ITEM 734 LITTER REMOVAL
ITEM 735 DEBRIS REMOVAL
ITEM 738 CLEANING AND SWEEPING HIGHWAYS

SPECIAL PROVISIONS: SPECIAL PROVISIONS WILL GOVERN AND TAKE
------------------ PRECEDENCE OVER THE SPECIFICATIONS ENUMERATED
HEREON WHEREVER IN CONFLICT THEREWITH.

REQUIRED CONTRACT PROVISIONS, FEDERAL-AID CONSTRUCTION CONTRACTS
(Form FHWA 1273, May, 2012)

WAGE RATES
SPECIAL PROVISION "NONDISCRIMINATION" (000---002)
SPECIAL PROVISION "CERTIFICATION OF NONDISCRIMINATION IN EMPLOYMENT"
(000---003)
SPECIAL PROVISION "NOTICE OF REQUIREMENT FOR AFFIRMATIVE ACTION TO
ENSURE EQUAL EMPLOYMENT OPPORTUNITY" (000---004)
SPECIAL PROVISION "STANDARD FEDERAL EQUAL EMPLOYMENT OPPORTUNITY
CONSTRUCTION CONTRACT SPECIFICATIONS" (000---005)
SPECIAL PROVISION "ON-THE-JOB TRAINING PROGRAM" (000---006)
SPECIAL PROVISION "IMPORTANT NOTICE TO CONTRACTORS" (000---010)
SPECIAL PROVISION "CARGO PREFERENCE ACT REQUIREMENTS IN FEDERAL AID
CONTRACTS" (000---241)
SPECIAL PROVISION "CERTIFICATE OF INTERESTED PARTIES (FORM 1295)"
(000---384)
SPECIAL PROVISION "DISADVANTAGED BUSINESS ENTERPRISE IN FEDERAL AID
CONTRACTS" (000---394)
SPECIAL PROVISION "SCHEDULE OF LIQUIDATED DAMAGES" (000---658)
SPECIAL PROVISION "CONTRACTOR PERFORMANCE EVALUATIONS" (000---659)
SPECIAL PROVISION "IMPORTANT NOTICE TO CONTRACTORS" (000---813)
SPECIAL PROVISIONS TO ITEM 2 (002---009)(002---011)(002---013)
SPECIAL PROVISION TO ITEM 3 (003---011)
SPECIAL PROVISION TO ITEM 5 (005---002)
SPECIAL PROVISIONS TO ITEM 6 (006---001)(006---012)
SPECIAL PROVISIONS TO ITEM 7 (007---001)(007---003)(007---004)
(007---008)(007---010)
SPECIAL PROVISIONS TO ITEM 8 (008---003)(008---017)(008---030)
(008---033)
SPECIAL PROVISION TO ITEM 247 (247---003)
SPECIAL PROVISION TO ITEM 300 (300---015)
SPECIAL PROVISION TO ITEM 302 (302---003)
SPECIAL PROVISION TO ITEM 316 (316---002)
SPECIAL PROVISION TO ITEM 340 (340---003)
SPECIAL PROVISION TO ITEM 421 (421---002)
SPECIAL PROVISION TO ITEM 441 (441---001)
SPECIAL PROVISION TO ITEM 442 (442---001)
SPECIAL PROVISION TO ITEM 446 (446---005)
SPECIAL PROVISION TO ITEM 449 (449---002)
SPECIAL PROVISION TO ITEM 465 (465---001)
SPECIAL PROVISION TO ITEM 502 (502---007)
SPECIAL PROVISION TO ITEM 506 (506---004)
SPECIAL PROVISION TO ITEM 512 (512---001)
SPECIAL PROVISION TO ITEM 540 (540---001)
SPECIAL PROVISION TO ITEM 643 (643---001)
SPECIAL PROVISION TO ITEM 654 (654---001)
SPECIAL PROVISION TO ITEM 666 (666---007)
SPECIAL PROVISION TO ITEM 680 (680---006)
SPECIAL PROVISION TO ITEM 730 (730---003)

SPECIAL SPECIFICATIONS:

ITEM 3020 REMOVE SHOULDER TEXTURING
ITEM 3021 CONCRETE PAVEMENT WIDE FLANGE TERMINALS (360)(421)(440) (442)
ITEM 6001 PORTABLE CHANGEABLE MESSAGE SIGN
ITEM 6005 TESTING, TRAINING, DOCUMENTATION, FINAL ACCEPTANCE, AND WARRANTY
ITEM 6006 ELECTRONIC COMPONENTS
ITEM 6007 FIBER OPTIC CABLE (618)(620)(625)(6016)
ITEM 6010 CCTV FIELD EQUIPMENT (6005)(6006)
ITEM 6028 INSTALLATION OF DYNAMIC MESSAGE SIGN SYSTEM (432)(441) (445)(449)(618)(620)<656>
ITEM 6035 FIBER OPTIC VIDEO DATA TRANSMISSION EQUIPMENT (6005) (6006)
ITEM 6038 MULTI-POLYMER PAVEMENT MARKINGS (MPM) (677)<6291>
ITEM 6058 BATTERY BACK-UP SYSTEM FOR SIGNAL CABINETS (420)(620)
ITEM 6063 INTELLIGENT TRANSPORTATION SY STEM (ITS) SOLAR POWER SYSTEM
ITEM 6185 TRUCK MOUNTED ATTENUATOR (TMA) AND TRAILER ATTENUATOR (TA)
ITEM 6186 INTELLIGENT TRANSPORTATION SYSTEM(ITS) GROUND BOX (420) (421)(432)(440)(471)(618)(620)
ITEM 6291 MOBILE RETROREFLECTIVITY DATA COLLECTION FOR PAVEMENT MARKINGS
ITEM 6304 INTELLIGENT TRANSPORTATION SYSTEM (ITS) RADAR VEHICLE SENSING DEVICE
ITEM 7017 SANITARY SEWERS
ITEM 7049 WATER MAINS

GENERAL: THE ABOVE-LISTED SPECIFICATION ITEMS ARE THOSE UNDER WHICH ------- PAYMENT IS TO BE MADE. THESE, TOGETHER WITH SUCH OTHER
PERTINENT ITEMS, IF ANY, AS MAY BE REFERRED TO IN THE ABOVE-LISTED SPECIFICATION ITEMS, AND INCLUDING THE SPECIAL PROVISIONS LISTED ABOVE, CONSTITUTE THE COMPLETE SPECIFICATIONS FOR THIS PROJECT.
DISADVANTAGED BUSINESS ENTERPRISES REQUIREMENTS

The following goal for disadvantaged business enterprises is established:

DBE
6.0%

Certification of DBE Goal Attainment

By signing the proposal, the Bidder certifies that the above DBE goal will be met by obtaining commitments equal to or exceeding the DBE percentage or that the Bidder will provide a good faith effort to substantiate the attempt to meet the goal.

Failure to provide commitments to meet the stated goal or provide a satisfactory good faith effort will be considered a breach of the requirements of the proposal. As a result, the bid proposal guaranty of the bidder will become property of the Department and the Bidder will be excluded for rebidding on the project when it is re-advertised.
CHILD SUPPORT STATEMENT

Under Section 231.006, Family Code, the vendor or applicant certifies that the individual or business entity named in this contract, bid, or application is not ineligible to receive the specified grant, loan, or payment and acknowledges that this contract may be terminated and payment may be withheld if this certification is inaccurate.
CONFLICT OF INTEREST CERTIFICATION

Pursuant to Texas Government Code Section 2261.252(b), the Department is prohibited from entering into contracts in which Department officers and employees have a financial interest.

By signing the Contract, the Contractor certifies that it is not prohibited from entering into a Contract with the Department as a result of a financial interest as defined under Texas Government Code Section 2261.252(b), and that it will exercise reasonable care and diligence to prevent any actions or conditions that could result in a conflict of interest with the Department.

The Contractor also certifies that none of the following individuals, nor any of their family members within the second degree of affinity or consanguinity, owns 1% or more interest or has a financial interest as defined under Texas Government Code Section 2261.252(b) in the Contractor:

- Any member of the Texas Transportation Commission; and
- The Department’s Executive Director, General Counsel, Chief of Procurement and Field Support Operations, Director of Procurement, and Director of Contract Services.

Violation of this certification may result in action by the Department.
E-VERIFY CERTIFICATION

Pursuant to Texas Transportation Code §223.051, all TxDOT contracts for construction, maintenance, or improvement of a highway must include a provision requiring Contractors and subcontractors to use the U.S. Department of Homeland Security's E-Verify system to determine employment eligibility. By signing the contract, the Contractor certifies that prior to the award of the Contract:

- the Contractor has registered with and will, to the extent permitted by law, utilize the United States Department of Homeland Security's E-Verify system during the term of the Contract to determine the eligibility of all persons hired to perform duties within Texas during the term of the agreement; and
- the Contractor will require that all subcontractors also register with and, to the extent permitted by law, utilize the United States Department of Homeland Security's E-Verify system during the term of the subcontract to determine the eligibility of all persons hired to perform duties within Texas during the term of the agreement.

Violation of this requirement constitutes a material breach of the Contract, subjects a subcontractor to removal from the Contract, and subjects the Contractor or subcontractors to possible sanctions in accordance with Title 43, Texas Administrative Code, Chapter 10, Subchapter F, “Sanctions and Suspension for Ethical Violations by Entities Doing Business with the Department.”
CERTIFICATION TO NOT BOYCOTT ISRAEL

Pursuant to Texas Government Code §2270.002, the Department must include a provision requiring a written verification affirming that the Contractor does not boycott Israel and will not boycott Israel during the term of the contract. This provision applies to a contract that:

1) is with a Contractor that is not a sole proprietorship,
2) is with a Contractor with 10 or more full-time employees, and
3) has a value of $100,000 or more.

By signing the contract, the Contractor certifies that it does not boycott Israel and will not boycott Israel during the term of this contract.

Violation of this certification may result in action by the Department.
REQUIRED CONTRACT PROVISIONS
FEDERAL-AID CONSTRUCTION CONTRACTS

I. General
II. Nondiscrimination
III. Nonsegregated Facilities
IV. Davis-Bacon and Related Act Provisions
V. Contract Work Hours and Safety Standards Act Provisions
VI. Subletting or Assigning the Contract
VII. Safety: Accident Prevention
VIII. False Statements Concerning Highway Projects
IX. Implementation of Clean Air Act and Federal Water Pollution Control Act
X. Compliance with Governmentwide Suspension and Debarment Requirements
XI. Certification Regarding Use of Contract Funds for Lobbying

ATTACHMENTS
A. Employment and Materials Preference for Appalachian Development Highway System or Appalachian Local Access Road Contracts (included in Appalachian contracts only)

I. GENERAL

1. Form FHWA-1273 must be physically incorporated in each construction contract funded under Title 23 (excluding emergency contracts solely intended for debris removal). The contractor (or subcontractor) must insert this form in each subcontract and further require its inclusion in all lower tier subcontracts (excluding purchase orders, rental agreements and other agreements for supplies or services).

The applicable requirements of Form FHWA-1273 are incorporated by reference for work done under any purchase order, rental agreement or agreement for other services. The prime contractor shall be responsible for compliance by any subcontractor, lower-tier subcontractor or service provider.

Form FHWA-1273 must be included in all Federal-aid design-build contracts, in all subcontracts and in lower tier subcontracts (excluding subcontracts for design services, purchase orders, rental agreements and other agreements for supplies or services). The design-builder shall be responsible for compliance by any subcontractor, lower-tier subcontractor or service provider.

Contracting agencies may reference Form FHWA-1273 in bid proposal or request for proposal documents, however, the Form FHWA-1273 must be physically incorporated (not referenced) in all contracts, subcontracts and lower-tier subcontracts (excluding purchase orders, rental agreements and other agreements for supplies or services related to a construction contract).

2. Subject to the applicability criteria noted in the following sections, these contract provisions shall apply to all work performed on the contract by the contractor's immediate superintendence and to all work performed on the contract by piecework, station work, or by subcontract.

3. A breach of any of the stipulations contained in these Required Contract Provisions may be sufficient grounds for withholding of progress payments, withholding of final payment, termination of the contract, suspension / debarment or any other action determined to be appropriate by the contracting agency and FHWA.

4. Selection of Labor: During the performance of this contract, the contractor shall not use convict labor for any purpose within the limits of a construction project on a Federal-aid highway unless it is labor performed by convicts who are on parole, supervised release, or probation. The term Federal-aid highway does not include roadways functionally classified as local roads or rural minor collectors.

II. NONDISCRIMINATION

The provisions of this section related to 23 CFR Part 230 are applicable to all Federal-aid construction contracts and to all related construction subcontracts of $10,000 or more. The provisions of 23 CFR Part 230 are not applicable to material supply, engineering, or architectural service contracts.

In addition, the contractor and all subcontractors must comply with the following policies: Executive Order 11246, 41 CFR 60, 29 CFR 1625-1627, Title 23 USC Section 140, the Rehabilitation Act of 1973, as amended (29 USC 794), Title VI of the Civil Rights Act of 1964, as amended, and related regulations including 49 CFR Parts 21, 28 and 27; and 23 CFR Parts 200, 230, and 633.

The contractor and all subcontractors must comply with: the requirements of the Equal Opportunity Clause in 41 CFR 60-1.4(b) and, for all construction contracts exceeding $10,000, the Standard Federal Equal Employment Opportunity Construction Contract Specifications in 41 CFR 60-4.3.

Note: The U.S. Department of Labor has exclusive authority to determine compliance with Executive Order 11246 and the policies of the Secretary of Labor including 41 CFR 60, and 29 CFR 1625-1627. The contracting agency and the FHWA have the authority and the responsibility to ensure compliance with Title 23 USC Section 140, the Rehabilitation Act of 1973, as amended (29 USC 794), and Title VI of the Civil Rights Act of 1964, as amended, and related regulations including 49 CFR Parts 21, 26 and 27; and 23 CFR Parts 200, 230, and 633.

The following provision is adopted from 23 CFR 230, Appendix A, with appropriate revisions to conform to the U.S. Department of Labor (US DOL) and FHWA requirements.

1. Equal Employment Opportunity: Equal employment opportunity (EEO) requirements not to discriminate and to take affirmative action to assure equal opportunity as set forth under laws, executive orders, rules, regulations (28 CFR 35, 29 CFR 1630, 29 CFR 1625-1627, 41 CFR 60 and 49 CFR 27) and orders of the Secretary of Labor as modified by the provisions prescribed herein, and imposed pursuant to 23 U.S.C. 140 shall constitute the EEO and specific affirmative action standards for the contractor's project activities under
this contract. The provisions of the Americans with Disabilities Act of 1990 (42 U.S.C. 12101 et seq.) set forth under 28 CFR 35 and 29 CFR 1630 are incorporated by reference in this contract. In the execution of this contract, the contractor agrees to comply with the following minimum specific requirement activities of EEO:

a. The contractor will work with the contracting agency and the Federal Government to ensure that it has made every good faith effort to provide equal opportunity with respect to all of its terms and conditions of employment and in their review of activities under the contract.

b. The contractor will accept as its operating policy the following statement:

"It is the policy of this Company to assure that applicants are employed, and that employees are treated during employment, without regard to their race, religion, sex, color, national origin, age or disability. Such action shall include: employment, upgrading, demotion, or transfer; recruitment or recruitment advertising; layoff or termination; rates of pay or other forms of compensation; and selection for training, including apprenticeship, pre-apprenticeship, and/or on-the-job training."

2. EEO Officer: The contractor will designate and make known to the contracting officers an EEO Officer who will have the responsibility for and must be capable of effectively administering and promoting an active EEO program and who must be assigned adequate authority and responsibility to do so.

3. Dissemination of Policy: All members of the contractor's staff who are authorized to hire, supervise, promote, and discharge employees, or who recommend such action, or who are substantially involved in such action, will be made fully cognizant of, and will implement, the contractor's EEO policy and contractual responsibilities to provide EEO in each grade and classification of employment. To ensure that the above agreement will be met, the following actions will be taken as a minimum:

a. Periodic meetings of supervisory and personnel office employees will be conducted before the start of work and then not less often than once every six months, at which time the contractor's EEO policy and its implementation will be reviewed and explained. The meetings will be conducted by the EEO Officer.

b. All new supervisory or personnel office employees will be given a thorough indoctrination by the EEO Officer, covering all major aspects of the contractor's EEO obligations within thirty days following their reporting for duty with the contractor.

c. All personnel who are engaged in direct recruitment for the project will be instructed by the EEO Officer in the contractor's procedures for locating and hiring minorities and women.

d. Notices and posters setting forth the contractor's EEO policy will be placed in areas readily accessible to employees, applicants for employment and potential employees.

e. The contractor's EEO policy and the procedures to implement such policy will be brought to the attention of employees by means of meetings, employee handbooks, or other appropriate means.

4. Recruitment: When advertising for employees, the contractor will include in all advertisements for employees the notation: "An Equal Opportunity Employer." All such advertisements will be placed in publications having a large circulation among minorities and women in the area from which the project work force would normally be derived.

a. The contractor will, unless precluded by a valid bargaining agreement, conduct systematic and direct recruitment through public and private employee referral sources likely to yield qualified minorities and women. To meet this requirement, the contractor will identify sources of potential minority group employees, and establish with such identified sources procedures whereby minority and women applicants may be referred to the contractor for employment consideration.

b. In the event the contractor has a valid bargaining agreement providing for exclusive hiring hall referrals, the contractor is expected to observe the provisions of that agreement to the extent that the system meets the contractor's compliance with EEO contract provisions. Where implementation of such an agreement has the effect of discriminating against minorities or women, or obligates the contractor to do the same, such implementation violates Federal nondiscrimination provisions.

c. The contractor will encourage its present employees to refer minorities and women as applicants for employment.

Information and procedures with regard to referring such applicants will be discussed with employees.

5. Personnel Actions: Wages, working conditions, and employee benefits shall be established and administered, and personnel actions of every type, including hiring, upgrading, promotion, transfer, demotion, layoff, and termination, shall be taken without regard to race, color, religion, sex, national origin, age or disability. The following procedures shall be followed:

a. The contractor will conduct periodic inspections of project sites to insure that working conditions and employee facilities do not indicate discriminatory treatment of project site personnel.

b. The contractor will periodically evaluate the spread of wages paid within each classification to determine any evidence of discriminatory wage practices.

c. The contractor will periodically review selected personnel actions in depth to determine whether there is evidence of discrimination. Where evidence is found, the contractor will promptly take corrective action. If the review indicates that the discrimination may extend beyond the actions reviewed, such corrective action shall include all affected persons.

d. The contractor will promptly investigate all complaints of alleged discrimination made to the contractor in connection with its obligations under this contract, will attempt to resolve such complaints, and will take appropriate corrective action within a reasonable time. If the investigation indicates that the discrimination may affect persons other than the complainant, such corrective action shall include such other persons. Upon completion of each investigation, the contractor will inform every complainant of all of their avenues of appeal.

6. Training and Promotion:

a. The contractor will assist in locating, qualifying, and increasing the skills of minorities and women who are
applicants for employment or current employees. Such efforts should be aimed at developing full journey level status employees in the type of trade or job classification involved.

b. Consistent with the contractor's work force requirements and as permissible under Federal and State regulations, the contractor shall make full use of training programs, i.e., apprenticeship, and on-the-job training programs for the geographical area of contract performance. In the event a special provision for training is provided under this contract, this subparagraph will be superseded as indicated in the special provision. The contracting agency may reserve training positions for persons who receive welfare assistance in accordance with 23 U.S.C. 140(a).

c. The contractor will advise employees and applicants for employment of available training programs and entrance requirements for each.

d. The contractor will periodically review the training and promotion potential of employees who are minorities and women and will encourage eligible employees to apply for such training and promotion.

7. Unions: If the contractor relies in whole or in part upon unions as a source of employees, the contractor will use good faith efforts to obtain the cooperation of such unions to increase opportunities for minorities and women. Actions by the contractor, either directly or through a contractor's association acting as agent, will include the procedures set forth below:

a. The contractor will use good faith efforts to develop, in cooperation with the unions, joint training programs aimed toward qualifying more minorities and women for membership in the unions and increasing the skills of minorities and women so that they may qualify for higher paying employment.

b. The contractor will use good faith efforts to incorporate an EEO clause into each union agreement to the end that such union be contractually bound to refer applicants without regard to their race, color, religion, sex, national origin, age or disability.

c. The contractor is to obtain information as to the referral practices and policies of the labor union except that to the extent such information is within the exclusive possession of the labor union and such labor union refuses to furnish such information to the contractor, the contractor shall so certify to the contracting agency and shall set forth what efforts have been made to obtain such information.

d. In the event the union is unable to provide the contractor with a reasonable flow of referrals within the time limit set forth in the collective bargaining agreement, the contractor will, through independent recruitment efforts, fill the employment vacancies without regard to race, color, religion, sex, national origin, age or disability; making full efforts to obtain qualified and/or qualifiable minorities and women. The failure of a union to provide sufficient referrals (even though it is obligated to provide exclusive referrals under the terms of a collective bargaining agreement) does not relieve the contractor from the requirements of this paragraph. In the event the union referral practice prevents the contractor from meeting the obligations pursuant to Executive Order 11246, as amended, and these special provisions, such contractor shall immediately notify the contracting agency.

8. Reasonable Accommodation for Applicants / Employees with Disabilities: The contractor must be familiar with the requirements for and comply with the Americans with Disabilities Act and all rules and regulations established there under. Employers must provide reasonable accommodation in all employment activities unless to do so would cause an undue hardship.

9. Selection of Subcontractors, Procurement of Materials and Leasing of Equipment: The contractor shall not discriminate on the grounds of race, color, religion, sex, national origin, age or disability in the selection and retention of subcontractors, including procurement of materials and leases of equipment. The contractor shall take all necessary and reasonable steps to ensure nondiscrimination in the administration of this contract.

a. The contractor shall notify all potential subcontractors and suppliers and lessors of their EEO obligations under this contract.

b. The contractor will use good faith efforts to ensure subcontractor compliance with their EEO obligations.

10. Assurance Required by 49 CFR 26.13(b):

a. The requirements of 49 CFR Part 26 and the State DOT's U.S. DOT-approved DBE program are incorporated by reference.

b. The contractor or subcontractor shall not discriminate on the basis of race, color, national origin, or sex in the performance of this contract. The contractor shall carry out applicable requirements of 49 CFR Part 26 in the award and administration of DOT-assisted contracts. Failure by the contractor to carry out these requirements is a material breach of this contract, which may result in the termination of this contract or such other remedy as the contracting agency deems appropriate.

11. Records and Reports: The contractor shall keep such records as necessary to document compliance with the EEO requirements. Such records shall be retained for a period of three years following the date of the final payment to the contractor for all contract work and shall be available at reasonable times and places for inspection by authorized representatives of the contracting agency and the FHWA.

a. The records kept by the contractor shall document the following:

(1) The number and work hours of minority and non-minority group members and women employed in each work classification on the project;

(2) The progress and efforts being made in cooperation with unions, when applicable, to increase employment opportunities for minorities and women; and

(3) The progress and efforts being made in locating, hiring, training, qualifying, and upgrading minorities and women;

b. The contractors and subcontractors will submit an annual report to the contracting agency each July for the duration of the project, indicating the number of minority, women, and non-minority group employees currently engaged in each work classification required by the contract work. This information is to be reported on Form FHWA-1391. The staffing data should represent the project work force on board in all or any part of the last payroll period preceding the end of July. If on-the-job training is being required by special provision, the contractor
will be required to collect and report training data. The employment data should reflect the work force on board during all or any part of the last payroll period preceding the end of July.

III. NONSEGREGATED FACILITIES

This provision is applicable to all Federal-aid construction contracts and to all related construction subcontracts of $10,000 or more.

The contractor must ensure that facilities provided for employees are provided in such a manner that segregation on the basis of race, color, religion, sex, or national origin cannot result. The contractor may neither require such segregated use by written or oral policies nor tolerate such use by employee custom. The contractor's obligation extends further to ensure that its employees are not assigned to perform their services at any location, under the contractor's control, where the facilities are segregated. The term "facilities" includes waiting rooms, work areas, restaurants and other eating areas, time clocks, restrooms, washrooms, locker rooms, and other storage or dressing areas, parking lots, drinking fountains, recreation or entertainment areas, transportation, and housing provided for employees. The contractor shall provide separate or single-user restrooms and necessary dressing or sleeping areas to assure privacy between sexes.

IV. DAVIS-BACON AND RELATED ACT PROVISIONS

This section is applicable to all Federal-aid construction projects exceeding $2,000 and to all related subcontracts and lower-tier subcontracts (regardless of subcontract size). The requirements apply to all projects located within the right-of-way of a roadway that is functionally classified as Federal-aid highway. This excludes roadways functionally classified as local roads or rural minor collectors, which are exempt. Contracting agencies may elect to apply these requirements to other projects.

The following provisions are from the U.S. Department of Labor regulations in 29 CFR 5.5 "Contract provisions and related matters" with minor revisions to conform to the FHWA-1273 format and FHWA program requirements.

1. Minimum wages

a. All laborers and mechanics employed or working upon the site of any road, street, or highway which will be paid for their work shall be paid at least the minimum wage of such and not less often than once a week, and without subsequent deduction or rebate on any account (except such payroll deductions as are permitted by regulations issued by the Secretary of Labor under the Copeland Act (29 CFR part 3)), the full amount of wages and bona fide fringe benefits (or cash equivalents thereof) due at time of payment computed at rates not less than those contained in the wage determination of the Secretary of Labor which is attached hereto and made a part hereof, regardless of any contractual relationship which may be alleged to exist between the contractor and such laborers and mechanics. Contributions made or costs reasonably anticipated for bona fide fringe benefits under section 1(b)(2) of the Davis-Bacon Act on behalf of laborers or mechanics are considered wages paid to such laborers or mechanics, subject to the provisions of paragraph 1.d. of this section; also, regular contributions made or costs incurred for more than a weekly period (but not less often than quarterly), under plans, funds, or programs which cover the particular weekly period, are deemed to be constructively made or incurred during such weekly period.

Such laborers and mechanics shall be paid the appropriate wage rate and fringe benefits on the wage determination for the classification of work actually performed, without regard to skill, except as provided in 29 CFR 5.5(a)(4). Laborers or mechanics performing work in more than one classification may be compensated at the rate specified for each classification for the time actually worked therein: Provided, That the employer's payroll records accurately set forth the time spent in each classification in which work is performed. The wage determination (including any additional classification and wage rates conformed under paragraph 1.b. of this section) and the Davis-Bacon poster (WH-1321) shall be posted at all times by the contractor and its subcontractors at the site of the work in a prominent and accessible place where it can be easily seen by the workers.

b. (1) The contracting officer shall require that any class of laborers or mechanics, including helpers, which is not listed in the wage determination and which is to be employed under the contract shall be classified in conformance with the wage determination. The contracting officer shall approve an additional classification and wage rate and fringe benefits therefore only when the following criteria have been met:

(i) The work to be performed by the classification requested is not performed by a classification in the wage determination; and

(ii) The classification is utilized in the area by the construction industry; and

(iii) The proposed wage rate, including any bona fide fringe benefits, bears a reasonable relationship to the wage rates contained in the wage determination.

(2) If the contractor and the laborers and mechanics to be employed in the classification (if known), or their representatives, and the contracting officer agree on the classification and wage rate (including the amount designated for fringe benefits where appropriate), a report of the action taken shall be sent by the contracting officer to the Administrator of the Wage and Hour Division, Employment Standards Administration, U.S. Department of Labor, Washington, DC 20210. The Administrator, or an authorized representative, will approve, modify, or disapprove every additional classification action within 30 days of receipt and so advise the contracting officer or will notify the contracting officer within the 30-day period that additional time is necessary.

(3) In the event the contractor, the laborers or mechanics to be employed in the classification or their representatives, and the contracting officer do not agree on the proposed classification and wage rate (including the amount designated for fringe benefits, where appropriate), the contracting officer shall refer the questions, including the views of all interested parties and the recommendation of the contracting officer, to the Wage and Hour Administrator for determination. The Wage and Hour Administrator, or an authorized representative, will issue a determination within 30 days of receipt and so advise the contracting officer or
plan or program described in section 1(b)(2)(B) of the Davis-Bacon Act, the contractor shall maintain records which show that the commitment to provide such benefits is enforceable, that the plan or program is financially responsible, and that the plan or program has been communicated in writing to the laborers or mechanics affected, and records which show the costs anticipated or the actual cost incurred in providing such benefits. Contractors employing apprentices or trainees under approved programs shall maintain written evidence of the registration of apprenticeship programs and certification of trainee programs, the registration of the apprentices and trainees, and the ratios and wage rates prescribed in the applicable programs.

b. (1) The contractor shall submit weekly for each week in which any contract work is performed a copy of all payrolls to the contracting agency. The payrolls submitted shall set out accurately and completely all of the information required to be maintained under 29 CFR 5.5(a)(3)(i), except that full social security numbers and home addresses shall not be included on weekly transmittals. Instead the payrolls shall only need to include an individually identifying number for each employee (e.g., the last four digits of the employee’s social security number). The required weekly payroll information may be submitted in any form desired. Optional Form WH–347 is available for this purpose from the Wage and Hour Division Web site at http://www.dol.gov/esa/whd/forms/wh347instr.htm or its successor site. The prime contractor is responsible for the submission of copies of payrolls by all subcontractors.

Contractors and subcontractors shall maintain the full social security number and current address of each covered worker, and shall provide them upon request to the contracting agency for transmission to the State DOT, the FHWA or the Wage and Hour Division of the Department of Labor for purposes of an investigation or audit of compliance with prevailing wage requirements. It is not a violation of this section for a prime contractor to require a subcontractor to provide addresses and social security numbers to the prime contractor for its own records, without weekly submission to the contracting agency.

(2) Each payroll submitted shall be accompanied by a “Statement of Compliance,” signed by the contractor or subcontractor or his or her agent who pays or supervises the payment of the persons employed under the contract and shall certify the following:

(i) That the payroll for the payroll period contains the information required to be provided under §5.5 (a)(3)(i) of Regulations, 29 CFR part 5, the appropriate information is being maintained under §5.5 (a)(3)(i) of Regulations, 29 CFR part 5, and that such information is correct and complete;

(ii) That each laborer or mechanic (including each helper, apprentice, and trainee) employed on the contract during the payroll period has been paid the full weekly wages earned, without rebate, either directly or indirectly, and that no deductions have been made either directly or indirectly from the full wages earned, other than permissible deductions as set forth in Regulations, 29 CFR part 3;

(iii) That each laborer or mechanic has been paid not less than the applicable wage rates and fringe benefits or cash equivalents for the classification of work performed, as specified in the applicable wage determination incorporated into the contract.

will notify the contracting officer within the 30-day period that additional time is necessary.

(4) The wage rate (including fringe benefits where appropriate) determined pursuant to paragraphs 1.b.(2) or 1.b.(3) of this section, shall be paid to all workers performing work in the classification under this contract from the first day on which work is performed in the classification.

c. Whenever the minimum wage rate prescribed in the contract for a class of laborers or mechanics includes a fringe benefit which is not expressed as an hourly rate, the contractor shall either pay the benefit as stated in the wage determination or shall pay another bona fide fringe benefit or an hourly cash equivalent thereof.

d. If the contractor does not make payments to a trustee or other third person, the contractor may consider as part of the wages of any laborer or mechanic the amount of any costs reasonably anticipated in providing bona fide fringe benefits under a plan or program, Provided, That the Secretary of Labor has found, upon the written request of the contractor, that the applicable standards of the Davis-Bacon Act have been met. The Secretary of Labor may require the contractor to set aside in a separate account assets for the meeting of obligations under the plan or program.

2. Withholding

The contracting agency shall upon its own action or upon written request of an authorized representative of the Department of Labor, withhold or cause to be withheld from the contractor under this contract, or any other Federal contract with the same prime contractor, or any other federally-assisted contract subject to Davis-Bacon prevailing wage requirements, which is held by the same prime contractor, so much of the accrued payments or advances as may be considered necessary to pay laborers and mechanics, including apprentices, trainees, and helpers, employed by the contractor or any subcontractor the full amount of wages required by the contract. In the event of failure to pay any laborer or mechanic, including any apprentice, trainee, or helper, employed or working on the site of the work, all or part of the wages required by the contract, the contracting agency may, after written notice to the contractor, take such action as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds until such violations have ceased.

3. Payrolls and basic records

a. Payrolls and basic records relating thereto shall be maintained by the contractor during the course of the work and preserved for a period of three years thereafter for all laborers and mechanics working at the site of the work. Such records shall contain the name, address, and social security number of each such worker, his or her correct classification, hourly rates of wages paid (including rates of contributions or costs anticipated for bona fide fringe benefits or cash equivalents thereof of the types described in section 1(b)(2)(B) of the Davis-Bacon Act), daily and weekly number of hours worked, deductions made and actual wages paid. Whenever the Secretary of Labor has found under 29 CFR 5.5(a)(1)(iv) that the wages of any laborer or mechanic include the amount of any costs reasonably anticipated in providing benefits under a plan or program described in section 1(b)(2)(B) of the Davis-Bacon Act, the contractor shall maintain records which show that the commitment to provide such benefits is enforceable, that the plan or program is financially responsible, and that the plan or program has been communicated in writing to the laborers or mechanics affected, and records which show the costs anticipated or the actual cost incurred in providing such benefits. Contractors employing apprentices or trainees under approved programs shall maintain written evidence of the registration of apprenticeship programs and certification of trainee programs, the registration of the apprentices and trainees, and the ratios and wage rates prescribed in the applicable programs.
(3) The weekly submission of a properly executed certification set forth on the reverse side of Optional Form WH–347 shall satisfy the requirement for submission of the “Statement of Compliance” required by paragraph 3.b.(2) of this section.

(4) The falsification of any of the above certifications may subject the contractor or subcontractor to civil or criminal prosecution under section 1001 of title 18 and section 231 of title 31 of the United States Code.

c. The contractor or subcontractor shall make the records required under paragraph 3.a. of this section available for inspection, copying, or transcription by authorized representatives of the contracting agency, the State DOT, the FHWA, or the Department of Labor, and shall permit such representatives to interview employees during working hours on the job. If the contractor or subcontractor fails to submit the required records or to make them available, the FHWA may, after written notice to the contractor, the contracting agency or the State DOT, take such action as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds. Furthermore, failure to submit the required records upon request or to make such records available may be grounds for debarment action pursuant to 29 CFR 5.12.

4. Apprentices and trainees

a. Apprentices (programs of the USDOL).

Apprentices will be permitted to work at less than the predetermined rate for the work they performed when they are employed pursuant to and individually registered in a bona fide apprenticeship program registered with the U.S. Department of Labor, Employment and Training Administration, Office of Apprenticeship Training, Employer and Labor Services, or with a State Apprenticeship Agency recognized by the Office, or if a person is employed in his or her first 90 days of probationary employment as an apprentice in such an apprenticeship program, who is not individually registered in the program, but who has been certified by the Office of Apprenticeship Training, Employer and Labor Services or a State Apprenticeship Agency (where appropriate) to be eligible for probationary employment as an apprentice.

The allowable ratio of apprentices to journeymen on the job site in any craft classification shall not be greater than the ratio permitted to the contractor as to the entire work force under the registered program. Any worker listed on a payroll at an apprentice wage rate, who is not registered or otherwise employed as stated above, shall be paid not less than the applicable wage rate on the wage determination for the classification of work actually performed. In addition, any apprentice performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed. Where a contractor is performing construction on a project in a locality other than that in which its program is registered, the ratios and wage rates (expressed in percentages of the journeymen’s hourly rate) specified in the contractor’s or subcontractor’s registered program shall be observed.

Every apprentice must be paid at not less than the rate specified in the registered program for the apprentice’s level of progress, expressed as a percentage of the journeymen hourly rate specified in the applicable wage determination. Apprentices shall be paid fringe benefits in accordance with the provisions of the apprenticeship program. If the apprenticeship program does not specify fringe benefits, apprentices must be paid the full amount of fringe benefits listed on the wage determination for the applicable classification. If the Administrator determines that a different practice prevails for the applicable apprentice classification, fringes shall be paid in accordance with that determination.

In the event the Office of Apprenticeship Training, Employer and Labor Services, or a State Apprenticeship Agency recognized by the Office, withdraws approval of an apprenticeship program, the contractor will no longer be permitted to utilize apprentices at less than the applicable predetermined rate for the work performed until an acceptable program is approved.

b. Trainees (programs of the USDOL).

Except as provided in 29 CFR 5.16, trainees will not be permitted to work at less than the predetermined rate for the work performed unless they are employed pursuant to and individually registered in a program which has received prior approval, evidenced by formal certification by the U.S. Department of Labor, Employment and Training Administration.

The ratio of trainees to journeymen on the job site shall not be greater than permitted under the plan approved by the Employment and Training Administration.

Every trainee must be paid at not less than the rate specified in the approved program for the trainee’s level of progress, expressed as a percentage of the journeymen hourly rate specified in the applicable wage determination. Trainees shall be paid fringe benefits in accordance with the provisions of the trainee program. If the trainee program does not mention fringe benefits, trainees shall be paid the full amount of fringe benefits listed on the wage determination unless the Administrator of the Wage and Hour Division determines that there is an apprenticeship program associated with the corresponding journeymen wage rate on the wage determination which provides for less than full fringe benefits for apprentices. Any employee listed on the payroll at a trainee rate who is not registered and participating in a training plan approved by the Employment and Training Administration shall be paid not less than the applicable wage rate on the wage determination for the classification of work actually performed. In addition, any trainee performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed.

In the event the Employment and Training Administration withdraws approval of a training program, the contractor will no longer be permitted to utilize trainees at less than the applicable predetermined rate for the work performed until an acceptable program is approved.

c. Equal employment opportunity.

The utilization of apprentices, trainees and journeymen under this part shall be in conformity with the equal employment opportunity requirements of Executive Order 11246, as amended, and 29 CFR part 30.
d. Apprentices and Trainees (programs of the U.S. DOT).

Apprentices and trainees working under apprenticeship and skill training programs which have been certified by the Secretary of Transportation as promoting EEO in connection with Federal-aid highway construction programs are not subject to the requirements of paragraph 4 of this Section IV. The ratio of apprentices and trainees to journeymen shall not be greater than permitted by the terms of the particular program.

5. Compliance with Copeland Act requirements. The contractor shall comply with the requirements of 29 CFR part 3, which are incorporated by reference in this contract.

6. Subcontracts. The contractor or subcontractor shall insert Form FHWA-1273 in any subcontracts and also require the subcontractors to include Form FHWA-1273 in any lower tier subcontracts. The prime contractor shall be responsible for the compliance by any subcontractor or lower tier subcontractor with all the contract clauses in 29 CFR 5.5.

7. Contract termination: debarment. A breach of the contract clauses in 29 CFR 5.5 may be grounds for termination of the contract, and for debarment as a contractor and a subcontractor as provided in 29 CFR 5.12.

8. Compliance with Davis-Bacon and Related Act requirements. All rulings and interpretations of the Davis-Bacon and Related Acts contained in 29 CFR parts 1, 3, and 5 are herein incorporated by reference in this contract.

9. Disputes concerning labor standards. Disputes arising out of the labor standards provisions of this contract shall not be subject to the general disputes clause of this contract. Such disputes shall be resolved in accordance with the procedures of the Department of Labor set forth in 29 CFR parts 5, 6, and 7. Disputes within the meaning of this clause include disputes between the contractor (or any of its subcontractors) and the contracting agency, the U.S. Department of Labor, or the employees or their representatives.

10. Certification of eligibility.

a. By entering into this contract, the contractor certifies that neither it (nor he or she) nor any person or firm who has an interest in the contractor's firm is a person or firm ineligible to be awarded Government contracts by virtue of section 3(a) of the Davis-Bacon Act or 29 CFR 5.12(a)(1).

b. No part of this contract shall be subcontracted to any person or firm ineligible for award of a Government contract by virtue of section 3(a) of the Davis-Bacon Act or 29 CFR 5.12(a)(1).

V. CONTRACT WORK HOURS AND SAFETY STANDARDS ACT

The following clauses apply to any Federal-aid construction contract in an amount in excess of $100,000 and subject to the overtime provisions of the Contract Work Hours and Safety Standards Act. These clauses shall be inserted in addition to the clauses required by 29 CFR 5.5(a) or 29 CFR 4.6. As used in this paragraph, the terms laborers and mechanics include watchmen and guards.

1. Overtime requirements. No contractor or subcontractor contracting for any part of the contract work which may require or involve the employment of laborers or mechanics shall require or permit any such laborer or mechanic in any workweek in which he or she is employed on such work to work in excess of forty hours in such workweek unless such laborer or mechanic receives compensation at a rate not less than one and one-half times the basic rate of pay for all hours worked in excess of forty hours in such workweek.

2. Violation; liability for unpaid wages; liquidated damages. In the event of any violation of the clause set forth in paragraph (1) of this section, the contractor and any subcontractor responsible therefor shall be liable for the unpaid wages. In addition, such contractor and subcontractor shall be liable to the United States (in the case of work done under contract for the District of Columbia or a territory, to such District or to such territory), for liquidated damages. Such liquidated damages shall be computed with respect to each individual laborer or mechanic, including watchmen and guards, employed in violation of the clause set forth in paragraph (1) of this section, in the sum of $10 for each calendar day on which such individual was required or permitted to work in excess of the standard workweek of forty hours without payment of the overtime wages required by the clause set forth in paragraph (1) of this section.

3. Withholding for unpaid wages and liquidated damages. The FHWA or the contacting agency shall upon its own action or upon written request of an authorized representative of the Department of Labor withhold or cause to be withheld, from any moneys payable on account of work performed by the contractor or subcontractor under any such contract or any other Federal contract with the same prime contractor, or any other federally-assisted contract subject to the Contract Work Hours and Safety Standards Act, which is held by the same prime contractor, such sums as may be determined to be necessary to satisfy any liabilities of such contractor or subcontractor for unpaid wages and liquidated damages as provided in the clause set forth in paragraph (2) of this section.

4. Subcontracts. The contractor or subcontractor shall insert in any subcontracts the clauses set forth in paragraph (1) through (4) of this section and also a clause requiring the subcontractors to include these clauses in any lower tier subcontracts. The prime contractor shall be responsible for compliance by any subcontractor or lower tier subcontractor with the clauses set forth in paragraphs (1) through (4) of this section.
VI. SUBLETTING OR ASSIGNING THE CONTRACT

This provision is applicable to all Federal-aid construction contracts on the National Highway System.

1. The contractor shall perform with its own organization contract work amounting to not less than 30 percent (or a greater percentage if specified elsewhere in the contract) of the total original contract price, excluding any specialty items designated by the contracting agency. Specialty items may be performed by subcontract and the amount of any such specialty items performed may be deducted from the total original contract price before computing the amount of work required to be performed by the contractor's own organization (23 CFR 635.116).

a. The term “perform work with its own organization” refers to workers employed or leased by the prime contractor, and equipment owned or rented by the prime contractor, with or without operators. Such term does not include employees or equipment of a subcontractor or lower tier subcontractor, agents of the prime contractor, or any other assignees. The term will include payments for the costs of hiring leased employees from an employee leasing firm meeting all relevant Federal and State regulatory requirements. Leased employees may only be included in this term if the prime contractor meets all of the following conditions:

 (1) the prime contractor maintains control over the supervision of the day-to-day activities of the leased employees;
 (2) the prime contractor remains responsible for the quality of the work of the leased employees;
 (3) the prime contractor retains all power to accept or exclude individual employees from work on the project; and
 (4) the prime contractor remains ultimately responsible for the payment of predetermined minimum wages, the submission of payrolls, statements of compliance and all other Federal regulatory requirements.

b. “Specialty Items” shall be construed to be limited to work that requires highly specialized knowledge, abilities, or equipment not ordinarily available in the type of contracting organizations qualified and expected to bid or propose on the contract as a whole and in general are to be limited to minor components of the overall contract.

2. The contract amount upon which the requirements set forth in paragraph (1) of Section VI is computed includes the cost of material and manufactured products which are to be purchased or produced by the contractor under the contract provisions.

3. The contractor shall furnish (a) a competent superintendent or supervisor who is employed by the firm, has full authority to direct performance of the work in accordance with the contract requirements, and is in charge of all construction operations (regardless of who performs the work) and (b) such other of its own organizational resources (supervision, management, and engineering services) as the contracting officer determines is necessary to assure the performance of the contract.

4. No portion of the contract shall be sublet, assigned or otherwise disposed of except with the written consent of the contracting officer, or authorized representative, and such consent when given shall not be construed to relieve the contractor of any responsibility for the fulfillment of the contract. Written consent will be given only after the contracting agency has assured that each subcontract is evidenced in writing and that it contains all pertinent provisions and requirements of the prime contract.

5. The 30% self-performance requirement of paragraph (1) is not applicable to design-build contracts; however, contracting agencies may establish their own self-performance requirements.

VII. SAFETY: ACCIDENT PREVENTION

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts.

1. In the performance of this contract the contractor shall comply with all applicable Federal, State, and local laws governing safety, health, and sanitation (23 CFR 635). The contractor shall provide all safeguards, safety devices and protective equipment and take any other needed actions as it determines, or as the contracting officer may determine, to be reasonably necessary to protect the life and health of employees on the job and the safety of the public and to protect property in connection with the performance of the work covered by the contract.

2. It is a condition of this contract, and shall be made a condition of each subcontract, which the contractor enters into pursuant to this contract, that the contractor and any subcontractor shall not permit any employee, in performance of the contract, to work in surroundings or under conditions which are unsanitary, hazardous or dangerous to his/her health or safety, as determined under construction safety and health standards (29 CFR 1926) promulgated by the Secretary of Labor, in accordance with Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 3704).

3. Pursuant to 29 CFR 1926.3, it is a condition of this contract that the Secretary of Labor or authorized representative thereof, shall have right of entry to any site of contract performance to inspect or investigate the matter of compliance with the construction safety and health standards and to carry out the duties of the Secretary under Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C.3704).

VIII. FALSE STATEMENTS CONCERNING HIGHWAY PROJECTS

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts.

In order to assure high quality and durable construction in conformity with approved plans and specifications and a high degree of reliability on statements and representations made by engineers, contractors, suppliers, and workers on Federal-aid highway projects, it is essential that all persons concerned with the project perform their functions as carefully, thoroughly, and honestly as possible. Willful falsification, distortion, or misrepresentation with respect to any facts related to the project is a violation of Federal law. To prevent any misunderstanding regarding the seriousness of these and similar acts, Form FHWA-1022 shall be posted on each Federal-aid highway project (23 CFR 635) in one or more places where it is readily available to all persons concerned with the project.

18 U.S.C. 1020 reads as follows:
“Whoever, being an officer, agent, or employee of the United States, or of any State or Territory, or whoever, whether a person, association, firm, or corporation, knowingly makes any false statement, false representation, or false report as to the character, quality, quantity, or cost of the material used or to be used, or the quantity or quality of the work performed or to be performed, or the cost thereof in connection with the submission of plans, maps, specifications, contracts, or costs of construction on any highway or related project submitted for approval to the Secretary of Transportation; or

Whoever knowingly makes any false statement, false representation, false report or false claim with respect to the character, quality, quantity, or cost of any work performed or to be performed, or materials furnished or to be furnished, in connection with the construction of any highway or related project approved by the Secretary of Transportation; or

Whoever knowingly makes any false statement or false representation as to material fact in any statement, certificate, or report submitted pursuant to provisions of the Federal-aid Roads Act approved July 1, 1916, (39 Stat. 355), as amended and supplemented;

Shall be fined under this title or imprisoned not more than 5 years or both.”

IX. IMPLEMENTATION OF CLEAN AIR ACT AND FEDERAL WATER POLLUTION CONTROL ACT

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts.

By submission of this bid/proposal or the execution of this contract, or subcontract, as appropriate, the bidder, proposer, Federal-aid construction contractor, or subcontractor, as appropriate, will be deemed to have stipulated as follows:

1. That any person who is or will be utilized in the performance of this contract is not prohibited from receiving an award due to a violation of Section 508 of the Clean Water Act or Section 306 of the Clean Air Act.

2. That the contractor agrees to include or cause to be included the requirements of paragraph (1) of this Section X in every subcontract, and further agrees to take such action as the contracting agency may direct as a means of enforcing such requirements.

X. CERTIFICATION REGARDING DEBARMENT, SUSPENSION, INELIGIBILITY AND VOLUNTARY EXCLUSION

This provision is applicable to all Federal-aid construction contracts, design-build contracts, subcontracts, lower-tier subcontracts, purchase orders, lease agreements, consultant contracts or any other covered transaction requiring FHWA approval or that is estimated to cost $25,000 or more — as defined in 2 CFR Parts 180 and 1200.

1. Instructions for Certification — First Tier Participants:

a. By signing and submitting this proposal, the prospective first tier participant is providing the certification set out below.

b. The inability of a person to provide the certification set out below will not necessarily result in denial of participation in this covered transaction. The prospective first tier participant shall submit an explanation of why it cannot provide the certification set out below. The certification or explanation will be considered in connection with the department or agency's determination whether to enter into this transaction. However, failure of the prospective first tier participant to furnish a certification or an explanation shall disqualify such a person from participation in this transaction.

c. The certification in this clause is a material representation of fact upon which reliance was placed when the contracting agency determined to enter into this transaction. If it is later determined that the prospective participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the contracting agency may terminate this transaction for cause of default.

d. The prospective first tier participant shall provide immediate written notice to the contracting agency to whom this proposal is submitted if any time the prospective first tier participant learns that its certification was erroneous when submitted or has become erroneous by reason of changed circumstances.

e. The terms "covered transaction," "debarred," "suspended," "ineligible," "participant," "person," "principal," and "voluntarily excluded," as used in this clause, are defined in 2 CFR Parts 180 and 1200. “First Tier Covered Transactions” refers to any covered transaction between a grantee or subgrantee of Federal funds and a participant (such as the prime or general contractor). “Lower Tier Covered Transactions” refers to any covered transaction under a First Tier Covered Transaction (such as subcontracts). “First Tier Participant” refers to the participant who has entered into a covered transaction with a grantee or subgrantee of Federal funds (such as the prime or general contractor). “Lower Tier Participant” refers any participant who has entered into a covered transaction with a First Tier Participant or other Lower Tier Participants (such as subcontractors and suppliers).

f. The prospective first tier participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency entering into this transaction.

g. The prospective first tier participant further agrees by submitting this proposal that it will include the clause titled “Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transactions,” provided by the department or contracting agency, entering into this covered transaction, without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions exceeding the $25,000 threshold.

h. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. A participant is responsible for ensuring that its principals are not suspended, debarred, or otherwise ineligible to participate in covered transactions. To verify the eligibility of its principals, as well as the eligibility of any lower tier prospective participants, each participant may, but is not required to, check the Excluded Parties List System website (https://www.epis.gov/), which is compiled by the General Services Administration.
i. Nothing contained in the foregoing shall be construed to require the establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of the prospective participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.

j. Except for transactions authorized under paragraph (f) of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the department or agency may terminate this transaction for cause or default.

* * * * *

2. Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion – First Tier Participants:

a. The prospective first tier participant certifies to the best of its knowledge and belief, that it and its principals:

(1) Are not presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from participating in covered transactions by any Federal department or agency;

(2) Have not within a three-year period preceding this proposal been convicted of or had a civil judgment rendered against them for commission of fraud or a criminal offense in connection with obtaining, attempting to obtain, or performing a public (Federal, State or local) transaction or contract under a public transaction; violation of Federal or State antitrust statutes or commission of embezzlement, theft, forgery, bribery, falsification or destruction of records, making false statements, or receiving stolen property;

(3) Are not presently indicted for or otherwise criminally or civilly charged by a governmental entity (Federal, State or local) with commission of any of the offenses enumerated in paragraph (a)(2) of this certification; and

(4) Have not within a three-year period preceding this application/proposal had one or more public transactions (Federal, State or local) terminated for cause or default.

b. Where the prospective participant is unable to certify to any of the statements in this certification, such prospective participant shall attach an explanation to this proposal.

2. Instructions for Certification - Lower Tier Participants:

(Applicable to all subcontracts, purchase orders and other lower tier transactions requiring prior FHWA approval or estimated to cost $25,000 or more - 2 CFR Parts 180 and 1200)

a. By signing and submitting this proposal, the prospective lower tier is providing the certification set out below.

b. The certification in this clause is a material representation of fact upon which reliance was placed when this transaction was entered into. If it is later determined that the prospective lower tier participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the department, or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment.

c. The prospective lower tier participant shall provide immediate written notice to the person to which this proposal is submitted if at any time the prospective lower tier participant learns that its certification was erroneous by reason of changed circumstances.

d. The terms "covered transaction," "debarred," "suspended," "ineligible," "participant," "person," "principal," and "voluntarily excluded," as used in this clause, are defined in 2 CFR Parts 180 and 1200. You may contact the person to which this proposal is submitted for assistance in obtaining a copy of those regulations. “First Tier Covered Transactions” refers to any covered transaction between a grantee or subgrantee of Federal funds and a participant (such as the prime or general contract). "Lower Tier Covered Transactions" refers to any covered transaction under a First Tier Covered Transaction (such as subcontracts). “First Tier Participant” refers to the participant who has entered into a covered transaction with a grantee or subgrantee of Federal funds (such as the prime or general contractor). “Lower Tier Participant” refers any participant who has entered into a covered transaction with a First Tier Participant or other Lower Tier Participants (such as subcontractors and suppliers).

e. The prospective lower tier participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency with which this transaction originated.

f. The prospective lower tier participant further agrees by submitting this proposal that it will include this clause titled "Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transaction," without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions exceeding the $25,000 threshold.

g. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. A participant is responsible for ensuring that its principals are not suspended, debarred, or otherwise ineligible to participate in covered transactions. To verify the eligibility of its principals, as well as the eligibility of any lower tier prospective participants, each participant may, but is not required to, check the Excluded Parties List System website (https://www.epis.gov/), which is compiled by the General Services Administration.

h. Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.

i. Except for transactions authorized under paragraph e of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the
department or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment.

* * * * *

Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion--Lower Tier Participants:

1. The prospective lower tier participant certifies, by submission of this proposal, that neither it nor its principals is presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from participating in covered transactions by any Federal department or agency.

2. Where the prospective lower tier participant is unable to certify to any of the statements in this certification, such prospective participant shall attach an explanation to this proposal.

* * * * *

XI. CERTIFICATION REGARDING USE OF CONTRACT FUNDS FOR LOBBYING

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts which exceed $100,000 (49 CFR 20).

1. The prospective participant certifies, by signing and submitting this bid or proposal, to the best of his or her knowledge and belief, that:

 a. No Federal appropriated funds have been paid or will be paid, by or on behalf of the undersigned, to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with the awarding of any Federal contract, the making of any Federal grant, the making of any Federal loan, the entering into of any cooperative agreement, and the extension, continuation, renewal, amendment, or modification of any Federal contract, grant, loan, or cooperative agreement.

 b. If any funds other than Federal appropriated funds have been paid or will be paid to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with this Federal contract, grant, loan, or cooperative agreement, the undersigned shall complete and submit Standard Form-LLL, “Disclosure Form to Report Lobbying,” in accordance with its instructions.

2. This certification is a material representation of fact upon which reliance was placed when this transaction was made or entered into. Submission of this certification is a prerequisite for making or entering into this transaction imposed by 31 U.S.C. 1352. Any person who fails to file the required certification shall be subject to a civil penalty of not less than $10,000 and not more than $100,000 for each such failure.

3. The prospective participant also agrees by submitting its bid or proposal that the participant shall require that the language of this certification be included in all lower tier subcontracts, which exceed $100,000 and that all such recipients shall certify and disclose accordingly.
ATTACHMENT A - EMPLOYMENT AND MATERIALS PREFERENCE FOR APPALACHIAN DEVELOPMENT HIGHWAY SYSTEM OR APPALACHIAN LOCAL ACCESS ROAD CONTRACTS

This provision is applicable to all Federal-aid projects funded under the Appalachian Regional Development Act of 1965.

1. During the performance of this contract, the contractor undertaking to do work which is, or reasonably may be, done as on-site work, shall give preference to qualified persons who regularly reside in the labor area as designated by the DOL wherein the contract work is situated, or the subregion, or the Appalachian counties of the State wherein the contract work is situated, except:

 a. To the extent that qualified persons regularly residing in the area are not available.

 b. For the reasonable needs of the contractor to employ supervisory or specially experienced personnel necessary to assure an efficient execution of the contract work.

 c. For the obligation of the contractor to offer employment to present or former employees as the result of a lawful collective bargaining contract, provided that the number of nonresident persons employed under this subparagraph (1c) shall not exceed 20 percent of the total number of employees employed by the contractor on the contract work, except as provided in subparagraph (4) below.

2. The contractor shall place a job order with the State Employment Service indicating (a) the classifications of the laborers, mechanics and other employees required to perform the contract work, (b) the number of employees required in each classification, (c) the date on which the participant estimates such employees will be required, and (d) any other pertinent information required by the State Employment Service to complete the job order form. The job order may be placed with the State Employment Service in writing or by telephone. If during the course of the contract work, the information submitted by the contractor in the original job order is substantially modified, the participant shall promptly notify the State Employment Service.

3. The contractor shall give full consideration to all qualified job applicants referred to him by the State Employment Service. The contractor is not required to grant employment to any job applicants who, in his opinion, are not qualified to perform the classification of work required.

4. If, within one week following the placing of a job order by the contractor with the State Employment Service, the State Employment Service is unable to refer any qualified job applicants to the contractor, or less than the number requested, the State Employment Service will forward a certificate to the contractor indicating the unavailability of applicants. Such certificate shall be made a part of the contractor's permanent project records. Upon receipt of this certificate, the contractor may employ persons who do not normally reside in the labor area to fill positions covered by the certificate, notwithstanding the provisions of subparagraph (1c) above.

5. The provisions of 23 CFR 633.207(e) allow the contracting agency to provide a contractual preference for the use of mineral resource materials native to the Appalachian region.

6. The contractor shall include the provisions of Sections 1 through 4 of this Attachment A in every subcontract for work which is, or reasonably may be, done as on-site work.
The wage rates listed are those predetermined by the Secretary of Labor and State Statue to be the minimum wages paid. To determine the applicable wage rate zone, a list entitled "TEXAS
COUNTIES IDENTIFIED BY WAGE RATE ZONES" is provided in the contract. Any wage rate that is not listed must be submitted to the Engineer for approval. IMPORTANT NOTICE FOR STATE
PROJECTS; only the controlling wage rate zone applies to the contract. Effective 01-04-2019.

CLASS. #

CLASSIFICATION DESCRIPTION

ZONE
TX02
1/4/19

ZONE
TX03
1/4/19

ZONE
TX04
1/4/19

ZONE
TX05
1/4/19

ZONE
TX06
1/4/19

ZONE
TX07
1/4/19

ZONE
TX08
1/4/19

ZONE
TX24
1/4/19

ZONE
TX25
1/4/19

ZONE
TX27
1/4/19

$12.69

ZONE
TX28
1/4/19

ZONE
TX29
1/4/19

ZONE
TX30
1/4/19

$12.35

ZONE
TX37
1/4/19

ZONE
TX38
1/4/19

ZONE
TX42
1/4/19

1428

Agricultural Tractor Operator

1300

Asphalt Distributor Operator

$14.87

$13.48

$13.88

$15.72

$15.58

$15.55

$15.72

$13.28

$15.32

$15.62

$14.36

$14.25

$14.03

$13.75

$11.75
$14.06

$14.40

1303

Asphalt Paving Machine Operator

$13.40

$12.25

$12.35

$13.87

$14.05

$14.36

$14.20

$13.26

$13.99

$14.68

$12.92

$13.44

$12.53

$14.00

$14.32

$12.99

1106

Asphalt Raker

$12.28

$10.61

$12.02

$14.21

$11.65

$12.12

$11.64

$11.44

$12.69

$12.05

$11.34

$11.67

$11.40

$12.59

$12.36

$11.78

1112

Batching Plant Operator, Asphalt

1115

Batching Plant Operator, Concrete

1214

Blaster

1615

Boom Truck Operator

1444

Boring Machine Operator

1305

Broom or Sweeper Operator

$11.74

$11.41

$10.30

$10.23

$10.60

$12.68

$11.05

1144

Communications Cable Installer
$14.12

$13.04

$13.38

$12.80

$12.79

$12.98

$13.32

$18.36
$11.21

$10.33

$10.08

$11.99

$13.55

$12.46

$13.16

$12.85

1124

Concrete Finisher, Paving and Structures

1318

Concrete Pavement Finishing Machine Operator

1315

Concrete Paving, Curing, Float, Texturing Machine Operator

1333

Concrete Saw Operator

1399

Concrete/Gunite Pump Operator

1344

Crane Operator, Hydraulic 80 tons or less

1345

Crane Operator, Hydraulic Over 80 Tons

1342

Crane Operator, Lattice Boom 80 Tons or Less

1343

Crane Operator, Lattice Boom Over 80 Tons

1306

Crawler Tractor Operator

1351

Crusher or Screen Plant Operator

1446

Directional Drilling Locator

1445

Directional Drilling Operator

1139

Electrician

$20.96

1347

Excavator Operator, 50,000 pounds or less

$13.46

1348

Excavator Operator, Over 50,000 pounds

1150

Flagger

1151

$12.64

$16.05

$11.04

$11.62

$12.56

$12.77

$12.44

$15.48

$16.05

$12.64

$19.31

$13.07

$16.34
$14.67
$18.22
$16.82
$13.96

$14.39
$16.63

$13.85
$13.62

$18.36

$14.48

$17.33

$18.12

$18.04

$11.71
$13.99

$20.21

$18.63

$13.86

$17.27

$15.87

$17.27

$14.67

$16.42

$14.97

$20.52

$19.38

$20.52

$17.49

$25.13

$15.80

$14.26

$15.67

$14.07

$13.38

$14.60

$13.68

$20.32

$17.24

$13.15

$13.87
$13.50

$11.67
$19.87

$19.80

$26.35

$12.56

$13.67

$17.19

$12.88

$14.38

$15.23

$13.52

$17.04

$9.30

$9.10

$8.50

$10.28

$8.81

$9.45

$8.70

Form Builder/Setter, Structures

$13.52

$12.30

$13.38

$12.91

$12.71

$12.87

$12.38

1160

Form Setter, Paving & Curb

$12.36

$12.16

$13.93

$11.83

$10.71

$12.94

1360

Foundation Drill Operator, Crawler Mounted

$20.27

$19.80

$20.92

$13.49

$17.19

$13.88

$17.71
$12.26

$17.99

$14.09

$27.11

$19.87

$12.71

$14.42

$14.53

$13.52

$16.99

$18.80

$16.22

$10.06

$9.71

$9.03

$8.81

$9.08

$9.90

$10.33

$8.10

$13.84

$12.98

$13.07

$13.61

$12.82

$14.73

$12.23

$12.25

$13.16

$12.54

$11.33

$10.69

$12.34

$13.93

$13.33

$17.99

$17.43

1363

Foundation Drill Operator, Truck Mounted

$16.86

$22.05

$21.51

$16.93

$21.07

$20.20

$20.76

$21.39

$15.89

$22.05

1369

Front End Loader Operator, 3 CY or Less

$12.28

$13.49

$13.40

$13.85

$13.04

$13.15

$13.29

$13.69

$12.64

$12.89

$13.51

$13.32

$12.17

1372

Front End Loader Operator, Over 3 CY

$12.77

$13.69

$12.33

$14.96

$13.21

$12.86

$13.57

$14.72

$13.75

$12.32

$13.19

$13.17

$13.02

1329

Joint Sealer

1172

Laborer, Common

$10.30

$9.86

$10.08

$10.51

$10.71

$10.50

$10.24

$10.58

$10.72

$10.45

$10.30

$10.25

$10.03

$10.54

$11.02

$10.15

1175

Laborer, Utility

$11.80

$11.53

$12.70

$12.17

$11.81

$12.27

$12.11

$11.33

$12.32

$11.80

$11.53

$11.23

$11.50

$11.95

$11.73

$12.37

1346

Loader/Backhoe Operator

$14.18

$12.77

$12.97

$15.68

$15.18

$13.58

$12.87

$13.21

$14.13

$14.29

$12.90

$14.12

$17.54


| CLASS. # | CLASSIFICATION DESCRIPTION | ZONE TX02 1/4/19 | ZONE TX03 1/4/19 | ZONE TX04 1/4/19 | ZONE TX05 1/4/19 | ZONE TX06 1/4/19 | ZONE TX07 1/4/19 | ZONE TX08 1/4/19 | ZONE TX24 1/4/19 | ZONE TX25 1/4/19 | ZONE TX27 1/4/19 | ZONE TX28 1/4/19 | ZONE TX29 1/4/19 | ZONE TX30 1/4/19 | ZONE TX37 1/4/19 | ZONE TX38 1/4/19 | ZONE TX42 1/4/19 |
|----------|---------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 1187 | Mechanic | $20.14 | $15.47 | $17.67 | $18.05 | $17.67 | $18.94 | $18.58 | $17.00 | $16.61 | $18.46 | $16.96 | $17.47 | $16.10 | $16.75 | $20.01 |
| 1380 | Milling Machine Operator | $15.54 | $14.84 | $17.47 | $17.74 | $18.74 | $19.94 | $18.58 | $18.05 | $17.47 | $17.66 | $18.61 | $17.74 | $18.00 | $17.47 | $12.80 |
| 1390 | Motor Grader Operator, Fine Grade | $17.49 | $16.52 | $16.88 | $18.37 | $18.57 | $19.17 | $18.35 | $17.07 | $17.74 | $17.47 | $17.08 | $16.69 | $20.01 | $15.29 | $15.53 |
| 1413 | Off Road Hauler | $10.08 | $12.26 | $11.88 | $12.23 | $12.23 | $13.00 | $14.60 | $12.35 | $13.54 | $13.00 | $14.60 | $11.04 | $14.04 | $13.00 | $14.60 |
| 1443 | Percussion or Rotary Drill Operator | $2.02 | $3.85 | $2.02 | $3.85 | $2.02 | $3.85 | $2.02 | $3.85 | $2.02 | $3.85 | $2.02 | $3.85 | $2.02 | $3.85 | $2.02 |

Notes:
Any worker employed on this project shall be paid at the rate of one and one half (1-1/2) times the regular rate for every hour worked in excess of forty (40) hours per week.

The titles and descriptions for the classifications listed here are further detailed in the AGC of Texas’ Standard Job Classifications and Descriptions for Highway, Heavy, Utilities, and Industrial Construction in Texas. AGC will make it available on its Web site for any contractor.
TEXAS COUNTIES IDENTIFIED BY WAGE RATE ZONES: 2, 3, 4, 5, 6, 7, 8, 24, 25, 27, 28, 29, 30, 37, 38, 42

<table>
<thead>
<tr>
<th>County Name</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>28</td>
<td>Donley</td>
<td>37</td>
<td>Karnes</td>
<td>27</td>
<td>Reagan</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrews</td>
<td>37</td>
<td>Duval</td>
<td>30</td>
<td>Kaufman</td>
<td>25</td>
<td>Real River</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angelina</td>
<td>28</td>
<td>Eastland</td>
<td>37</td>
<td>Kendall</td>
<td>7</td>
<td>Red River</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aransas</td>
<td>29</td>
<td>Ector</td>
<td>2</td>
<td>Kenedy</td>
<td>30</td>
<td>Reeves</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archer</td>
<td>25</td>
<td>Edwards</td>
<td>8</td>
<td>Kent</td>
<td>37</td>
<td>Refugio</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armstrong</td>
<td>2</td>
<td>El Paso</td>
<td>24</td>
<td>Kerr</td>
<td>27</td>
<td>Roberts</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atascosa</td>
<td>7</td>
<td>Ellis</td>
<td>25</td>
<td>Kimble</td>
<td>37</td>
<td>Robertson</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austin</td>
<td>38</td>
<td>Erath</td>
<td>28</td>
<td>King</td>
<td>37</td>
<td>Rockwall</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bailey</td>
<td>37</td>
<td>Falls</td>
<td>28</td>
<td>Kinney</td>
<td>8</td>
<td>Runnels</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandera</td>
<td>7</td>
<td>Fannin</td>
<td>28</td>
<td>Kleberg</td>
<td>27</td>
<td>Rusk</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bastrop</td>
<td>7</td>
<td>Fayette</td>
<td>27</td>
<td>Knox</td>
<td>37</td>
<td>Sabine</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baylor</td>
<td>37</td>
<td>Fisher</td>
<td>37</td>
<td>Lamar</td>
<td>37</td>
<td>San Augustine</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bee</td>
<td>27</td>
<td>Floyd</td>
<td>37</td>
<td>Lamb</td>
<td>37</td>
<td>San Jacinto</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell</td>
<td>7</td>
<td>Foard</td>
<td>37</td>
<td>Lampasas</td>
<td>7</td>
<td>San Patricio</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bexar</td>
<td>7</td>
<td>Fort Bend</td>
<td>38</td>
<td>LaSalle</td>
<td>30</td>
<td>San Saba</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanco</td>
<td>27</td>
<td>Franklin</td>
<td>28</td>
<td>Lavaca</td>
<td>27</td>
<td>Schleicher</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borden</td>
<td>37</td>
<td>Freestone</td>
<td>28</td>
<td>Lee</td>
<td>27</td>
<td>Scurry</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosque</td>
<td>28</td>
<td>Frio</td>
<td>27</td>
<td>Leon</td>
<td>28</td>
<td>Shackelford</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowie</td>
<td>4</td>
<td>Gaines</td>
<td>37</td>
<td>Liberty</td>
<td>38</td>
<td>Shelby</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazoria</td>
<td>38</td>
<td>Galveston</td>
<td>38</td>
<td>Limestone</td>
<td>28</td>
<td>Sherman</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazos</td>
<td>7</td>
<td>Garza</td>
<td>37</td>
<td>Lipscomb</td>
<td>37</td>
<td>Smith</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brewster</td>
<td>8</td>
<td>Gillespie</td>
<td>27</td>
<td>Live Oak</td>
<td>27</td>
<td>Somervell</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Briscoe</td>
<td>37</td>
<td>Glasscock</td>
<td>37</td>
<td>Llano</td>
<td>27</td>
<td>Starr</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brooks</td>
<td>30</td>
<td>Goliad</td>
<td>29</td>
<td>Loving</td>
<td>37</td>
<td>Stephens</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>37</td>
<td>Gonzales</td>
<td>27</td>
<td>Lubbock</td>
<td>2</td>
<td>Sterling</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burleson</td>
<td>7</td>
<td>Gray</td>
<td>37</td>
<td>Lynn</td>
<td>37</td>
<td>Stonewall</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burnet</td>
<td>27</td>
<td>Grayson</td>
<td>25</td>
<td>Madison</td>
<td>28</td>
<td>Sutton</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caldwell</td>
<td>7</td>
<td>Gregg</td>
<td>4</td>
<td>Marion</td>
<td>28</td>
<td>Swisher</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calhoun</td>
<td>29</td>
<td>Grimes</td>
<td>28</td>
<td>Martin</td>
<td>37</td>
<td>Tarrant</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callahan</td>
<td>25</td>
<td>Guadalupe</td>
<td>7</td>
<td>Mason</td>
<td>27</td>
<td>Taylor</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameron</td>
<td>3</td>
<td>Hale</td>
<td>37</td>
<td>Matagorda</td>
<td>27</td>
<td>Terrell</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camp</td>
<td>28</td>
<td>Hall</td>
<td>37</td>
<td>Maverick</td>
<td>30</td>
<td>Terry</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carson</td>
<td>2</td>
<td>Hamilton</td>
<td>28</td>
<td>McCulloch</td>
<td>37</td>
<td>Throckmorton</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cass</td>
<td>28</td>
<td>Haysford</td>
<td>37</td>
<td>McLennan</td>
<td>7</td>
<td>Titus</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castro</td>
<td>37</td>
<td>Hardeman</td>
<td>37</td>
<td>McLennan</td>
<td>30</td>
<td>Tom Green</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chambers</td>
<td>38</td>
<td>Hardin</td>
<td>38</td>
<td>Medina</td>
<td>7</td>
<td>Travis</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherokee</td>
<td>28</td>
<td>Harris</td>
<td>38</td>
<td>Menard</td>
<td>37</td>
<td>Trinity</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Childress</td>
<td>37</td>
<td>Harrison</td>
<td>42</td>
<td>Midland</td>
<td>2</td>
<td>Tyler</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>25</td>
<td>Hartley</td>
<td>37</td>
<td>Milam</td>
<td>28</td>
<td>Ushur</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cochran</td>
<td>37</td>
<td>Haskell</td>
<td>37</td>
<td>Mills</td>
<td>37</td>
<td>Upton</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coke</td>
<td>37</td>
<td>Hays</td>
<td>7</td>
<td>Mitchell</td>
<td>37</td>
<td>Uvalde</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleman</td>
<td>37</td>
<td>Hemphill</td>
<td>37</td>
<td>Montague</td>
<td>37</td>
<td>Val Verde</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collin</td>
<td>25</td>
<td>Henderson</td>
<td>28</td>
<td>Montgomery</td>
<td>38</td>
<td>Van Zandt</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collingsworth</td>
<td>37</td>
<td>Hidalgo</td>
<td>3</td>
<td>Moore</td>
<td>37</td>
<td>Victoria</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>27</td>
<td>Hill</td>
<td>28</td>
<td>Morris</td>
<td>28</td>
<td>Walker</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comal</td>
<td>7</td>
<td>Hockley</td>
<td>37</td>
<td>Motley</td>
<td>37</td>
<td>Waller</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comanche</td>
<td>37</td>
<td>Hood</td>
<td>28</td>
<td>Nacogdoches</td>
<td>28</td>
<td>Ward</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concho</td>
<td>37</td>
<td>Hopkins</td>
<td>28</td>
<td>Navarro</td>
<td>28</td>
<td>Washington</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooke</td>
<td>37</td>
<td>Houston</td>
<td>28</td>
<td>Newton</td>
<td>28</td>
<td>Webb</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coryell</td>
<td>7</td>
<td>Howard</td>
<td>37</td>
<td>Nolan</td>
<td>37</td>
<td>Wharton</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cottle</td>
<td>37</td>
<td>Hudsptth</td>
<td>8</td>
<td>Nueces</td>
<td>29</td>
<td>Wheeler</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crane</td>
<td>37</td>
<td>Hunt</td>
<td>25</td>
<td>Ochiltree</td>
<td>37</td>
<td>Wichita</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crockett</td>
<td>8</td>
<td>Hutchinson</td>
<td>37</td>
<td>Oldham</td>
<td>37</td>
<td>Wilbarger</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosby</td>
<td>2</td>
<td>Irion</td>
<td>2</td>
<td>Orange</td>
<td>37</td>
<td>Willacy</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culberson</td>
<td>8</td>
<td>Jack</td>
<td>28</td>
<td>Palo Pinto</td>
<td>28</td>
<td>Williamson</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>37</td>
<td>Jackson</td>
<td>27</td>
<td>Panola</td>
<td>27</td>
<td>Wilson</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>25</td>
<td>Jasper</td>
<td>28</td>
<td>Parker</td>
<td>25</td>
<td>Winkler</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawson</td>
<td>37</td>
<td>Jeff Davis</td>
<td>8</td>
<td>Parmer</td>
<td>37</td>
<td>Wise</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deaf Smith</td>
<td>37</td>
<td>Jefferson</td>
<td>38</td>
<td>Pecos</td>
<td>8</td>
<td>Wood</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta</td>
<td>25</td>
<td>Jim Hogg</td>
<td>30</td>
<td>Polk</td>
<td>28</td>
<td>Yoakum</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denton</td>
<td>25</td>
<td>Jim Wells</td>
<td>27</td>
<td>Potter</td>
<td>2</td>
<td>Young</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeWitt</td>
<td>27</td>
<td>Johnson</td>
<td>25</td>
<td>Presidio</td>
<td>8</td>
<td>Zapata</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dickens</td>
<td>37</td>
<td>Jones</td>
<td>25</td>
<td>Rains</td>
<td>28</td>
<td>Zavala</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimmit</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

01-04-2019
1. DESCRIPTION

All recipients of federal financial assistance are required to comply with various nondiscrimination laws including Title VI of the Civil Rights Act of 1964, as amended, (Title VI). Title VI forbids discrimination against anyone in the United States on the grounds of race, color, or national origin by any agency receiving federal funds.

Texas Department of Transportation, as a recipient of Federal financial assistance, and under Title VI and related statutes, ensures that no person shall on the grounds of race, religion (where the primary objective of the financial assistance is to provide employment per 42 U.S.C. § 2000d-3), color, national origin, sex, age or disability be excluded from participation in, be denied the benefits of, or otherwise be subjected to discrimination under any Department programs or activities.

2. DEFINITION OF TERMS

Where the term “Contractor” appears in the following six nondiscrimination clauses, the term “Contractor” is understood to include all parties to Contracts or agreements with the Texas Department of Transportation.

3. NONDISCRIMINATION PROVISIONS

During the performance of this Contract, the Contractor, for itself, its assignees, and successors in interest (hereinafter referred to as the “Contractor”) agrees as follows:

3.1 Compliance with Regulations. The Contractor (hereinafter includes consultants) will comply with the Acts and the Regulations relative to Nondiscrimination in Federally-assisted programs of the U.S. Department of Transportation, the Federal Highway Administration, as they may be amended from time to time, which are herein incorporated by reference and made a part of this Contract.

3.2 Nondiscrimination. The Contractor, with regard to the work performed by it during the Contract, will not discriminate on the grounds of race, color, or national origin in the selection and retention of subcontractors, including procurements of materials and leases of equipment. The Contractor will not participate directly or indirectly in the discrimination prohibited by the Acts and the Regulations, including employment practices when the Contract covers any activity, project, or program set forth in Appendix B of 49 CFR Part 21.

3.3 Solicitations for Subcontracts, Including Procurements of Materials and Equipment: In all solicitations, either by competitive bidding, or negotiation made by the Contractor for work to be performed under a subcontract, including procurements of materials, or leases of equipment, each potential subcontractor or supplier will be notified by the Contractor of the Contractor's obligations under this Contract and the Acts and the Regulations relative to Nondiscrimination on the grounds of race, color, or national origin.

3.4 Information and Reports: The Contractor will provide all information and reports required by the Acts, the Regulations, and directives issued pursuant thereto and will permit access to its books, records, accounts, other sources of information, and its facilities as may be determined by the Recipient or the Federal Highway Administration to be pertinent to ascertain compliance with such Acts, Regulations, and instructions. Where any information required of a Contractor is in the exclusive possession of another who fails or refuses to furnish the information, the Contractor will so certify to the Recipient or the Federal Highway Administration, as appropriate, and will set forth what efforts it has made to obtain the information.
Sanctions for Noncompliance. In the event of a Contractor's noncompliance with the Nondiscrimination provisions of this Contract, the Recipient will impose such Contract sanctions as it or the Federal Highway Administration may determine to be appropriate, including, but not limited to:

- withholding payments to the Contractor under the Contract until the Contractor complies, and/or
- cancelling, terminating, or suspending a Contract, in whole or in part.

Incorporation of Provisions. The Contractor will include the provisions of paragraphs (3.1) through (3.6) in every subcontract, including procurements of materials and leases of equipment, unless exempt by the Acts, the Regulations, and directives issued pursuant thereto. The Contractor will take action with respect to any subcontract or procurement as the Recipient or the Federal Highway Administration may direct as a means of enforcing such provisions including sanctions for noncompliance. Provided, that if the Contractor becomes involved in, or is threatened with litigation by a subcontractor, or supplier because of such direction, the Contractor may request the Recipient to enter into any litigation to protect the interests of the Recipient. In addition, the Contractor may request the United States to enter into the litigation to protect the interests of the United States.

PERTINENT NONDISCRIMINATION AUTHORITIES:

During the performance of this Contract, the Contractor, for itself, its assignees, and successors in interest (hereinafter referred to as the "Contractor") agrees to comply with the following nondiscrimination statutes and authorities; including but not limited to:

4.2. The Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, (42 U.S.C. § 4601), (prohibits unfair treatment of persons displaced or whose property has been acquired because of Federal or Federal-aid programs and projects);

4.3. Federal-Aid Highway Act of 1973, (23 U.S.C. § 324 et seq.), (prohibits discrimination on the basis of sex);

4.5. The Age Discrimination Act of 1975, as amended, (42 U.S.C. § 6101 et seq.), (prohibits discrimination on the basis of age);

4.6. Airport and Airway Improvement Act of 1982, (49 U.S.C. § 471, Section 47123), as amended, (prohibits discrimination based on race, creed, color, national origin, or sex);

4.7. The Civil Rights Restoration Act of 1987, (PL 100-209), (Broadened the scope, coverage and applicability of Title VI of the Civil Rights Act of 1964, The Age Discrimination Act of 1975 and Section 504 of the Rehabilitation Act of 1973, by expanding the definition of the terms "programs or activities" to include all of the programs or activities of the Federal-aid recipients, subrecipients and Contractors, whether such programs or activities are Federally funded or not);

4.8. Titles II and III of the Americans with Disabilities Act, which prohibit discrimination on the basis of disability in the operation of public entities, public and private transportation systems, places of public accommodation, and certain testing entities (42 U.S.C. §§ 12131-12189) as implemented by Department of Transportation regulations at 49 C.F.R. parts 37 and 38;

4.9. The Federal Aviation Administration's Nondiscrimination statute (49 U.S.C. § 47123) (prohibits discrimination on the basis of race, color, national origin, and sex);
4.10. Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, which ensures discrimination against minority populations by discouraging programs, policies, and activities with disproportionately high and adverse human health or environmental effects on minority and low-income populations;

4.11. Executive Order 13166, Improving Access to Services for Persons with Limited English Proficiency, and resulting agency guidance, national origin discrimination includes discrimination because of limited English proficiency (LEP). To ensure compliance with Title VI, you must take reasonable steps to ensure that LEP persons have meaningful access to your programs (70 Fed. Reg. at 74087 to 74100);

4.12. Title IX of the Education Amendments of 1972, as amended, which prohibits you from discriminating because of sex in education programs or activities (20 U.S.C. 1681 et seq).
1. **GENERAL**

By signing this proposal, the Bidder certifies that he has participated in a previous contract or subcontract subject to the equal opportunity clause, as required by Executive Orders 10925, 11114, or 11246, or if he has not participated in a previous contract of this type, or if he has had previous contract or subcontracts and has not filed, he will file with the Joint Reporting Committee, the Director of the Office of Federal Contract Compliance, a Federal Government contracting or administering agency, or the former President's Committee on Equal Employment Opportunity, all reports due under the applicable filing requirements.

Note—The above certification is required by the Equal Employment Opportunity Regulations of the Secretary of Labor (41 CFR 60-1.7(b)(1)), and must be submitted by Bidders and proposed subcontractors only in connection with contracts and subcontracts which are subject to the equal opportunity clause. Contracts and subcontracts which are exempt from the equal opportunity clause are set forth in 41 CFR 60-1.5. (Generally only contracts or subcontracts of $10,000 or under are exempt.)

Currently, Standard Form 100 (EEO-1) is the only report required by the Executive Orders or their implementing regulations.

Proposed prime contractors and subcontractors who have participated in a previous contract or subcontract subject to the Executive Orders and have not filed the required reports should note that 41 CFR 60-1.7(b)(1) prevents the award of contracts and subcontracts unless such contractor submits a report covering the delinquent period or such other period specified by the Federal Highway Administration or by the Director, Office of Federal Contract Compliance, U.S. Department of Labor.
Special Provision to Item 000
Notice of Requirement for Affirmative Action to Ensure Equal Employment Opportunity (Executive Order 11246)

1. GENERAL

In addition to the affirmative action requirements of the Special Provision titled “Standard Federal Equal Employment Opportunity Construction Contract Specifications” as set forth elsewhere in this proposal, the Bidder's attention is directed to the specific requirements for utilization of minorities and females as set forth below.

2. GOALS

2.1. Goals for minority and female participation are hereby established in accordance with 41 CFR 60-4.

2.2. The goals for minority and female participation expressed in percentage terms for the Contractor's aggregate work force in each trade on all construction work in the covered area are as follows:

<table>
<thead>
<tr>
<th>Goals for minority participation in each trade, %</th>
<th>Goals for female participation in each trade, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>See Table 1</td>
<td>6.9</td>
</tr>
</tbody>
</table>

2.3. These goals are applicable to all the Contractor's construction work (whether or not it is Federal or federally assisted) performed in the covered area. If the Contractor performs construction work in a geographical area located outside of the covered area, it will apply the goals established for such geographical area where the work is actually performed. With regard to this second area, the Contractor also is subject to the goals for both its federally involved and non-federally involved construction. The Contractor's compliance with the Executive Order and the regulations in 41 CFR Part 60-4 will be based on its implementation of the Standard Federal Equal Employment Opportunity Construction Contract Specifications Special Provision and its efforts to meet the goals. The hours of minority and female employment and training must be substantially uniform throughout the length of the Contract, and in each trade, and the Contractor must make a good faith effort to employ minorities and women evenly on each of its projects. The transfer of minority and female employees or trainees from Contractor to Contractor or from project to project for the sole purpose of meeting the Contractor's goals will be a violation of the Contract, the Executive Order and the regulations in 41 CFR Part 60-4. Compliance with the goals will be measured against the total work hours performed.

2.4. A Contractor or subcontractor will be considered in compliance with these provisions by participation in the Texas Highway-Heavy Branch, AGC, Statewide Training and Affirmative Action Plan. Provided that each Contractor or subcontractor participating in this plan must individually comply with the equal opportunity clause set forth in 41 CFR 60-1.4 and must make a good faith effort to achieve the goals set forth for each participating trade in the plan in which it has employees. The overall good performance of other Contractors and subcontractors toward a goal in an approved plan does not excuse any covered Contractor's or subcontractor's failure to make good faith efforts to achieve the goals contained in these provisions. Contractors or subcontractors participating in the plan must be able to demonstrate their participation and document their compliance with the provisions of this Plan.

3. SUBCONTRACTING

The Contractor must provide written notification to the Department within 10 working days of award of any construction subcontract in excess of $10,000 at any tier for construction work under the Contract resulting from this solicitation pending concurrence of the Department in the award. The notification will list the names,
address and telephone number of the subcontractor; employer identification number; estimated dollar amount of the subcontract; estimated starting and completion dates of the subcontract; and the geographical area in which the Contract is to be performed.

4. COVERED AREA

As used in this special provision, and in the Contract resulting from this solicitation, the geographical area covered by these goals for female participation is the State of Texas. The geographical area covered by these goals for other minorities are the counties in the State of Texas as indicated in Table 1.

5. REPORTS

The Contractor is hereby notified that he may be subject to the Office of Federal Contract Compliance Programs (OFCCP) reporting and record keeping requirements as provided for under Executive Order 11246 as amended. OFCCP will provide direct notice to the Contractor as to the specific reporting requirements that he will be expected to fulfill.

<table>
<thead>
<tr>
<th>County</th>
<th>Participation, %</th>
<th>County</th>
<th>Participation, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>22.5</td>
<td>Chambers</td>
<td>27.4</td>
</tr>
<tr>
<td>Andrews</td>
<td>18.9</td>
<td>Cherokee</td>
<td>22.5</td>
</tr>
<tr>
<td>Angelina</td>
<td>22.5</td>
<td>Childress</td>
<td>11.0</td>
</tr>
<tr>
<td>Aransas</td>
<td>44.2</td>
<td>Clay</td>
<td>12.4</td>
</tr>
<tr>
<td>Archer</td>
<td>11.0</td>
<td>Cochran</td>
<td>19.5</td>
</tr>
<tr>
<td>Armstrong</td>
<td>11.0</td>
<td>Coke</td>
<td>20.0</td>
</tr>
<tr>
<td>Atascosa</td>
<td>49.4</td>
<td>Coleman</td>
<td>10.9</td>
</tr>
<tr>
<td>Austin</td>
<td>27.4</td>
<td>Collin</td>
<td>18.2</td>
</tr>
<tr>
<td>Bailey</td>
<td>19.5</td>
<td>Collingsworth</td>
<td>11.0</td>
</tr>
<tr>
<td>Bandera</td>
<td>49.4</td>
<td>Colorado</td>
<td>27.4</td>
</tr>
<tr>
<td>Bastrop</td>
<td>24.2</td>
<td>Comal</td>
<td>47.8</td>
</tr>
<tr>
<td>Baylor</td>
<td>11.0</td>
<td>Comanche</td>
<td>10.9</td>
</tr>
<tr>
<td>Bee</td>
<td>44.2</td>
<td>Concho</td>
<td>20.0</td>
</tr>
<tr>
<td>Bell</td>
<td>16.4</td>
<td>Cooke</td>
<td>17.2</td>
</tr>
<tr>
<td>Bexar</td>
<td>47.8</td>
<td>Coryell</td>
<td>16.4</td>
</tr>
<tr>
<td>Blanco</td>
<td>24.2</td>
<td>Cottle</td>
<td>11.0</td>
</tr>
<tr>
<td>Borden</td>
<td>19.5</td>
<td>Crane</td>
<td>18.9</td>
</tr>
<tr>
<td>Bosque</td>
<td>18.6</td>
<td>Crockett</td>
<td>20.0</td>
</tr>
<tr>
<td>Bowie</td>
<td>19.7</td>
<td>Crosby</td>
<td>19.5</td>
</tr>
<tr>
<td>Brazoria</td>
<td>27.3</td>
<td>Culberson</td>
<td>49.0</td>
</tr>
<tr>
<td>Brazos</td>
<td>23.7</td>
<td>Dallam</td>
<td>11.0</td>
</tr>
<tr>
<td>Brewster</td>
<td>49.0</td>
<td>Dallas</td>
<td>18.2</td>
</tr>
<tr>
<td>Briscoe</td>
<td>11.0</td>
<td>Dawson</td>
<td>19.5</td>
</tr>
<tr>
<td>Brooks</td>
<td>44.2</td>
<td>Deaf Smith</td>
<td>11.0</td>
</tr>
<tr>
<td>Brown</td>
<td>10.9</td>
<td>Delta</td>
<td>17.2</td>
</tr>
<tr>
<td>Burleson</td>
<td>27.4</td>
<td>Denton</td>
<td>18.2</td>
</tr>
<tr>
<td>Burnet</td>
<td>24.2</td>
<td>DeWitt</td>
<td>27.4</td>
</tr>
<tr>
<td>Caldwell</td>
<td>24.2</td>
<td>Dickens</td>
<td>19.5</td>
</tr>
<tr>
<td>Calhoun</td>
<td>27.4</td>
<td>Dimmit</td>
<td>49.4</td>
</tr>
<tr>
<td>Callahan</td>
<td>11.6</td>
<td>Donley</td>
<td>11.0</td>
</tr>
<tr>
<td>Cameron</td>
<td>71.0</td>
<td>Duval</td>
<td>44.2</td>
</tr>
<tr>
<td>Camp</td>
<td>20.2</td>
<td>Eastland</td>
<td>10.9</td>
</tr>
<tr>
<td>Carson</td>
<td>11.0</td>
<td>Ector</td>
<td>15.1</td>
</tr>
<tr>
<td>Cass</td>
<td>20.2</td>
<td>Edwards</td>
<td>49.4</td>
</tr>
<tr>
<td>Castro</td>
<td>11.0</td>
<td>Ellis</td>
<td>18.2</td>
</tr>
<tr>
<td>County</td>
<td>Participation, %</td>
<td>County</td>
<td>Participation, %</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>El Paso</td>
<td>57.8</td>
<td>Kenedy</td>
<td>44.2</td>
</tr>
<tr>
<td>Erath</td>
<td>17.2</td>
<td>Kent</td>
<td>10.9</td>
</tr>
<tr>
<td>Falls</td>
<td>18.6</td>
<td>Kerr</td>
<td>49.4</td>
</tr>
<tr>
<td>Fannin</td>
<td>17.2</td>
<td>Kimble</td>
<td>20.0</td>
</tr>
<tr>
<td>Fayette</td>
<td>27.4</td>
<td>King</td>
<td>19.5</td>
</tr>
<tr>
<td>Fisher</td>
<td>10.9</td>
<td>Kinney</td>
<td>49.4</td>
</tr>
<tr>
<td>Floyd</td>
<td>19.5</td>
<td>Kleberg</td>
<td>44.2</td>
</tr>
<tr>
<td>Foard</td>
<td>11.0</td>
<td>Knox</td>
<td>10.9</td>
</tr>
<tr>
<td>Fort Bend</td>
<td>27.3</td>
<td>Lamar</td>
<td>20.2</td>
</tr>
<tr>
<td>Franklin</td>
<td>17.2</td>
<td>Lamb</td>
<td>19.5</td>
</tr>
<tr>
<td>Freestone</td>
<td>18.6</td>
<td>Lampasas</td>
<td>18.6</td>
</tr>
<tr>
<td>Frio</td>
<td>49.4</td>
<td>LaSalle</td>
<td>49.4</td>
</tr>
<tr>
<td>Gaines</td>
<td>19.5</td>
<td>Lavaca</td>
<td>27.4</td>
</tr>
<tr>
<td>Galveston</td>
<td>28.9</td>
<td>Lee</td>
<td>24.2</td>
</tr>
<tr>
<td>Garza</td>
<td>19.5</td>
<td>Leon</td>
<td>27.4</td>
</tr>
<tr>
<td>Gillespie</td>
<td>49.4</td>
<td>Liberty</td>
<td>27.3</td>
</tr>
<tr>
<td>Glasscock</td>
<td>18.9</td>
<td>Limestone</td>
<td>18.6</td>
</tr>
<tr>
<td>Goliad</td>
<td>27.4</td>
<td>Lipscomb</td>
<td>11.0</td>
</tr>
<tr>
<td>Gonzales</td>
<td>49.4</td>
<td>Live Oak</td>
<td>44.2</td>
</tr>
<tr>
<td>Gray</td>
<td>11.0</td>
<td>Llano</td>
<td>24.2</td>
</tr>
<tr>
<td>Grayson</td>
<td>9.4</td>
<td>Loving</td>
<td>18.9</td>
</tr>
<tr>
<td>Gregg</td>
<td>22.8</td>
<td>Lubbock</td>
<td>19.6</td>
</tr>
<tr>
<td>Grimes</td>
<td>27.4</td>
<td>Lynn</td>
<td>19.5</td>
</tr>
<tr>
<td>Guadalupe</td>
<td>47.8</td>
<td>Madison</td>
<td>27.4</td>
</tr>
<tr>
<td>Hale</td>
<td>18.5</td>
<td>Marion</td>
<td>22.5</td>
</tr>
<tr>
<td>Hall</td>
<td>11.0</td>
<td>Martin</td>
<td>18.9</td>
</tr>
<tr>
<td>Hamilton</td>
<td>18.6</td>
<td>Mason</td>
<td>20.0</td>
</tr>
<tr>
<td>Hansford</td>
<td>11.0</td>
<td>Matagorda</td>
<td>27.4</td>
</tr>
<tr>
<td>Hardeman</td>
<td>11.0</td>
<td>Maverick</td>
<td>49.4</td>
</tr>
<tr>
<td>Hardin</td>
<td>22.6</td>
<td>McCulloch</td>
<td>20.0</td>
</tr>
<tr>
<td>Harris</td>
<td>27.3</td>
<td>McLennan</td>
<td>20.7</td>
</tr>
<tr>
<td>Harrison</td>
<td>22.8</td>
<td>McMullen</td>
<td>49.4</td>
</tr>
<tr>
<td>Hartley</td>
<td>11.0</td>
<td>Medina</td>
<td>49.4</td>
</tr>
<tr>
<td>Haskell</td>
<td>10.9</td>
<td>Menard</td>
<td>20.0</td>
</tr>
<tr>
<td>Hayes</td>
<td>24.1</td>
<td>Midland</td>
<td>19.1</td>
</tr>
<tr>
<td>Hemphill</td>
<td>11.0</td>
<td>Milam</td>
<td>18.6</td>
</tr>
<tr>
<td>Henderson</td>
<td>22.5</td>
<td>Mills</td>
<td>18.6</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>72.8</td>
<td>Mitchell</td>
<td>10.9</td>
</tr>
<tr>
<td>Hill</td>
<td>18.6</td>
<td>Montague</td>
<td>17.2</td>
</tr>
<tr>
<td>Hockley</td>
<td>19.5</td>
<td>Montgomery</td>
<td>27.3</td>
</tr>
<tr>
<td>Hood</td>
<td>18.2</td>
<td>Moore</td>
<td>11.0</td>
</tr>
<tr>
<td>Hopkins</td>
<td>17.2</td>
<td>Morris</td>
<td>20.2</td>
</tr>
<tr>
<td>Houston</td>
<td>22.5</td>
<td>Motley</td>
<td>19.5</td>
</tr>
<tr>
<td>Howard</td>
<td>18.9</td>
<td>Nacogdoches</td>
<td>22.5</td>
</tr>
<tr>
<td>Hudspeth</td>
<td>49.0</td>
<td>Navarro</td>
<td>17.2</td>
</tr>
<tr>
<td>Hunt</td>
<td>17.2</td>
<td>Newton</td>
<td>22.6</td>
</tr>
<tr>
<td>Hutchinson</td>
<td>11.0</td>
<td>Nolan</td>
<td>10.9</td>
</tr>
<tr>
<td>Irion</td>
<td>20.0</td>
<td>Nueces</td>
<td>41.7</td>
</tr>
<tr>
<td>Jack</td>
<td>17.2</td>
<td>Ochiltree</td>
<td>11.0</td>
</tr>
<tr>
<td>Jackson</td>
<td>27.4</td>
<td>Oldham</td>
<td>11.0</td>
</tr>
<tr>
<td>Jasper</td>
<td>22.6</td>
<td>Orange</td>
<td>22.6</td>
</tr>
<tr>
<td>Jeff Davis</td>
<td>49.0</td>
<td>Palo Pinto</td>
<td>17.2</td>
</tr>
<tr>
<td>Jefferson</td>
<td>22.6</td>
<td>Panola</td>
<td>22.5</td>
</tr>
<tr>
<td>Jim Hogg</td>
<td>49.4</td>
<td>Parker</td>
<td>18.2</td>
</tr>
<tr>
<td>Jim Wells</td>
<td>44.2</td>
<td>Parmer</td>
<td>11.0</td>
</tr>
<tr>
<td>Johnson</td>
<td>18.2</td>
<td>Pecos</td>
<td>18.9</td>
</tr>
<tr>
<td>Jones</td>
<td>11.6</td>
<td>Polk</td>
<td>27.4</td>
</tr>
<tr>
<td>Karnes</td>
<td>49.4</td>
<td>Potter</td>
<td>9.3</td>
</tr>
<tr>
<td>Kaufman</td>
<td>18.2</td>
<td>Presidio</td>
<td>49.0</td>
</tr>
<tr>
<td>Kendall</td>
<td>49.4</td>
<td>Randall</td>
<td>9.3</td>
</tr>
<tr>
<td>County</td>
<td>Participation, %</td>
<td>County</td>
<td>Participation, %</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Rains</td>
<td>17.2</td>
<td>Reagan</td>
<td>20.0</td>
</tr>
<tr>
<td>Real</td>
<td>49.4</td>
<td>Throckmorton</td>
<td>10.9</td>
</tr>
<tr>
<td>Red River</td>
<td>20.2</td>
<td>Titus</td>
<td>20.2</td>
</tr>
<tr>
<td>Reeves</td>
<td>18.9</td>
<td>Tom Green</td>
<td>19.2</td>
</tr>
<tr>
<td>Refugio</td>
<td>44.2</td>
<td>Travis</td>
<td>24.1</td>
</tr>
<tr>
<td>Roberts</td>
<td>11.0</td>
<td>Trinity</td>
<td>27.4</td>
</tr>
<tr>
<td>Robertson</td>
<td>27.4</td>
<td>Tyler</td>
<td>22.6</td>
</tr>
<tr>
<td>Rockwall</td>
<td>18.2</td>
<td>Upshur</td>
<td>22.5</td>
</tr>
<tr>
<td>Runnels</td>
<td>20.0</td>
<td>Upton</td>
<td>18.9</td>
</tr>
<tr>
<td>Rusk</td>
<td>22.5</td>
<td>Uvalde</td>
<td>49.4</td>
</tr>
<tr>
<td>Sabine</td>
<td>22.6</td>
<td>Val Verde</td>
<td>49.4</td>
</tr>
<tr>
<td>San Augustine</td>
<td>22.5</td>
<td>Van Zandt</td>
<td>17.2</td>
</tr>
<tr>
<td>San Jacinto</td>
<td>27.4</td>
<td>Victoria</td>
<td>27.4</td>
</tr>
<tr>
<td>San Patricio</td>
<td>41.7</td>
<td>Walker</td>
<td>27.4</td>
</tr>
<tr>
<td>San Saba</td>
<td>20.0</td>
<td>Waller</td>
<td>27.3</td>
</tr>
<tr>
<td>Schleicher</td>
<td>20.0</td>
<td>Ward</td>
<td>18.9</td>
</tr>
<tr>
<td>Scurry</td>
<td>10.9</td>
<td>Washington</td>
<td>27.4</td>
</tr>
<tr>
<td>Shackelford</td>
<td>10.9</td>
<td>Webb</td>
<td>87.3</td>
</tr>
<tr>
<td>Shelby</td>
<td>22.5</td>
<td>Wharton</td>
<td>27.4</td>
</tr>
<tr>
<td>Sherman</td>
<td>11.0</td>
<td>Wheeler</td>
<td>11.0</td>
</tr>
<tr>
<td>Smith</td>
<td>23.5</td>
<td>Wichita</td>
<td>12.4</td>
</tr>
<tr>
<td>Somervell</td>
<td>17.2</td>
<td>Wilbarger</td>
<td>11.0</td>
</tr>
<tr>
<td>Starr</td>
<td>72.9</td>
<td>Willacy</td>
<td>72.9</td>
</tr>
<tr>
<td>Stephens</td>
<td>10.9</td>
<td>Williamson</td>
<td>24.1</td>
</tr>
<tr>
<td>Sterling</td>
<td>20.0</td>
<td>Wilson</td>
<td>49.4</td>
</tr>
<tr>
<td>Stonewall</td>
<td>10.9</td>
<td>Winkler</td>
<td>18.9</td>
</tr>
<tr>
<td>Sutton</td>
<td>20.0</td>
<td>Wise</td>
<td>18.2</td>
</tr>
<tr>
<td>Swisher</td>
<td>11.0</td>
<td>Wood</td>
<td>22.5</td>
</tr>
<tr>
<td>Tarrant</td>
<td>18.2</td>
<td>Yoakum</td>
<td>19.5</td>
</tr>
<tr>
<td>Taylor</td>
<td>11.6</td>
<td>Young</td>
<td>11.0</td>
</tr>
<tr>
<td>Terrell</td>
<td>20.0</td>
<td>Zapata</td>
<td>49.4</td>
</tr>
<tr>
<td>Terry</td>
<td>19.5</td>
<td>Zavala</td>
<td>49.4</td>
</tr>
</tbody>
</table>
1. GENERAL

1.1. As used in these specifications:

- "Covered area" means the geographical area described in the solicitation from which this Contract resulted;
- "Director" means Director, Office of Federal Contract Compliance Programs, United States Department of Labor, or any person to whom the Director delegates authority;
- "Minority" includes:
 - Black (all persons having origins in any of the Black African racial groups not of Hispanic origin);
 - Hispanic (all persons of Mexican, Puerto Rican, Cuban, Central or South American or other Spanish Culture or origin, regardless of race);
 - Asian and Pacific Islander (all persons having origins in any of the original peoples of the Far East, Southeast Asia, the Indian Subcontinent, or the Pacific Islands); and
 - American Indian or Alaskan Native (all persons having origins in any of the original peoples of North American and maintaining identifiable tribal affiliations through membership and participation or community identification).

1.2. Whenever the Contractor, or any Subcontractor at any tier, subcontracts a portion of the work involving any construction trade, it will physically include in each subcontract in excess of $10,000 the provisions of these specifications and the Notice which contains the applicable goals for minority and female participation and which is set forth in the solicitations from which this Contract resulted.

1.3. If the Contractor is participating (pursuant to 41 CFR 60-4.5) in a Hometown Plan approved by the U.S. Department of Labor in the covered area either individually or through an association, its affirmative action obligations on all work in the Plan area (including goals and timetables) will be in accordance with that plan for those trades which have unions participating in the Plan. Contractors must be able to demonstrate their participation in and compliance with the provisions of any such Hometown Plan. Each Contractor or Subcontractor participating in an approved Plan is individually required to comply with its obligations under the equal employment opportunity (EEO) clause, and to make a good faith effort to achieve each goal under the Plan in each trade in which it has employees. The overall good faith performance by other Contractors or Subcontractors toward a goal in an approved Plan does not excuse any covered Contractor's or Subcontractor's failure to take good faith efforts to achieve the Plan goals and timetables.

1.4. The Contractor will implement the specific affirmative action standards provided in Section 1.7.1. through Section 1.7.16. of these specifications. The goals set forth in the solicitation from which this Contract resulted are expressed as percentages of the total hours of employment and training of minority and female utilization the Contractor should reasonably be able to achieve in each construction trade in which it has employees in the covered area. Covered construction Contractors performing Contracts in geographical areas where they do not have a Federal or federally assisted construction Contract will apply the minority and female goals established for the geographical area where the Contract is being performed. Goals are published periodically in the Federal Register in notice form and such notices may be obtained from any Office of Federal Contract Compliance Programs office or any Federal procurement contracting officer. The
Contractor is expected to make substantially uniform progress toward its goals in each craft during the period specified.

1.5. Neither the provisions of any collective bargaining agreement, nor the failure by a union with whom the Contractor has a collective bargaining agreement, to refer either minorities or women will excuse the Contractor's obligations under these specifications, Executive Order 11246, or the regulations promulgated pursuant thereto.

1.6. In order for the nonworking training hours of apprentices and trainees to be counted in meeting the goals, such apprentices and trainees must be employed by the Contractor during the training period, and the Contractor must have made a commitment to employ the apprentices and trainees at the completion of their training, subject to the availability of employment opportunities. Trainees must be trained pursuant to training programs approved by the U. S. Department of Labor.

1.7. The Contractor will take specific affirmative actions to ensure equal employment opportunity. The evaluation of the Contractor's compliance with these specifications will be based upon its effort to achieve maximum results from its actions. The Contractor will document these efforts fully, and will implement affirmative action steps at least as extensive as the following:

1.7.1. Ensure and maintain a working environment free of harassment, intimidation, and coercion at all sites, and in all facilities at which the Contractor's employees are assigned to work. The Contractor, where possible, will assign two or more women to each construction project. The Contractor will specifically ensure that all foremen, superintendents, and other on-site supervisory personnel are aware of and carry out the Contractor's obligation to maintain such a working environment, with specific attention to minority or female individuals working at such sites or in such facilities.

1.7.2. Establish and maintain a current list of minority and female recruitment sources, provide written notification to minority and female recruitment sources and to community organizations when the Contractor or its unions have employment opportunities available, and maintain a record of the organizations' responses.

1.7.3. Maintain a current file of the names, addresses and telephone numbers of each minority and female off-the-street applicant and minority or female referral from a union, a recruitment source or community organization and of what action was taken with respect to each such individual. If such individual was sent to the union hiring hall for referral and was not referred back to the Contractor by the union or, if referred, not employed by the Contractor, this will be documented in the file with the reason therefor, along with whatever additional actions the Contractor may have taken.

1.7.4. Provide immediate written notification to the Director when the union or unions with which the Contractor has a collective bargaining agreement has not referred to the Contractor a minority person or woman sent by the Contractor, or when the Contractor has other information that the union referral Process has impeded the Contractor's efforts to meet its obligations.

1.7.5. Develop on-the-job training opportunities and/or participate in training programs for the area which expressly include minorities and women, including upgrading programs and apprenticeship and trainee programs relevant to the Contractor's employment needs, especially those programs funded or approved by the Department of Labor. The Contractor will provide notice of these programs to the sources compiled under 7b above.

1.7.6. Disseminate the Contractor's EEO policy by providing notice of the policy to unions and training programs and requesting their cooperation in assisting the Contractor in meeting its EEO obligations; by including it in any policy manual and Collective bargaining agreement; by publicizing it in the company newspaper, annual report, etc.; by specific review of the policy with all management personnel and with all minority and female employees at least once a year; and by posting the company EEO policy on bulletin boards accessible to all employees at each location where construction work is performed.

1.7.7. Review, at least annually, the company's EEO policy and affirmative action obligations under these specifications with all employees having any responsibility for hiring, assignment, layoff, termination or other
employment decisions including specific review of these items with on-site supervisory personnel such as Superintendents, General Foremen, etc., before the initiation of construction work at any job site. A written record must be made and maintained identifying the time and place of these meetings, persons attending, subject matter discussed, and disposition of the subject matter.

1.7.8. Disseminate the Contractor's EEO policy externally by including it in any advertising in the news media, specifically including minority and female news media, and providing written notification to and discussing the Contractor's EEO policy with other Contractors and Subcontractors with whom the Contractor does or anticipates doing business.

1.7.9. Direct its recruitment efforts, both oral and written, to minority, female and community organizations, to schools with minority and female students and to minority and female recruitment and training organizations serving the Contractor's recruitment area and employment needs. Not later than one month before the date for the acceptance of applications for apprenticeship or other training by any recruitment source, the Contractor will send written notification to organizations such as the above, describing the openings, screening procedures, and tests to be used in the selection process.

1.7.10. Encourage present minority and female employees to recruit other minority persons and women and, where reasonable, provide after school, summer and vacation employment to minority and female youth both on the site and in other areas of a Contractor's workforce.

1.7.11. Validate all tests and other selection requirements where there is an obligation to do so under 41 CFR Part 60-3.

1.7.12. Conduct, at least annually, an inventory and evaluation at least of all minority and female personnel for promotional opportunities and encourage these employees to seek or to prepare for, through appropriate training, etc., such opportunities.

1.7.13. Ensure that seniority practices, job classifications, work assignments and other personnel practices, do not have a discriminatory effect by continually monitoring all personnel and employment-related activities to ensure that the EEO policy and the Contractor's obligations under these specifications are being carried out.

1.7.14. Ensure that all facilities and company activities are non-segregated except that separate or single-user toilet and necessary changing facilities will be provided to assure privacy between the sexes.

1.7.15. Document and maintain a record of all solicitations of offers for subcontracts from minority and female construction contractors and suppliers, including circulation of solicitations to minority and female contractor associations and other business associations.

1.7.16. Conduct a review, at least annually, of all supervisors' adherence to and performance under the Contractor's EEO policies and affirmative action obligations.

1.8. Contractors are encouraged to participate in voluntary associations which assist in fulfilling one or more of their affirmative action obligations (Section 7.1. through Section 7.16.). The efforts of a contractor association, joint contractor-union, contractor-community, or other similar group of which the Contractor is a member and participant, may be asserted as fulfilling an obligation or more of its obligations under Section 7.1. through Section 7.16. of these Specifications provided that the Contractor actively participates in the group, makes every effort to assure that the group has a positive impact on the employment of minorities and women in the industry, ensures that the concrete benefits of the program are reflected in the Contractor's minority and female workforce participation, makes a good faith effort to meet its individual goals and timetables, and can provide access to documentation which demonstrates the effectiveness of actions taken on behalf of the Contractor. The obligation to comply, however, is the Contractor's and failure of such a group to fulfill an obligation will not be a defense for the Contractor's noncompliance.

1.9. A single goal for minorities and a separate single goal for women have been established. The Contractor, however, is required to provide equal employment opportunity and to take affirmative action for all minority groups, both male and female, and all women, both minority and non-minority. Consequently, the Contractor
may be in violation of the Executive Order if a particular group is employed in a substantially disparate manner (for example, even though the Contractor has achieved its goals for women generally, the Contractor may be in violation of the Executive Order if a specific minority group of women is underutilized).

1.10. The Contractor shall not use the goals and timetables or affirmative action standards to discriminate against any person because of race, color, religion, sex, or national origin.

1.11. The Contractor will not enter into any Subcontract with any person or firm debarred from Government Contracts pursuant to Executive Order 11246.

1.12. The Contractor will carry out such sanctions and penalties for violation of these specifications and of the Equal Opportunity Clause, including suspension, termination and cancellation of existing subcontracts as may be imposed or ordered pursuant to Executive Order 11246, as amended, and its implementing regulations, by the Office of Federal Contract Compliance Programs. Any Contractor who fails to carry out such sanctions and penalties will be in violation of these specifications and Executive Order 11246, as amended.

1.13. The Contractor, in fulfilling its obligations under these specifications, will implement specific affirmative action steps, at least as extensive as those standards prescribed in paragraph 7 of these specifications, so as to achieve maximum results from its efforts to ensure equal employment opportunity. If the Contractor fails to comply with the requirements of the Executive Order, the implementing regulations, or these specifications, the Director will proceed in accordance with 41 CFR 60-4.8.

1.14. The Contractor will designate a responsible official to monitor all employment-related activity to ensure that the company EEO policy is being carried out, to submit reports relating to the provisions hereof as may be required by the Government and to keep records. Records must at least include for each employee the name, address, telephone numbers, construction trade, union affiliation if any, employee identification number when assigned, social security number, race, sex, status (e.g., mechanic, apprentice, trainee, helper, or laborer), dates of changes in status, hours worked per week in the indicated trade, rate of pay, and locations at which the work was performed. Records must be maintained in an easily understandable and retrievable form; however, to the degree that existing records satisfy this requirement, Contractors shall not be required to maintain separate records.

1.15. Nothing herein provided will be construed as a limitation upon the application of other laws which establish different standards of compliance or upon the application of requirements for the hiring of local or other area residents (e.g., those under the Public Works Employment Act of 1977 and the Community Development Block Grant Program).

1.16. In addition to the reporting requirements set forth elsewhere in this Contract, the Contractor and the subcontractors holding subcontracts, not including material suppliers, of $10,000 or more, will submit for every month of July during which work is performed, employment data as contained under Form PR 1391 (Appendix C to 23 CFR, Part 230), and in accordance with the included instructions.
Special Provision to Item 000
On-the-Job Training Program

1. **DESCRIPTION**

 The primary objective of this Special Provision is the training and advancement of minorities, women and economically disadvantaged persons toward journeyworker status. Accordingly, make every effort to enroll minority, women and economically disadvantaged persons to the extent that such persons are available within a reasonable area of recruitment. This training commitment is not intended, and will not be used to discriminate against any applicant for training, whether or not he/she is a member of a minority group.

2. **TRAINEE ASSIGNMENT**

 Training assignments are based on the past volume of state-let highway construction contracts awarded with the Department. Contractors meeting the selection criteria will be notified of their training assignment at the beginning of the reporting year by the Department’s Office of Civil Rights.

3. **PROGRAM REQUIREMENTS**

 Fulfill all of the requirements of the On-the-Job Training Program including the maintenance of records and submittal of periodic reports documenting program performance. Trainees will be paid at least 60% of the appropriate minimum journeyworker’s rate specified in the Contract for the first half of the training period, 75% for the third quarter, and 90% for the last quarter, respectively.

4. **REIMBURSEMENT**

 If requested, Contractors may be reimbursed $0.80 per training hour at no additional cost to the Department. Training may occur on this project, all other Department contracts, or local-administered federal-aid projects with concurrence of the local government entity. However, reimbursement for training is not available on projects to the extent that such projects do not contain federal funds.

5. **COMPLIANCE**

 The Contractor will have fulfilled the contractual responsibilities by having provided acceptable training to the number of trainees specified in their goal assignment. Noncompliance may be cause for corrective and appropriate measures pursuant to Article 8.7., “Abandonment of Work or Default of Contract,” which may be used to comply with the sanctions for noncompliance pursuant to 23 CFR Part 230.
Special Provision to Item 000
Important Notice to Contractors

By the 20th day of each month, report to the Engineer the number of incidents and injuries that occurred on the project the previous month. Report:

- the total number of incidents and injuries for the Contractor and all subcontractors, and
- the number of Contractor and subcontractor-related incidents and injuries that involved a third party.

An “incident” is defined as any work-related occurrence that caused damage only to vehicles, equipment, materials, etc.

An “injury” is defined as an OSHA recordable injury.

Acquire an Electronic Project Records System (EPRS) account to report incidents and injuries. Submit an EPRS User Access Request Form (Form 2451) to request an account. This form can be found at http://www.txdot.gov/business/resources/doing-business/prequalification.html.

Failure to submit this information to the Engineers by the 20th day of each month will result in the Department taking actions including, but not limited to withholding estimates and suspending the work. This report will not be paid for directly, but will be considered subsidiary to Items of the contract.
Special Provision 000
Cargo Preference Act Requirements in Federal Aid Contracts

1. DESCRIPTION

All recipients of federal financial assistance are required to comply with the U.S. Department of Transportation’s (DOT) Cargo Preference Act Requirements, 46 CFR Part 381, Use of United States-Flag Vessels.

This requirement applies to material or equipment that is acquired specifically for a Federal-aid highway project. It is not applicable to goods or materials that come into inventories independent of a Federal Highway Administration (FHWA) funded contract.

When oceanic shipments are necessary for materials or equipment acquired for a specific Federal-aid construction project, the contractor agrees to:

- Utilize privately owned United States-flag commercial vessels to ship at least 50 percent of the gross tonnage (computed separately for dry bulk carriers, dry cargo liners, and tankers) involved, whenever shipping any equipment, material, or commodities pursuant to this contract, to the extent such vessels are available at fair and reasonable rates for United States-flag commercial vessels.

- Furnish a legible copy of a rated, on-board commercial ocean bill-of-lading in English for each shipment of cargo described in paragraph (b) (1) of 46 CFR Part 381 Section 7, “Federal Grant, Guaranty, Loan and Advance of Funds Agreements,” within 20 days following the date of loading for shipments originating within the United States or within 30 working days following the date of loading for shipments originating outside the United States, to both the Engineer (through the prime contractor in the case of subcontractor bills-of-lading) and to the Division of National Cargo, Office of Market Development, Maritime Administration, Washington, DC 20590.

- Insert the substance of the provisions of this clause in all subcontracts issued pursuant to this contract.
Special Provision 000
Certificate of Interested Parties (Form 1295)

Submit a notarized Form 1295, “Certificate of Interested Parties,” in the following instances:

■ at contract execution for contracts awarded by the Commission;
■ at contract execution for contracts awarded by the District Engineer with an award amount of $1,000,000 or more;
■ at any time an existing contract awarded by the District Engineer increases in value to $1,000,000 or more due to changes in the contract;
■ at any time there is an increase of $1,000,000 or more to an existing contract (change orders, extensions, and renewals); or
■ at any time there is a change to the information in Form 1295, when the form was filed for an existing contract.

Form 1295 and instructions on completing and filing the form are available on the Texas Ethics Commission website.
Special Provision to Item 000
Disadvantaged Business Enterprise in Federal-Aid Contracts

1. DESCRIPTION

The purpose of this Special Provision is to carry out the U.S. Department of Transportation's (DOT) policy of ensuring nondiscrimination in the award and administration of DOT-assisted Contracts and creating a level playing field on which firms owned and controlled by individuals who are determined to be socially and economically disadvantaged can compete fairly for DOT-assisted Contracts.

2. DISADVANTAGED BUSINESS ENTERPRISE IN FEDERAL-AID CONTRACTS

2.1. Policy. It is the policy of the DOT and the Texas Department of Transportation (Department) that DBEs, as defined in 49 CFR Part 26, Subpart A, and the Department's DBE Program, will have the opportunity to participate in the performance of Contracts financed in whole or in part with federal funds. The DBE requirements of 49 CFR Part 26, and the Department's DBE Program, apply to this Contract as follows.

The Contractor will solicit DBEs through reasonable and available means, as defined in 49 CFR Part 26, Appendix A, and the Department's DBE Program, or show a good faith effort to meet the DBE goal for this Contract.

The Contractor, subrecipient, or subcontractor will not discriminate on the basis of race, color, national origin, or sex in the performance of this Contract. Carry out applicable requirements of 49 CFR Part 26 in the award and administration of DOT-assisted Contracts. Failure to carry out these requirements is a material breach of this Contract, which may result in the termination of this Contract or such other remedy as the Department deems appropriate.

The requirements of this Special Provision must be physically included in any subcontract.

By signing the Contract proposal, the Bidder is certifying that the DBE goal as stated in the proposal will be met by obtaining commitments from eligible DBEs or that the Bidder will provide acceptable evidence of good faith effort to meet the commitment.

2.2. Definitions.

2.2.1. Administrative Reconsideration. A process by which the low bidder may request reconsideration when the Department determines the good faith effort (GFE) requirements have not been met.

2.2.2. Commercially Useful Function (CUF). A CUF occurs when a DBE has the responsibility for the execution of the work and carrying out such responsibilities by actually performing, managing, and supervising the work.

2.2.3. Disadvantaged Business Enterprise (DBE). A for-profit small business certified through the Texas Unified Certification Program in accordance with 49 CFR Part 26, that is at least 51% owned by one or more socially and economically disadvantaged individuals, or in the case of a publicly owned business, in which is at least 51% of the stock is owned by one or more socially and economically disadvantaged individuals, and whose management and daily business operations are controlled by one or more of the individuals who own it.

2.2.4. DBE Joint Venture. An association of a DBE firm and one or more other firms to carry out a single business enterprise for profit for which purpose they combine their property, capital, efforts, skills, and knowledge, and
in which the DBE is responsible for a distinct, clearly defined portion of the work of the Contract and whose share in the capital contribution, control, management, risks, and profits of the joint venture are commensurate with its ownership interest.

2.2.5. **DOT.** The U.S. Department of Transportation, including the Office of the Secretary, the Federal Highway Administration (FHWA), the Federal Transit Administration (FTA), and the Federal Aviation Administration (FAA).

2.2.6. **Federal-Aid Contract.** Any Contract between the Department and a Contractor that is paid for in whole or in part with DOT financial assistance.

2.2.7. **Good Faith Effort.** All necessary and reasonable steps to achieve the contract goal which, by their scope, intensity, and appropriateness to the objective, could reasonably be expected to obtain sufficient DBE participation, even if not fully successful. Good faith efforts are evaluated prior to award and throughout performance of the Contract. For guidance on good faith efforts, see 49 CFR Part 26, Appendix A.

2.2.8. **North American Industry Classification System (NAICS).** A designation that best describes the primary business of a firm. The NAICS is described in the North American Industry Classification Manual—United States, which is available on the Internet at the U.S. Census Bureau website: http://www.census.gov/eos/www/naics/.

2.2.9. **Race-Conscious.** A measure or program that is focused specifically on assisting only DBEs, including women-owned businesses.

2.2.10. **Race-Neutral DBE Participation.** Any participation by a DBE through customary competitive procurement procedures.

2.2.11. **Texas Unified Certification Program (TUCP) Directory.** An online directory listing all DBEs currently certified by the TUCP. The Directory identifies DBE firms whose participation on a Contract may be counted toward achievement of the assigned DBE Contract goal.

2.3. **Contractor’s Responsibilities.**

2.3.1. **DBE Liaison Officer.** Designate a DBE liaison officer who will administer the Contractor’s DBE program and who will be responsible for maintenance of records of efforts and contacts made to subcontract with DBEs.

2.3.2. **Compliance Tracking System (CTS).** This Contract is subject to electronic Contract compliance tracking. Contractors and DBEs are required to provide any noted and requested Contract compliance-related data electronically in the Department’s tracking system. This includes commitments, payments, substitutions, and good faith efforts. Contractors and DBEs are responsible for responding by any noted response date or due date to any instructions or request for information, and to check the system on a regular basis. A Contractor is responsible for ensuring all DBEs have completed all requested items and that their contact information is accurate and up-to-date. The Department may require additional information related to the Contract to be provided electronically through the system at any time before, during, or after contract award. The system is web-based and can be accessed at the following Internet address: https://txdot.txdotcms.com/.

In its sole discretion, the Department may require that contract compliance tracking data be submitted by Contractors and DBEs in an alternative format prescribed by the Department.

2.3.3. **Apparent Low Bidder.** The apparent low bidder must submit DBE commitments to satisfy the DBE goal or submit good faith effort Form 2603 and supporting documentation demonstrating why the goal could not be achieved, in whole or part, no later than 5 calendar days after bid opening. The means of transmittal and the risk of timely receipt of the information will be the bidder’s responsibility and no extension of the 5-calendar-day timeframe will be allowed for any reason.
2.3.4. **DBE Contractor.** A DBE Contractor may receive credit toward the DBE goal for work performed by its own forces and work subcontracted to DBEs. In the event a DBE subcontracts to a non-DBE, that information must be reported monthly.

2.3.5. **DBE Committal.** Only those DBEs certified by the TUCP are eligible to be used for goal attainment. The Department maintains the TUCP DBE Directory. The Directory can be accessed at the following Internet address: https://txdot.txdotcms.com/FrontEnd/VendorSearchPublic.asp?TN=txdot&XID=2340.

A DBE must be certified on the day the commitment is considered and at time of subcontract execution. It is the Contractor’s responsibility to ensure firms identified for participation are approved certified DBE firms.

The Bidder is responsible to ensure that all submittals are checked for accuracy. Any and all omissions, deletions, and/or errors that may affect the end result of the commitment package are the sole liabilities of the bidder.

Commitments in excess of the goal are considered race-neutral commitments.

2.3.6. **Good Faith Effort Requirements.** A Contractor who cannot meet the Contract goal, in whole or in part, must make adequate good faith efforts to obtain DBE participation as so stated and defined in 49 CFR Part 26, Appendix A.

2.3.6.1. **Administrative Reconsideration.** If the Department determines that the apparent low bidder has failed to satisfy the good faith efforts requirement, the Department will notify the Bidder of the failure and will give the Bidder an opportunity to provide written documentation or argument concerning the issue of whether it met the goal or made adequate good faith efforts to do so.

The Bidder must request an administrative reconsideration of that determination within 3 days of the date of receipt of the notice. The request must be submitted directly to the Texas Department of Transportation, Civil Rights Division, 125 East 11th Street, Austin, Texas 78701-2483.

If a request for administrative reconsideration is not filed within the period specified the determination made is final and further administrative appeal is barred.

If a reconsideration request is timely received, the reconsideration decision will be made by the Department's DBE liaison officer or, if the DBE liaison officer took part in the original determination, the Department’s executive director will appoint a department employee to perform the administrative reconsideration. The employee will hold a senior leadership position and will report directly to the executive director.

The meeting or written documentation must be provided or held within 7 days of the date the request was submitted.

The Department will provide to the Bidder a written decision if the Bidder did or did not make adequate good faith efforts to meet the Contract goal. The reconsideration decision is final and is not administratively appealed to DOT.

2.3.7. **Determination of DBE Participation.** The work performed by the DBE must be reasonably construed to be included in the work area and NAICS work code identified by the Contractor in the approved commitment.

Participation by a DBE on a Contract will not be counted toward DBE goals until the amount of the participation has been paid to the DBE.

Payments made to a DBE that was not on the original commitment may be counted toward the Contract goal if that DBE was certified as a DBE before the execution of the subcontract and has performed a Commercially Useful Function.
The total amount paid to the DBE for work performed with its own forces is counted toward the DBE goal. When a DBE subcontracts part of the work of its Contract to another firm, the value of the subcontracted work may be counted toward DBE goals only if the subcontractor is itself a DBE.

DBE Goal credit for the DBE subcontractors leasing of equipment or purchasing of supplies from the Contractor or its affiliates is not allowed. Project materials or supplies acquired from an affiliate of the Contractor cannot directly or indirectly (second or lower tier subcontractor) be used for DBE goal credit.

If a DBE firm is declared ineligible due to DBE decertification after the execution of the DBE’s subcontract, the DBE firm may complete the work and the DBE firm’s participation will be counted toward the Contract goal. If the DBE firm is decertified before the DBE firm has signed a subcontract, the Contractor is obligated to replace the ineligible DBE firm or demonstrate that it has made good faith efforts to do so.

The Contractor may count 100% of its expenditure to a DBE manufacturer. According to 49 CFR 26.55(e)(1)(i), a DBE manufacturer is a firm that operates or maintains a factory or establishment that produces, on the premises, the materials, supplies, articles, or equipment required under the Contract and of the general character described by the specifications.

The Contractor may count only 60% of its expenditure to a DBE regular dealer. According to 49 CFR 26.55(e)(2)(i), a DBE regular dealer is a firm that owns, operates, or maintains a store, warehouse, or other establishment in which the materials, supplies, articles, or equipment of the general character described by the specifications and required under the Contract are bought, kept in stock, and regularly sold or leased to the public in the usual course of business. A firm may be a regular dealer in such bulk items as petroleum products, steel, cement, gravel, stone, or asphalt without owning, operating, or maintaining a place of business if the firm both owns and operates distribution equipment for the products. Any supplementing of regular dealers’ own distribution equipment must be by a long-term lease agreement and not on an ad hoc or contract-by-contract basis. A long-term lease with a third-party transportation company is not eligible for 60% goal credit.

With respect to materials or supplies purchased from a DBE that is neither a manufacturer nor a regular dealer, the Contractor may count the entire amount of fees or commissions charged for assistance in the procurement of the materials and supplies, or fees or transportation charges for the delivery of materials or supplies required on a job site.

A Contractor may count toward its DBE goal a portion of the total value of the Contract amount paid to a DBE joint venture equal to the distinct, clearly defined portion of the work of the Contract performed by the DBE.

2.3.8. Commercially Useful Function. It is the Contractor’s obligation to ensure that each DBE used on federal-assisted contracts performs a commercially useful function on the Contract.

The Department will monitor performance during the Contract to ensure each DBE is performing a CUF.

Under the terms established in 49 CFR 26.55, a DBE performs a CUF when it is responsible for execution of the work of the Contract and is carrying out its responsibilities by actually performing, managing, and supervising the work involved.

With respect to material and supplies used on the Contract, a DBE must be responsible for negotiating price, determining quality and quantity, ordering the material, installing the material, if applicable, and paying for the material itself.

With respect to trucking, the DBE trucking firm must own and operate at least one fully licensed, insured, and operational truck used on the Contract. The DBE may lease trucks from another DBE firm, including an owner-operator who is certified as a DBE. The DBE who leases trucks from another DBE receives credit for the total value of the transportation services the lessee DBE provides on the Contract. The DBE may also lease trucks from a non-DBE firm, including from an owner-operator. The DBE that leases trucks equipped with drivers from a non-DBE is entitled to credit for the total value of transportation services provided by non-DBE leased trucks equipped with drivers not to exceed the value of transportation services on the Contract.
provided by DBE-owned trucks or leased trucks with DBE employee drivers. Additional participation by non-DBE owned trucks equipped with drivers receives credit only for the fee or commission it receives as a result of the lease arrangement.

A DBE does not perform a CUF when its role is limited to that of an extra participant in a transaction, Contract, or project through which funds are passed in order to obtain the appearance of DBE participation. The Department will evaluate similar transactions involving non-DBEs in order to determine whether a DBE is an extra participant.

If a DBE does not perform or exercise responsibility for at least 30% of the total cost of its Contract with its own work force, or the DBE subcontracts a greater portion of the work than would be expected on the basis of normal industry practice for the type of work involved, the Department will presume that the DBE is not performing a CUF.

If the Department determines that a DBE is not performing a CUF, no work performed by such DBE will count as eligible participation. The denial period of time may occur before or after a determination has been made by the Department.

In case of the denial of credit for non-performance of a CUF, the Contractor will be required to provide a substitute DBE to meet the Contract goal or provide an adequate good faith effort when applicable.

2.3.8.1. Rebuttal of a Finding of No Commercially Useful Function

Consistent with the provisions of 49 CFR 26.55(c)(4)&(5), before the Department makes a final finding that no CUF has been performed by a DBE, the Department will notify the DBE and provide the DBE the opportunity to provide rebuttal information.

CUF determinations are not subject to administrative appeal to DOT.

2.3.9. Joint Check

The use of joint checks between a Contractor and a DBE is allowed with Department approval. To obtain approval, the Contractor must submit a completed Form 2178, “DBE Joint Check Approval,” to the Department.

The Department will closely monitor the use of joint checks to ensure that such a practice does not erode the independence of the DBE nor inhibit the DBE’s ability to perform a CUF. When joint checks are utilized, DBE credit toward the Contract goal will be allowed only when the subcontractor is performing a CUF in accordance with 49 CFR 26.55(c)(1).

Long-term or open-ended joint checking arrangements may be a basis for further scrutiny and may result in the lack of participation towards the Contract goal requirement if DBE independence cannot be established.

Joint checks will not be allowed simply for the convenience of the Contractor.

If the proper procedures are not followed or the Department determines that the arrangements result in a lack of independence for the DBE involved, no credit for the DBE’s participation as it relates to the material cost will be used toward the Contract goal requirement, and the Contractor will need to make up the difference elsewhere on the project.

2.3.10. DBE Termination and Substitution

No DBE named in the commitment submitted under Section 2.3.5. will be terminated for convenience, in whole or part, without the Department’s approval. This includes, but is not limited to, instances in which a Contractor seeks to perform work originally designated for a DBE subcontractor with its own forces or those of an affiliate, a non-DBE firm, or with another DBE firm.

Unless consent is provided, the Contractor will not be entitled to any payment for work or material unless it is performed or supplied by the listed DBE.
The Contractor, prior to submitting its request to terminate, must first give written notice to the DBE of its intent to terminate and the reason for the termination. The Contractor will copy the Department on the Notice of Intent to terminate.

The DBE has 5 calendar days to respond to the Contractor’s notice and will advise the Contractor and the Department of the reasons, if any, why it objects to the proposed termination of its subcontract and why the Department should not approve the prime Contractor’s request for termination.

The Department may provide a shorter response time if required in a particular case as a matter of public necessity.

The Department will consider both the Contractor’s request and DBE’s stated position prior to approving the request. The Department may provide a written approval only if it agrees, for reasons stated in its concurrence document, that the Contractor has good cause to terminate the DBE. If the Department does not approve the request, the Contractor must continue to use the committed DBE firm in accordance with the Contract. For guidance on what good cause includes, see 49 CFR 26.53.

Good cause does not exist if the Contractor seeks to terminate, reduce, or substitute a DBE it relied upon to obtain the Contract so that the Contractor can self-perform the work for which the DBE firm was engaged.

When a DBE subcontractor is terminated, make good faith efforts to find, as a substitute for the original DBE, another DBE to perform, at least to the extent needed to meet the established Contract goal, the work that the original DBE was to have performed under the Contract.

Submit the completed Form 2228, “DBE Termination Substitution Request,” within seven (7) days, which may be extended for an additional 7 days if necessary at the request of the Contractor. The Department will provide a written determination to the Contractor stating whether or not good faith efforts have been demonstrated. If the Department determines that good faith efforts were not demonstrated, the Contractor will have the opportunity to appeal the determination to the Civil Rights Division.

2.3.11. Reports and Records. By the 15th of each month and after work begins, report payments to meet the DBE goal and for DBE race-neutral participation on projects with or without goals. These payment reports will be required until all DBE subcontracting or material supply activity is completed. Negative payment reports are required when no activity has occurred in a monthly period.

Notify the Area Engineer if payment to any DBE subcontractor is withheld or reduced.

Before receiving final payment from the Department, the Contractor must indicate a final payment on the compliance tracking system. The final payment is a summary of all payments made to the DBEs on the project.

All records must be retained for a period of 3 years following completion of the Contract work, and must be available at reasonable times and places for inspection by authorized representatives of the Department or the DOT. Provide copies of subcontracts or agreements and other documentation upon request.

2.3.12. Failure to Comply. If the Department determines the Contractor has failed to demonstrate good faith efforts to meet the assigned goal, the Contractor will be given an opportunity for reconsideration by the Department.

A Contractor’s failure to comply with the requirements of this Special Provision will constitute a material breach of this Contract. In such a case, the Department reserves the right to terminate the Contract; to deduct the amount of DBE goal not accomplished by DBEs from the money due or to become due the Contractor; or to secure a refund, not as a penalty but as liquidated damages, to the Department or such other remedy or remedies as the Department deems appropriate.

2.3.13. Investigations. The Department may conduct reviews or investigations of participants as necessary. All participants, including, but not limited to, DBEs and complainants using DBE Subcontractors to meet the
Contract goal, are required to cooperate fully and promptly with compliance reviews, investigations, and other requests for information.

2.3.14. **Falsification and Misrepresentation.** If the Department determines that a Contractor or subcontractor was a knowing and willing participant in any intended or actual subcontracting arrangement contrived to artificially inflate DBE participation or any other business arrangement determined by the Department to be unallowable, or if the Contractor engages in repeated violations, falsification, or misrepresentation, the Department may:

- refuse to count any fraudulent or misrepresented DBE participation;
- withhold progress payments to the Contractor commensurate with the violation;
- reduce the Contractor’s prequalification status;
- refer the matter to the Office of Inspector General of the US Department of Transportation for investigation; and/or
- seek any other available contractual remedy.
Special Provision to Item 000

Schedule of Liquidated Damages

Table 1: Schedule of Liquidated Damages

<table>
<thead>
<tr>
<th>For Dollar Amount of Original Contract</th>
<th>Dollar Amount of Daily Contract Administration Liquidated Damages per Working Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>From More Than</td>
<td>To and Including</td>
</tr>
<tr>
<td>0</td>
<td>100,000</td>
</tr>
<tr>
<td>100,000</td>
<td>500,000</td>
</tr>
<tr>
<td>500,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1,500,000</td>
</tr>
<tr>
<td>1,500,000</td>
<td>3,000,000</td>
</tr>
<tr>
<td>3,000,000</td>
<td>5,000,000</td>
</tr>
<tr>
<td>5,000,000</td>
<td>10,000,000</td>
</tr>
<tr>
<td>10,000,000</td>
<td>20,000,000</td>
</tr>
<tr>
<td>20,000,000</td>
<td>Over 20,000,000</td>
</tr>
</tbody>
</table>

In addition to the amount shown in Table 1, the Liquidated Damages will be increased by the amount shown in Item 8 of the General Notes for Road User Cost (RUC), when applicable.
Special Provision 000

Notice of Contractor Performance Evaluations

1. GENERAL

In accordance with Texas Transportation Code §223.012, the Engineer will evaluate Contractor performance based on quality, safety, and timeliness of the project.

2. DEFINITIONS

2.1. Project Recovery Plan (PRP)—a formal, enforceable plan developed by the Contractor, in consultation with the District, that documents the cause of noted quality, safety, and timeliness issues and specifies how the Contractor proposes to correct project-specific performance deficiencies.

In accordance with Title 43, Texas Administrative Code (TAC), §9.23, the District will request a PRP if the Contractor's performance on a project is below the Department's acceptable standards and will monitor the Contractor's compliance with the established plan.

2.2. Corrective Action Plan (CAP)—a formal, enforceable plan developed by the Contractor, and proposed for adoption by the Construction or Maintenance Division, that documents the cause of noted quality, safety, and timeliness issues and specifies how the Contractor proposes to correct statewide performance deficiencies.

In accordance with 43 TAC §9.23, the Division will request a CAP if the average of the Contractor's statewide final evaluation scores falls below the Department's acceptable standards for the review period and will monitor the Contractor's compliance with the established plan.

3. CONTRACTOR EVALUATIONS

In accordance with Title 43, Texas Administrative Code (TAC) §9.23, the Engineer will schedule evaluations at the following intervals, at minimum:

- Interim evaluations—at or within 30 days after the anniversary of the notice to proceed, for Contracts extending beyond 1 yr., and
- Final evaluation—upon project closeout.

In case of a takeover agreement, the Engineer will evaluate the Surety as the prime Contractor.

In addition to regularly scheduled evaluations, the Engineer may schedule an interim evaluation at any time to formally communicate issues with quality, safety, or timeliness. Upon request, work with the Engineer to develop a PRP to document expectations for correcting deficiencies.

Comply with the PRP as directed. Failure to comply with the PRP may result in additional remedial actions available to the Engineer under Item 5, “Control of the Work.” Failure to meet a PRP to the Engineer’s satisfaction may result in immediate referral to the Performance Review Committee for consideration of further action against the Contractor.

The Engineer will consider and document any events outside the Contractor’s control that contributed to the failure to meet performance standards or comply with a PRP, including consideration of sufficient time.

Follow the escalation ladder if there is a disagreement regarding an evaluation or disposition of a PRP. The Contractor may submit additional documentation pertaining to the dispute. The District Engineer’s decision
on a Contractor’s evaluation score and recommendation of action required in a PRP or follow up for non-compliance is final.

4. **DIVISION OVERSIGHT**

Upon request of the Construction or Maintenance Division, develop and submit for Division approval a proposed CAP to document expectations for correcting deficiencies in the performance of projects statewide.

Comply with the CAP as directed. The CAP may be modified at any time up to completion or resolution after written approval of the premise of change from the Division. Failure to meet an adopted or revised adopted CAP to the Division’s satisfaction within 120 days will result in immediate referral to the Performance Review Committee for consideration of further action against the Contractor.

The Division will consider and document any events outside the Contractor’s control that contributed to the failure to meet performance standards or comply with a CAP, including consideration of sufficient time and associated costs as appropriate.

5. **PERFORMANCE REVIEW COMMITTEE**

The Performance Review Committee, in accordance with 43 TAC §9.24, will review at minimum all final evaluations, history of compliance with PRPs, any adopted CAPs including agreed modifications, any information about events outside a Contractor’s control contributing to the Contractor’s performance, and any documentation submitted by the Contractor and may recommend one or more of the following actions:

- take no action,
- reduce the Contractor’s bidding capacity,
- prohibit the Contractor from bidding on one or more projects,
- immediately suspend the Contractor from bidding for a specified period of time, by reducing the Contractor’s bidding capacity to zero, or
- prohibit the Contractor from being awarded a Contract on which they are the apparent low bidder.

A Surety acting as a prime may be found in non-compliance through the contractor evaluation process.

The Deputy Executive Director will determine any further action against the Contractor.

6. **APPEALS PROCESS**

In accordance with 43 TAC §9.25, the Contractor may appeal remedial actions determined by the Deputy Executive Director.
As of July 29, 2019, utilities, right of way, and relocations within the project limits have not been cleared. The Department anticipates clearance by the dates listed below. Unless otherwise stated, clearance of these obstructions will be performed by their owners. Estimated clearance dates are not anticipated to interfere with the Contractor’s operations. In the event the clearance dates are not met, requests for additional compensation or time will be made in accordance with the standard specifications.

The Contractor is invited to review the mapped information of obstructions on file with the Engineer.

<table>
<thead>
<tr>
<th>Utility Owner</th>
<th>Approximate Location</th>
<th>Description</th>
<th>Estimated Clearance Date</th>
<th>Effect on Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberlight</td>
<td>0+00 RT to 32+97 RT</td>
<td>U/G FIBER</td>
<td>11/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Consolidated</td>
<td>0+00 RT to 80+00 RT</td>
<td>U/G FIBER</td>
<td>11/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Communications</td>
<td>76+00 to 96+00 LT</td>
<td>U/G FIBER</td>
<td>11/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Consolidated</td>
<td>132+00 to 155+00 LT</td>
<td>U/G FIBER</td>
<td>11/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Communications</td>
<td>176+00 to 182+50 LT</td>
<td>U/G FIBER</td>
<td>11/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Consolidated</td>
<td>260+00</td>
<td>U/G FIBER</td>
<td>11/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Communications</td>
<td>275+00 to 456+00 LT</td>
<td>U/G FIBER</td>
<td>11/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Century Link</td>
<td>415+50</td>
<td>U/G TELEPHONE</td>
<td>4/1/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Century Link</td>
<td>442+00 to 450+00 LT</td>
<td>U/G TELEPHONE</td>
<td>4/1/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Century Link</td>
<td>500+00 to 512+00 LT</td>
<td>U/G TELEPHONE</td>
<td>4/1/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Century Link</td>
<td>540+00</td>
<td>U/G TELEPHONE</td>
<td>4/1/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Century Link</td>
<td>577+00</td>
<td>U/G TELEPHONE</td>
<td>4/1/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Century Link</td>
<td>632+00 to 680+00 LT</td>
<td>U/G TELEPHONE</td>
<td>4/1/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Btel</td>
<td>456+20 to 650+00 LT</td>
<td>U/G 1.25'' HDPE DUCTS</td>
<td>3/1/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Company</td>
<td>Mileage to Mileage</td>
<td>Type</td>
<td>Date</td>
<td>Effect Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Bt el</td>
<td>650+00 to 690+00 LT</td>
<td>U/G 1.25' HDPE DUCTS</td>
<td>3/1/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>TX-NM Power</td>
<td>634+00 to 690+00 LT</td>
<td>OH ELECTRIC</td>
<td>10/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Phillips</td>
<td>640+88</td>
<td>18" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Phillips</td>
<td>640+98</td>
<td>18" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Phillips</td>
<td>641+05</td>
<td>8" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Phillips</td>
<td>643+07</td>
<td>12" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Enterprise</td>
<td>128+28</td>
<td>8" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Enterprise</td>
<td>441+09</td>
<td>6" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Enterprise</td>
<td>441+23</td>
<td>30" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Enterprise</td>
<td>600+50</td>
<td>16" Pipeline</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>316+95</td>
<td>8" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>317+06</td>
<td>8" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Florida Gas</td>
<td>289+93</td>
<td>22" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>KinderMorgan</td>
<td>283+56</td>
<td>36" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>KinderMorgan</td>
<td>317+59</td>
<td>30" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>KinderMorgan</td>
<td>559+90</td>
<td>12" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>KinderMorgan</td>
<td>560+42</td>
<td>16" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Nustar</td>
<td>128+54.20</td>
<td>12" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Easton Energy</td>
<td>317+42</td>
<td>14" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>CenterPoint Gas</td>
<td>51+00 to 108+00 RT</td>
<td>2" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>CenterPoint Gas</td>
<td>51+00</td>
<td>2" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>CenterPoint Gas</td>
<td>98+00 to 102+00 RT</td>
<td>2" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>CenterPoint Gas</td>
<td>118+50 to 125+25 RT</td>
<td>2" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>CenterPoint Gas</td>
<td>125+25 to 141+00 LT</td>
<td>2" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>CenterPoint Gas</td>
<td>665+00</td>
<td>6" PIPELINE</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>CenterPoint Electric</td>
<td>0+00 to 15+00 LT</td>
<td>OH ELECTRIC</td>
<td>3/7/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>CenterPoint Electric</td>
<td>15+00 to 18+00 LT</td>
<td>OH ELECTRIC</td>
<td>3/7/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>CenterPoint Electric</td>
<td>108+00</td>
<td>OH ELECTRIC</td>
<td>3/7/2020</td>
<td>No effect; Contractor can work in other areas</td>
</tr>
<tr>
<td>Parcel Number</td>
<td>Owner</td>
<td>Estimated Acquisition Date</td>
<td>Effect on Construction</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>J.D. Yelderman, et al</td>
<td>12/1/2019 (if no PUA)</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Neil Oscar Banfield Yelderman, et al</td>
<td>12/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Pauline J. Yelderman, et al</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>104A</td>
<td>Margaret Scott Bailey, ET AL Sinclair Oil and Gas Co. Stella Ann Masterson, ET AL Catherine Ward Thomas F. Ward, Gala Gallaher, Rachel J Faber</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Margaret Scott Bailey, ET AL Sinclair Oil and Gas Co. Stella Ann Masterson, ET AL Catherine Ward Thomas F. Ward, Gala Gallaher, Rachel J Faber</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Centerpoint Energy Resources Corp., a Delaware Corporation</td>
<td>9/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Ila Gene Crabb Despain</td>
<td>11/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>James Davis and Clara G. Matejka</td>
<td>9/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Angel Jimenez and Ana Luisa Jimenez</td>
<td>8/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name 1</td>
<td>Date</td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Angel Jimenez and Ana Luisa Jimenez</td>
<td>8/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>Arno G. Schultz, Jr., Calvin A. Schultz & Lannette Schultz Estate</td>
<td>10/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>Michael Bryan Marshall, as his sole and separate property</td>
<td>12/1/2019 (if no PUA)</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td>Willie Johnson</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>Grace McNeel, Trustee, or the successor Trustees, of the George C. McNeel Decedent's Trust dated June 7, 2000, as established under the McNeel Family Living Trust dated September 11, 1992, as amended.</td>
<td>9/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>McNeel Decedent's Trust</td>
<td>9/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>329</td>
<td>John W. Damon, et al</td>
<td>12/1/2019 (if no PUA)</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>J.W. Nickelson, et ex</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>331</td>
<td>(J.G. Phillips Estate) Linda Carol Hold, et al</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>332</td>
<td>Mary E. Williamson, L.E. Norton, E.P. Womack, Jr., et al</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>336</td>
<td>Don W. Heisig, Piper Reagh Heisig</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>William S. & William S. Jr. Leopold</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>341</td>
<td>Don W. Heisig, et al</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>342</td>
<td>Mary Jane Jamison</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>343</td>
<td>William S. & William S. Jr. Leopold, et al</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>344</td>
<td>John W. Damon II, et al</td>
<td>12/30/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>345</td>
<td>Centerpoint Energy Houston Electric LLC</td>
<td>12/1/2019 (if no PUA)</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>364 PT 1</td>
<td>Frances H. Carr & John W. Damon, II (formerly 363); John W. Damon, III (formerly 364); TLS Properties, LTD & John W. Damon, II (formerly 365)</td>
<td>10/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>JJ Chancellor, Et al</td>
<td>9/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>John W. Damon II</td>
<td>10/1/2019</td>
<td>No effect; Contractor can work in other areas</td>
<td></td>
</tr>
<tr>
<td>Parcel Number</td>
<td>Owner</td>
<td>Term/Vacate Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Neil Oscar Banfield Yelderman, et al</td>
<td>9/30/2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>Michael Bryan Marshall, as his sole and separate property</td>
<td>12/1/2019</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Special Provision to Item 2
Instructions to Bidders

Item 2, “Instructions to Bidders,” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 2.3., “Issuing Proposal Forms,” second paragraph, is supplemented by the following.

The Department will not issue a proposal form if one or more of the following apply:
- the Bidder or affiliate of the Bidder that was originally determined as the apparent low Bidder on a project, but was deemed nonresponsive for failure to submit a DBE commitment as specified in Article 2.14., “Disadvantaged Business Enterprise (DBE),” is prohibited from rebidding that specific project.

Article 2.7., “Nonresponsive Bid,” is supplemented by the following:

The Department will not accept a nonresponsive bid. A bid that has one or more of the deficiencies listed below is considered nonresponsive:
- the Bidder failed to submit a DBE commitment as specified in Article 2.14., “Disadvantaged Business Enterprise (DBE).”

Article 2.14., “Disadvantaged Business Enterprise (DBE),” is added.

The apparent low bidder must submit DBE commitment information on federally funded projects with DBE goals within 5 calendar days (as defined in 49 CFR Part 26, Subpart A) of bid opening. For a submission that meets the 5-day requirement, administrative corrections will be allowed.

If the apparent low Bidder fails to submit their DBE information within the specified timeframe, they will be deemed nonresponsive and the proposal guaranty will become the property of the State, not as a penalty, but as liquidated damages. The Bidder forfeiting the proposal guaranty will not be considered in future proposals for the same work unless there has been a substantial change in the design of the work. The Department may recommend that the Commission:
- reject all bids,
- award the Contract to the new apparent low Bidder, if the new apparent low Bidder submits DBE information within one calendar day of notification by the Department.

If the new apparent low Bidder is unable to submit the required DBE information within one calendar day:
- the new apparent low Bidder will not be deemed nonresponsive,
- the new apparent low Bidder’s guaranty will not be forfeited,
- the Department will reject all bids, and
- the new apparent low Bidder will remain eligible to receive future proposals for the same project.
Special Provision to Item 2
Instructions to Bidders

Item 2, “Instructions to Bidders,” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 2.3., “Issuing Proposal Forms,” is supplemented by the following:
- the Bidder or affiliate of the Bidder that was originally determined as the apparent low Bidder on a project, but was deemed nonresponsive for failure to register or participate in the Department of Homeland Security’s (DHS) E-Verify system as specified in Article 2.15., “Department of Homeland Security (DHS) E-Verify System,” is prohibited from rebidding that specific project.

Article 2.7., “Nonresponsive Bid,” is supplemented by the following:

The Department will not award a Contract to a Contractor that is not registered in the DHS E-Verify system. Remain active in E=Verify throughout the life of the contract. In addition, in accordance with paragraph six of Article 8.2, “Subcontracting,” include this requirement in all subcontracts and require that subcontractors remain active in E-Verify until their work is completed.

If the apparent low Bidder does not appear on the DHS E-Verify system prior to award, the Department will notify the Contractor that they must submit documentation showing that they are compliant within 5-business days after the date the notification was sent. A Contractor who fails to comply or respond within the deadline will be declared non-responsive and the Department will execute the proposal guaranty. The proposal guaranty will become the property of the State, not as a penalty, but as liquidated damages. The Bidder forfeiting the proposal guaranty will not be considered in future proposals for the same work unless there has been a substantial change in the scope of the work.

The Department may recommend that the Commission:
- reject all bids, or
- award the Contract to the new apparent low Bidder, if the Department is able to verify the Bidder’s participation in the DHS E-Verify system. For the Bidder who is not registered in E-Verify, the Department will allow for one business day after notification to provide proof of registration.

If the Department is unable to verify the new apparent low Bidder’s participation in the DHS E-Verify system within one calendar day:
- the new apparent low Bidder will not be deemed nonresponsive,
- the new apparent low Bidder’s guaranty will not be forfeited,
- the Department will reject all bids, and
- the new apparent low Bidder will remain eligible to receive future proposals for the same project.
Special Provision to Item 2
Instructions to Bidders

Item 2, “Instructions to Bidders” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 3., “Issuing Proposal Forms,” is supplemented by the following:

The Electronic State Business Daily (ESBD), the Integrated Contractor Exchange (iCX) system, and the project proposal are the official sources of advertisement and bidding information for the State and Local Lettings. Bidders should bid the project using the information found therein, including any addenda. These sources take precedence over information from other sources, including TxDOT webpages, which are unofficial and intended for informational purposes only.
Item 3, Award and Execution of Contract," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 4.3, “Insurance.” The first sentence is voided and replaced by the following:

For construction and building Contracts, submit a certificate of insurance showing coverages in accordance with Contract requirements. For routine maintenance Contracts, refer to Article 8, “Beginning of Work.”

Article 8, “Beginning of Work.” The first sentence is supplemented by the following:

For a routine maintenance Contract, do not begin work until a certificate of insurance showing coverages in accordance with the Contract requirements is provided and accepted.
Special Provision to Item 5
Control of the Work

Item 5, “Control of the Work,” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 5.1, “Authority of Engineer,” is voided and replaced by the following.

The Engineer has the authority to observe, test, inspect, approve, and accept the work. The Engineer decides all questions about the quality and acceptability of materials, work performed, work progress, Contract interpretations, and acceptable Contract fulfillment. The Engineer has the authority to enforce and make effective these decisions.

The Engineer acts as a referee in all questions arising under the terms of the Contract. The Engineer’s decisions will be final and binding.

The Engineer will pursue and document actions against the Contractor as warranted to address Contract performance issues. Contract remedies include, but are not limited to, the following:

- conducting interim performance evaluations requiring a Project Recovery Plan, in accordance with Title 43, Texas Administrative Code (TAC) §9.23,
- requiring the Contractor to remove and replace defective work, or reducing payment for defective work,
- removing an individual from the project,
- suspending the work without suspending working day charges,
- assessing standard liquidated damages to recover the Department’s administrative costs, including additional project-specific liquidated damages when specified in the Contract in accordance with 43 TAC §9.22,
- withholding estimates,
- declaring the Contractor to be in default of the Contract, and
- in case of a Contractor’s failure to meet a Project Recovery Plan, referring the issue directly to the Performance Review Committee for consideration of further action against the Contractor in accordance with 43 TAC §9.24.

The Engineer will consider and document any events outside the Contractor’s control that contributed to the failure to meet performance standards, including consideration of sufficient time.

Follow the issue escalation ladder if there is disagreement regarding the application of Contract remedies.
Special Provision to Item 6
Control of Materials

For this project, Item 6, “Control of Materials,” of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Article 4, “Sampling, Testing, and Inspection,” is supplemented by the following:

Meet with the Engineer and choose either the Department or a Department-selected Commercial Lab (CL) for conducting the subset of project-level sampling and testing shown in Table 1, “Select Guide Schedule Sampling and Testing.” Selection may be made on a test by test basis. CLs will meet the testing turnaround times shown (includes test time and time for travel/sampling and reporting) and in all cases issue test reports as soon as possible.

If the Contractor chooses a Department-selected CL for any Table 1 sampling and testing:

- notify the Engineer, District Lab, and the CL of project scheduling that may require CL testing;
- provide the Engineer, District Lab, and CL at least 24 hours’ notice by phone and e-mail;
- reimburse the Department for CL Table 1 testing using the contract fee schedule for the CL (including mileage and travel/standby time) at the minimum guide schedule testing frequencies;
- reimburse the Department for CL Table 1 testing above the minimum guide schedule frequencies for retesting when minimum frequency testing results in failures to meet specification limits;
- agree with the Engineer and CL upon a policy regarding notification for testing services;
- give any cancellation notice to the Engineer, District Lab, and CL by phone and e-mail;
- reimburse the Department a $150 cancellation fee to cover technician time and mileage charges for previously scheduled work cancelled without adequate notice, which resulted in mobilization of technician and/or equipment by the CL; and
- all CL charges will be reimbursed to the Department by a deduction from the Contractor’s monthly pay estimate.

If the CL does not meet the Table 1 turnaround times, testing charge to the Contractor will be reduced by 50% for the first late day and an additional 5% for each succeeding late day.

Approved CL project testing above the minimum testing frequencies in the Guide Schedule of Sampling and Testing, and not as the result of failing tests, will be paid by the Department.

Other project-level Guide Schedule sampling and testing not shown on Table 1 will be the responsibility of the Department.
Select Guide Schedule Sampling and Testing (Note 1)

<table>
<thead>
<tr>
<th>TxDOT Test</th>
<th>Test Description</th>
<th>Turn-Around Time (Calendar days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOILS/BASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tex-101-E</td>
<td>Preparation of Soil and Flexible Base Materials for Testing (included in other tests)</td>
<td></td>
</tr>
<tr>
<td>Tex-104-E</td>
<td>Liquid Limit of Soils (included in 106-E)</td>
<td></td>
</tr>
<tr>
<td>Tex-105-E</td>
<td>Plastic Limit of Soils (included in 106-E)</td>
<td></td>
</tr>
<tr>
<td>Tex-106-E</td>
<td>Calculating the Plasticity Index of Soils</td>
<td></td>
</tr>
<tr>
<td>Tex-110-E</td>
<td>Particle Size Analysis of Soils</td>
<td></td>
</tr>
<tr>
<td>Tex-113-E</td>
<td>Moisture-Density Relationship of Base Materials</td>
<td></td>
</tr>
<tr>
<td>Tex-114-E</td>
<td>Moisture-Density Relationship of Subgrade and Embankment Soil</td>
<td></td>
</tr>
<tr>
<td>Tex-115-E</td>
<td>Field Method for In-Place Density of Soils and Base Materials</td>
<td>2</td>
</tr>
<tr>
<td>Tex-116-E</td>
<td>Ball Mill Method for the Disintegration of Flexible Base Material</td>
<td>5</td>
</tr>
<tr>
<td>Tex-117-E, Part II</td>
<td>Triaxial Compression Tests For Disturbed Soils and Base Materials (Part II)</td>
<td>6</td>
</tr>
<tr>
<td>Tex-113-E w/ Tex-117-E</td>
<td>Moisture-Density Relationship of Base Materials with Triaxial Compression Tests For Disturbed Soils and Base Materials (Part II)</td>
<td>10</td>
</tr>
<tr>
<td>Tex-140-E</td>
<td>Measuring Thickness of Pavement Layer</td>
<td>2</td>
</tr>
<tr>
<td>Tex-145-E</td>
<td>Determining Sulfate Content in Soils - Colorimetric Method</td>
<td>4</td>
</tr>
<tr>
<td>HOT MIX ASPHALT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tex-200-F</td>
<td>Sieve Analysis of Fine and Coarse Aggregate (dry, from ignition oven with known correction factors)</td>
<td>1 (Note 2)</td>
</tr>
<tr>
<td>Tex-203-F</td>
<td>Sand Equivalent Test</td>
<td>3</td>
</tr>
<tr>
<td>Tex-206-F, w/ Tex-207-F, Part I, w/ Tex-227-F</td>
<td>(Lab-Molded Density of Production Mixture – Texas Gyratory) Method of Compacting Test Specimens of Bituminous Mixtures with Density of Compacted Bituminous Mixtures, Part I - Bulk Specific Gravity of Compacted Bituminous Mixtures, with Theoretical Maximum Specific Gravity of Bituminous Mixtures</td>
<td>1 (Note 2)</td>
</tr>
<tr>
<td>Tex-207-F, Part I &/or Part VI</td>
<td>(In-Place Air Voids of Roadway Cores) Density of Compacted Bituminous Mixtures, Part I- Bulk Specific Gravity of Compacted Bituminous Mixtures &/or Part VI - Bulk Specific Gravity of Compacted Bituminous Mixtures Using the Vacuum Method</td>
<td>1 (Note 2)</td>
</tr>
<tr>
<td>Tex-212-F</td>
<td>Moisture Content of Bituminous Mixtures</td>
<td>3</td>
</tr>
<tr>
<td>Tex-217-F</td>
<td>Deleterious Material and Decantation Test for Coarse Aggregate</td>
<td>4</td>
</tr>
<tr>
<td>Tex-221-F</td>
<td>Sampling Aggregate for Bituminous Mixtures, Surface Treatments, and LRA (included in other tests)</td>
<td></td>
</tr>
<tr>
<td>Tex-222-F</td>
<td>Sampling Bituminous Mixtures (included in other tests)</td>
<td></td>
</tr>
<tr>
<td>Tex-224-F</td>
<td>Determination of Flakiness Index</td>
<td>3</td>
</tr>
<tr>
<td>Tex-228-F</td>
<td>Indirect Tensile Strength Test (production mix)</td>
<td>4</td>
</tr>
<tr>
<td>Tex-235-F</td>
<td>Determining Draindown Characteristics in Bituminous Materials</td>
<td>3</td>
</tr>
<tr>
<td>Tex-236-F (Correction Factors)</td>
<td>Asphalt Content from Asphalt Paving Mixtures by the Ignition Method (Determining Correction Factors)</td>
<td>4</td>
</tr>
<tr>
<td>Tex-238-F</td>
<td>Asphalt Content from Asphalt Paving Mixtures by the Ignition Method (Production Mixture)</td>
<td>1 (Note 2)</td>
</tr>
<tr>
<td>Tex-241-F w/ Tex-207-F, Part I, w/ Tex-227-F</td>
<td>(Lab-Molded Density of Production Mixture – Superpave Gyratory) Superpave Gyratory Compacting of Specimens of Bituminous Mixtures (production mixture) with Density of Compacted Bituminous Mixtures, Part I- Part I - Bulk Specific Gravity of Compacted Bituminous Mixtures, with Theoretical Maximum Specific Gravity of Bituminous Mixtures</td>
<td>1 (Note 2)</td>
</tr>
<tr>
<td>Tex-242-F</td>
<td>Hamburg Wheel-Tracking Test (production mix, molded samples)</td>
<td>3</td>
</tr>
<tr>
<td>Tex-244-F</td>
<td>Thermal Profile of Hot Mix Asphalt</td>
<td>1</td>
</tr>
<tr>
<td>Tex-246-F</td>
<td>Permeability of Water Flow of Hot Mix Asphalt</td>
<td>3</td>
</tr>
<tr>
<td>Tex-280-F</td>
<td>Flat and Elongated Particles</td>
<td>3</td>
</tr>
<tr>
<td>Tex-530-C</td>
<td>Effect of Water on Bituminous Paving Mixtures (production mix)</td>
<td>4</td>
</tr>
</tbody>
</table>
AGGREGATES

Tex-400-A	Sampling Flexible Base, Stone, Gravel, Sand, and Mineral Aggregates	3
Tex-410-A	Abrasion of Coarse Aggregate Using the Los Angeles Machine	5
Tex-411-A	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	12
Tex-461-A	Degradation of Coarse Aggregate by Micro-Deval Abrasion	5

CHEMICAL

| Tex-612-J | Acid Insoluble Residue for Fine Aggregate | 4 |

GENERAL

| HMA Production Specialist [TxAPA – Level 1-A] ($/hr) |
| HMA Roadway Specialist [TxAPA – Level 1-B] ($/hr) |
| Technician Travel/Standby Time ($/hr) |
| Per Diem ($/day – meals and lodging) |
| Mileage Rate ($/mile from closest CL location) |

Note 1 – Turn-Around Time includes test time and time for travel/sampling and reporting.
Note 2 – These tests require turn-around times meeting the governing specifications. Provide test results within the stated turn-around time. CL is allowed one additional day to provide the signed and sealed report.
Special Provision to Item 6
Control of Materials

Item 6, “Control of Materials” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 6.10., “Hazardous Materials,” is voided and replaced by the following:

Comply with the requirements of Article 7.12., “Responsibility for Hazardous Materials.”

Notify the Engineer immediately when a visual observation or odor indicates that materials on sites owned or controlled by the Department may contain hazardous materials. Except as noted herein, the Department is responsible for testing, removing, and disposing of hazardous materials not introduced by the Contractor. The Engineer may suspend work wholly or in part during the testing, removing, or disposing of hazardous materials, except in the case where hazardous materials are introduced by the Contractor.

Use materials that are free of hazardous materials. Notify the Engineer immediately if materials are suspected to contain hazardous materials. If materials delivered to the project by the Contractor are suspected to contain hazardous materials, have an approved commercial laboratory test the materials for the presence of hazardous materials as approved. Remove, remediate, and dispose of any of these materials found to contain hazardous materials. The work required to comply with this section will be at the Contractor’s expense if materials are found to contain hazardous materials. Working day charges will not be suspended and extensions of working days will not be granted for activities related to handling hazardous material introduced by the Contractor. If suspected materials are not found to contain hazardous materials, the Department will reimburse the Contractor for hazardous materials testing and will adjust working day charges if the Contractor can show that this work impacted the critical path.

10.1. Painted Steel Requirements. Coatings on existing steel contain hazardous materials unless otherwise shown on the plans. Remove paint and dispose of steel coated with paint containing hazardous materials is in accordance with the following:

10.1.1. Removing Paint From Steel For contracts that are specifically for painting steel, Item 446, “Field Cleaning and Painting Steel” will be included as a pay item. Perform work in accordance with that item.

For projects where paint must be removed to allow for the dismantling of steel or to perform other work, the Department will provide for a separate contractor (third party) to remove paint containing hazardous materials prior to or during the Contract. Remove paint covering existing steel shown not to contain hazardous materials in accordance with Item 446, “Field Cleaning and Painting Steel.”

10.1.2. Removal and Disposal of Painted Steel. For steel able to be dismantled by unbolting, paint removal will not be performed by the Department. The Department will remove paint, at locations shown on the plans or as agreed, for the Contractor’s cutting and dismantling purposes. Utilize Department cleaned locations for dismantling when provided or provide own means of dismantling at other locations.

Painted steel to be retained by the Department will be shown on the plans. For painted steel that contains hazardous materials, dispose of the painted steel at a steel recycling or smelting facility unless otherwise shown on the plans. Maintain and make available to the Engineer invoices and other records obtained from the facility showing the received weight of the steel and the facility name. Dispose of steel that does not contain hazardous material coatings in accordance with federal, state and local regulations.
10.2. Asbestos Requirements. The plans will indicate locations or elements where asbestos containing materials (ACM) are known to be present. Where ACM is known to exist or where previously unknown ACM has been found, the Department will arrange for abatement by a separate contractor prior to or during the Contract. Notify the Engineer of proposed dates of demolition or removal of structural elements with ACM at least 60 days before beginning work to allow the Department sufficient time for abatement.

The Department of State Health Services (DSHS), Asbestos Programs Branch, is responsible for administering the requirements of the National Emissions Standards for Hazardous Air Pollutants, 40 CFR Part 61, Subpart M and the Texas Asbestos Health Protection Rules (TAHPR). Based on EPA guidance and regulatory background information, bridges are considered to be a regulated “facility” under NESHAP. Therefore, federal standards for demolition and renovation apply.

The Department is required to notify the DSHS at least 10 working days (by postmarked date) before initiating demolition or renovation of each structure or load bearing member shown on the plans. If the actual demolition or renovation date is changed or delayed, notify the Engineer in writing of the revised dates in sufficient time to allow for the Department’s notification to DSHS to be postmarked at least 10 days in advance of the actual work.

Failure to provide the above information may require the temporary suspension of work under Article 8.4., “Temporary Suspension of Work or Working Day Charges,” due to reasons under the control of the Contractor. The Department retains the right to determine the actual advance notice needed for the change in date to address post office business days and staff availability.

10.3. Lead Abatement. Provide traffic control as shown on the plans, and coordinate and cooperate with the third party and the Department for managing or removing hazardous materials. Work for the traffic control shown on the plans and coordination work will not be paid for directly but will be subsidiary to pertinent Items.
Special Provision to Item 7
Legal Relations and Responsibilities

Item 7, "Legal Relations and Responsibilities," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 7.2.6.5, “Training,” is supplemented by the following:

Coordinate enrollment, pay associated fees, and successfully complete Department-approved Training or Contractor-developed Training. Training is valid for the period prescribed by the provider. If no training period is prescribed by the provider, then training is valid for 3 yrs. from the date of completion. The Engineer may require training at a frequency in lieu of the period prescribed based on the Department’s needs. Training and associated fees will not be measured or paid for directly but are considered subsidiary to pertinent Items.

2.6.5.1. **Department-approved Training.** Department-approved training is listed below. For Section 7.2.6.5.1.4., "Other Work Zone Personnel", the Contractor may use Contractor-developed Training in lieu of Department-approved Training.

2.6.5.1.1 **Contractor Responsible Person and Alternate.**

<table>
<thead>
<tr>
<th>Provider</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Traffic Safety Services Association</td>
<td>Traffic Control Supervisor</td>
</tr>
<tr>
<td>National Highway Institute¹</td>
<td>Design and Operation of Work Zone Traffic Control, Work Zone Traffic Control for Maintenance Operations</td>
</tr>
<tr>
<td>Texas Engineering Extension Service</td>
<td>Work Zone Traffic Control for CRPs</td>
</tr>
<tr>
<td>University of Texas Arlington, Division for Enterprise Development</td>
<td>Traffic Control Supervisor</td>
</tr>
</tbody>
</table>

¹. Both classes are required in order to equal the level of training taught in a single class by other providers.

2.6.5.1.2 **Flagger Instructor Training.**

<table>
<thead>
<tr>
<th>Provider</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Traffic Safety Services Association</td>
<td>Flagging Instructor Training</td>
</tr>
<tr>
<td>Texas Engineering Extension Service</td>
<td>Train-the-Trainer Flaggers</td>
</tr>
<tr>
<td>National Safety Council</td>
<td>Flagger Instructor Training</td>
</tr>
<tr>
<td>University of Texas at Arlington, Division for Enterprise Development</td>
<td>Certified Instructor: Qualified Flagger Training</td>
</tr>
</tbody>
</table>

Flagger Training.

<table>
<thead>
<tr>
<th>Provider</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas Engineering Extension Service</td>
<td>Flaggers in the Work Zone</td>
</tr>
<tr>
<td>National Safety Council</td>
<td>Work Zone Flagger (Flagger Novice)</td>
</tr>
<tr>
<td>University of Texas Arlington, Division for Enterprise Development</td>
<td>Flaggers in Work Zones</td>
</tr>
<tr>
<td>University of Texas at Arlington, Division for Enterprise Development</td>
<td>Work Zone Traffic Control & Qualified Flagger</td>
</tr>
<tr>
<td>Associated Builders and Contractors, Austin Chapter</td>
<td>Flagger Training</td>
</tr>
</tbody>
</table>

2.6.5.1.3. Law Enforcement Personnel.

<table>
<thead>
<tr>
<th>Provider</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Highway Institute</td>
<td>Safe and Effective Use of Law Enforcement Personnel in Work Zones</td>
</tr>
</tbody>
</table>

2.6.5.1.4. Other Work Zone Personnel.

<table>
<thead>
<tr>
<th>Provider</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Traffic Safety Services Association</td>
<td>Traffic Control Technician</td>
</tr>
<tr>
<td>Texas Engineering Extension Service</td>
<td>Work Zone Traffic Control</td>
</tr>
<tr>
<td>National Highway Institute</td>
<td>Maintenance of Traffic for Technicians</td>
</tr>
<tr>
<td>National Highway Institute</td>
<td>Maintenance Training Series: Basics of Work Zone Traffic Control</td>
</tr>
<tr>
<td>University of Texas at Arlington, Division for Enterprise Development</td>
<td>Temporary Traffic Control</td>
</tr>
</tbody>
</table>

2.6.5.2. Contractor-developed Training. Develop and deliver Contractor-developed Training meeting the minimum requirements established by the Department. The outline for this training must be submitted to the Engineer for approval at the preconstruction meeting. The CRP or designated alternate may deliver the training in lieu of the Department-approved training. The work performed and materials furnished to develop and deliver the training will not be measured or paid for directly but will be considered subsidiary to pertinent items.

2.6.5.2.1 Flagger Training Minimum Requirements. A Contractor’s certified flagging instructor is permitted to train other flaggers.

2.6.5.2.2 Other Work Zone Personnel Minimum Requirements. Contractor-developed Training must provide information on the use of personnel protection equipment, occupational hazards and health risks, and other pertinent topics related to traffic management. The type and amount of training will depend on the job duties and responsibilities. Develop training applicable to the work being performed. Develop training to include the following topics:

- The Life You Save May Be Your Own (or other similar company safety motto)
- Purpose of the Training
 - It’s The Law
• To make work zones safer for workers and motorists
• To understand what is needed for traffic control
• To save lives including your own

的话题与安全

个人和同事安全

- 高可视性安全装备：讨论符合要求的规格；定期检查色彩减少和反光性能；如果夜间作业需要，讨论额外和适当的装备以及特殊夜间风险；如果移动作业正在进行，讨论具体情况下和交通控制计划的安全措施。
- 盲区：盲区是指车辆或施工设备周围没有直接或间接视野的区域。讨论“安全圈”概念；使用观察者；保持与设备操作员的视线接触；使用手势。
- 翻车和翻倒：始终保持警觉；与交通保持安全距离；避免背对交通并使用观察者；尽可能使用防护屏障。
- 看护工必须了解公司分心驾驶政策。

夜间作业：应将重点放在有夜间元素的项目上。

交通控制培训：基本交通控制。

- 识别工作区交通控制监控员和其他相关人员报告问题。
- 工作区交通控制设备必须保持清洁和良好的状态。如果设备被撞但未损坏，请放回原位并报告给交通控制监督员。如果设备被损坏，请更换新的并报告给交通控制监督员。如果设备脏、褪色或部分缺失，请清洁或更换并报告给交通控制监督员。讨论各种类型的交通控制设备的使用和放置要求可以找到。
- 渠化设备和路障有斜纹：条纹应斜向引导车辆或移动。
- 交通排队：工必须了解交通排队和由此产生的危险。工必须立即通知交通控制监督员和其他监督员，如果交通排队超过警告标志和设备或施工限制。
- 标志：标志必须直立和不倾斜。报告问题给交通控制监督员或其他人员指定立即修理。覆盖标志必须完全覆盖。如果标志损坏或位置不当，请报告给交通控制监督员或其他人员指定。
Special Provision to Item 7
Legal Relations and Responsibilities

Item 7, “Legal Relations and Responsibilities” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 7.3., “Laws To Be Observed,” is supplemented by the following:

By entering into Contract, the Contractor agrees to provide or make available to the Department and any authorized governmental investigating or auditing agency all records, including electronic and payment records related to the Contract for a period required in accordance with Title 43 of the Texas Administration Code, Part 1, Chapter 9, Subchapter K, Rule §9.327, Contractor Records. Additionally, require that all subcontracts include a clause adhering to the same requirement. Failure to provide access to the required documents by any party to the project may result in action by the Department.
Item 7, “Legal Relations and Responsibilities,” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 7.7.2., “Texas Pollutant Discharge Elimination System (TPDES) Permits and Storm Water Pollution Prevention Plans (SWP3),” is voided and replaced by the following:

7.2. Texas Pollution Discharge Elimination System (TPDES) Permits and Storm Water Pollution Prevention Plans (SWP3).

7.2.1. Projects with less than one acre of soil disturbance including required associated project specific locations (PSL’s) per TPDES GP TXR 150000.

No posting or filing will be required for soil disturbances within the right of way. Adhere to the requirements of the SWP3.

7.2.2. Projects with one acre but less than five acres of soil disturbance including required associated PSL’s per TPDES GP TXR 150000.

The Department will be considered a primary operator for Operational Control Over Plans and Specifications as defined in TPDES GP TXR 150000 for construction activity in the right of way. The Department will post a small site notice along with other requirements as defined in TPDES GP TXR 150000 as the entity of having operational control over plans and specifications for work shown on the plans in the right of way.

The Contractor will be considered a Primary Operator for Day-to-Day Operational Control as defined in TPDES GP TXR 150000 for construction activity in the right of way. In addition to the Department’s actions, the Contractor will post a small site notice along with other requirements as defined in TPDES GP TXR 150000 as the entity of having day-to-day operational control of the work shown on the plans in the right of way. This is in addition to the Contractor being responsible for TPDES GP TXR 150000 requirements for on-right of way and off-right of way PSL’s. Adhere to all requirements of the SWP3 as shown on the plans. The Contractor will be responsible for Implement the SWP3 for the project site in accordance with the plans and specifications, TPDES General Permit TXR150000, and as directed.

7.2.3. Projects with 5 acres or more of soil disturbance including required associated PSL’s per TPDES GP TXR 150000.

The Department will be considered a primary operator for Operational Control Over Plans and Specifications as defined in TPDES GP TXR 150000 for construction activities in the right of way. The Department will post a large site notice, file a notice of intent (NOI), notice of change (NOC), if applicable, and a notice of termination (NOT) along with other requirements per TPDES GP TXR 150000 as the entity having operational control over plans and specifications for work shown on the plans in the right of way.

The Contractor will be considered a primary operator for Day-to-Day Operational Control as defined in TPDES GP TXR 150000 for construction activities in the right of way. In addition to the Department’s actions, the Contractor shall file a NOI, NOC, if applicable, and NOT and post a large site notice along with other requirements as the entity of having day-to-day operational control of the work shown on the plans in the right of way. This is in addition to the Contractor
being responsible for TPDES GP TXR 150000 requirements for on-right of way and off-right of way PSL’s. Adhere to all requirements of the SWP3 as shown on the plans.
Item 7, “Legal Relations and Responsibilities” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 19.1., Minimum Wage Requirements for Federally Funded Contracts. The second paragraph is voided and replaced by the following:

Submit electronic payroll records to the Engineer using the Department’s payroll system.

Section 19.2., Minimum Wage Requirements for State Funded Contracts. The second paragraph is voided and replaced by the following:

Submit electronic payroll records to the Engineer using the Department’s payroll system.
Special Provision to Item 7
Legal Relations and Responsibilities

Item 7, "Legal Relations and Responsibilities," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 7.2.4., “Public Safety and Convenience.” The first paragraph is deleted and replaced by the following.

Ensure the safety and convenience of the public and property as provided in the Contract and as directed. Keep existing roadways open to traffic or construct and maintain detours and temporary structures for safe public travel. Manage construction to minimize disruption to traffic. Maintain the roadway in a good and passable condition, including proper drainage and provide for ingress and egress to adjacent property.

If the construction of the project requires the closing of a highway, as directed, coordinate the closure with the Engineer and work to ensure all lanes and ramps possible are available during peak traffic periods before, during, and after significant traffic generator events to avoid any adverse economic impact on the municipalities during:

1. dates or events as shown on the plans, and
2. other dates as directed.
Special Provision to Item 8
Prosecution and Progress

Item 8, “Prosecution and Progress” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 8.1., “Prosecution of Work.” The first sentence of the first paragraph is voided and replaced by the following:

Begin work 90 calendar days after the authorization date to begin work. Do not begin work before or after this period unless authorized in writing by the Engineer.
Special Provision to Item 8
Prosecution and Progress

Item 8, “Prosecution and Progress,” of the Standard Specifications, is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 8.6., “Failure to Complete Work on Time,” is supplemented by the following:

8.6.1. Lane Closure Assessment Fees.

Monetary assessment, as shown on the plans, will be made against the Contractor for any lane closure or obstruction that overlaps into the peak hour traffic for each hour or portion thereof, per lane, regardless of the length of lane closure or obstruction.

8.6.1.1. Definition of Terms. For this Contract the following definitions apply:

8.6.1.1.1. Hour. Any continuous 60 min. period or portion of a continuous 60 min. period beginning at that point when a lane(s) is closed or obstructed by the Contractor’s operations.

8.6.1.2. Assessment Fee. The amount shown in the proposal, representing the average hourly cost of interference and inconvenience to the road user for each lane closed or obstructed during peak hour traffic.

8.6.1.3. Closure or Obstruction. When the Contractor’s operations result in a useable lane width of the travelway or shoulder less than that specified in the plan documents.

8.6.1.4. Peak Hour Traffic Times. Schedule of days and times described in the General Notes, when lane closures or obstructions are not allowed.

8.6.1.2. Fee Calculation and Collection. The assessment fee will be deducted from the amount due the Contractor on the monthly construction estimate, and thus retained by the Department. The Engineer will determine the time of overlap of lane closure(s) or obstruction(s) for calculating the assessment fee. The assessment fee is based on road user costs and is assessed not as a penalty, but for added expense incurred by the traveling public.
Special Provision to Item 8
Prosecution and Progress

Item 8, “Prosecution and Progress” of the Standard Specification is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 8.2., “Subcontracting,” is supplemented by the following paragraph, which is added as paragraph six to this article:

The Contractor certifies by signing the Contract that the Contractor will not enter into any subcontract with a subcontractor that is not registered in the Department of Homeland Security’s (DHS) E-Verify system. Require that all subcontractors working on the project register and require that all subcontractors remain active in the DHS E-Verify system until their work is complete on the project.
Special Provision to Item 8
Prosecution and Progress

Item 8, “Prosecution and Progress” of the Standard Specifications is amended with respect to the clause cited below. No other clauses or requirements of this Item are waived or changed.

Article 8.7.2., “Wrongful Default,” is revised and replaced by the following:

If it is determined after the Contractor is declared in default, that the Contractor was not in default, the rights and obligations of all parties will be the same as if termination had been issued for the convenience of the public as provided in Article 8.8 “Termination of Contract.”
Special Provision to Item 247
Flexible Base

Item 247, “Flexible Base” of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Section 2.4., “Certification.” This section is added.

Personnel certified by the Department-approved soils and base certification program must conduct all sampling, field testing, and laboratory testing required by the following:
- Section 2.1, “Aggregate,”
- Section 2.1.3.2, “Recycled Material (Including Crushed Concrete) Requirements,”
- Section 4.3, “Compaction,” for measuring flexible base depth, and
- Section 4.3.2, “Density Control,” for determining the roadway density and moisture content.

Supply the Engineer with a list of certified personnel and copies of their current certificates before laboratory and field testing is performed and when personnel changes are made. At any time during the project, the Engineer may perform production tests as deemed necessary in accordance with Item 5, “Control of the Work.”

Section 2.5., “Reporting and Responsibilities.” This section is added.

Use Department-provided templates to record and calculate all test data. Obtain the current version of the templates at http://www.txdot.gov/inside-txdot/forms-publications/consultants-contractors/forms/site-manager.html or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. Record and electronically submit all test results and pertinent information on Department-provided templates.

Section 2.6., “Sampling.” This section is added.

The Engineer will sample flexible base from stockpiles located at the production site or at the project location in accordance with Tex-400-A, Section 5.3. The Engineer will label the sample containers as “Engineer,” “Contractor” or “Supplier,” and “CST/M&P.” Witness the sampling and take immediate possession of the sample containers labeled “Contractor” or “Supplier.” The Engineer will maintain custody of the samples labeled “CST/M&P” until testing and reporting is completed.

Section 2.7., “Referee Testing.” This section is added.

CST/M&P is the referee laboratory. The Contractor may request referee testing when the Engineer’s test results fail to meet any of the material requirements listed in Table 1. Make the request via email within 5 working days after receiving test results from the Engineer. Submit test reports signed and sealed by a licensed professional engineer from a commercial laboratory listed on the Department’s Material Producer List (MPL) of laboratories approved to perform compaction and triaxial compression testing located at http://ftp.dot.state.tx.us/pub/txdot-info/cmd/ mpl/complabs.pdf. Submit completed test reports electronically on Department-provided templates in their original format. The referee laboratory will report test results to the Engineer within the allowable number of working days listed in Table 2 from the time the referee laboratory receives the samples. It is at the discretion of the Engineer or the referee laboratory to deny a referee request upon review of the test reports provided by the Contractor.
Table 2
Number of Allowable Working Days to Report Referee Test Results

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Test Method</th>
<th>Working Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation</td>
<td>Tex-110-E, Part I</td>
<td>5</td>
</tr>
<tr>
<td>Liquid Limit (Multi-Point Method)</td>
<td>Tex-104-E, Part I</td>
<td>5</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>Tex-106-E</td>
<td>5</td>
</tr>
<tr>
<td>Wet Ball Mill Value</td>
<td>Tex-116-E, Parts I and II</td>
<td>5</td>
</tr>
<tr>
<td>Wet Ball Mill, % Increase passing #40 sieve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressive Strength¹</td>
<td>Tex-117-E, Part II</td>
<td>6</td>
</tr>
<tr>
<td>Compressive Strength²</td>
<td>Tex-117-E</td>
<td>12</td>
</tr>
</tbody>
</table>

1. Moisture-Density curve provided by the District
2. Moisture-Density curve determined by the referee laboratory

Section 4.6., “Ride Quality.” This section is voided and replaced by the following.

Measurement of ride quality only applies to the final travel lanes that receive a 1- or 2-course surface treatment for the final riding surface, unless otherwise shown on the plans. Measure the ride quality of the base course either before or after the application of the prime coat, as directed, and before placement of the surface treatment. Use a certified profiler operator from the Department’s MPL. When requested, furnish the Engineer documentation for the person certified to operate the profiler.

Provide all profile data to the Engineer in electronic data files within 3 days of measuring the ride quality using the format specified in Tex-1001-S. The Engineer will use Department software to evaluate longitudinal profiles to determine areas requiring corrective action. Correct 0.1-mi. sections for each wheel path having an average international roughness index (IRI) value greater than 100 in. per mile to an IRI value of 100 in. per mile or less, unless otherwise shown on the plans.

Re-profile and correct sections that fail to maintain ride quality, as directed. Correct re-profiled sections until specification requirements are met, as approved. Perform this work at no additional expense to the Department.
Item 300, “Asphalts, Oils, and Emulsions,” of the Standard Specifications, is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 300.2., “Materials.” The first paragraph is voided and replaced by the following.

Provide asphalt materials that meet the stated requirements when tested in accordance with the referenced Department, AASHTO, and ASTM test methods. Use asphalt containing recycled materials only if the recycled components meet the requirements of Article 6.9, “Recycled Materials.” Provide asphalt materials that the Department has preapproved for use in accordance with Tex-545-C, “Asphalt Binder Quality Program.”

Inform the Department of all additives or modifiers included in the asphalt binder as part of the facility quality plan, as required by Tex-545-C, “Asphalt Binder Quality Program,” and provide that information to Department personnel. The Department reserves the right to prohibit the use of any asphalt additive or modifier.

Limit the use of polyphosphoric acid to no more than 0.5% by weight of the asphalt binder.

Limit the use of re-refined engine oil bottoms to no more than 5.0% by weight of the asphalt binder.
Section 300.2.4., “Emulsified Asphalt,” Table 10 is voided and replaced by the following:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Procedure</th>
<th>CRS-1P</th>
<th>Medium-Setting</th>
<th>Slow-Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
</tbody>
</table>
| Viscosity, Saybolt Furol
77°F, sec. | T 72 | - | - | - | - | - | - | 10 | 100 | - | - | 20 | 100 |
| 122°F, sec. | | 50 | 150 | 150 | 400 | 100 | 400 | 150 | 500 | - | - | 50 | 400 | - | - | | | | |
| Sieve test, % | T 59 | - | 0.1 | - | 0.1 | - | 0.1 | - | 0.1 | - | 0.1 | - | 0.1 |
| Demulsibility, 35 ml of 0.8% sodium dioctyl sulfosucinate, % | T 59 | 60 | - | 70 | - | 60 | - | 40 | - | - | - | - | - | - |
| Storage stability, 1 day, % | T 59 | - | 1 | - | 1 | - | 1 | - | 1 | - | 1 | - | 1 | - | 1 |
| Breaking index, g | Tex-542-C | 80 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Particle charge | T 59 | Positive |
| Distillation test: | | | | | | | | | |
| Residue by distillation, % by weight | | 65 | - | 65 | - | 65 | - | 65 | - | 30 | - | 60 | - | 62 | - |
| Oil distillate, % by volume of emulsion | | - | 3 | - | 0.5 | - | 0.5 | - | 3 | - | 0.5 | - | 0.5 | - | 0.5 |
| Tests on residue from distillation: | | | | | | | | | |
| Polymer content, wt. % (solids basis) | Tex-533-C | - | - | 3.0 | - | 3.0 | - | 5.0 | - | - | - | - | - | - | - | 3.0 | - |
| Penetration, 77°F, 100 g, 5 sec. | T 49 | 225 | 300 | 90 | 150 | 80 | 130 | 90 | 150 | 30 | - | 30 | - | 55 | 90 | - |
| Viscosity, 140°F, poise | T 202 | - | - | 1,300 | - | 1,300 | - | 1,000 | - | - | - | - | - | - | - | - |
| Solubility in trichloroethylene, % | T 44 | 97.0 | - | 97.0 | - | 95.0 | - | 98 | - | - | - | - | - | - | - | 97.0 | - |
| Softening point, °F | T 53 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 135 | - |
| Ductility, 77°F, 5 cm/min., cm | T 51 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 70 | - |
| Float test, 140°F, sec. | T 50 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ductility, 39.2°F, 5 cm/min., cm | T 51 | - | - | 50 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Elastic recovery, 50°F, % | Tex-539-C | 45 | - | 55 | - | 55 | - | - | - | - | - | - | - | - | - | - | - | - |
| Tests on residue from evaporative recovery: | R 78, Procedure B | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Nonrecoverable creep compliance of residue, 3.2 kPa, 52°C, kPa | T 350 | - | - | - | - | - | - | 2.0 | - | 4.0 | - | - | - | - | - | - | - | - |
| Tests on rejuvenating agent: | | | | | | | | | |
| Viscosity, 140°F, cSt | T 201 | - | - | - | - | - | - | - | - | - | - | 50 | 175 | 50 | 175 | - | - |
| Flash point, C.O.C., ℉° | T 48 | - | - | - | - | - | - | - | - | - | 380 | - | 380 | - | - | - | - |
| Saturates, % by weight | D 2007 | - | - | - | - | - | - | - | - | 30 | - | 30 | - | - | - | - | - |
| Solubility in n-pentane, % by weight | D 2007 | - | - | - | - | - | - | - | - | 99 | - | 99 | - | - | - | - | - |
| Tests on rejuvenating agent after TFO or RTFO: | | | | | | | | | |
| Weight Change, % | T 240 or T 179 | - | - | - | - | - | - | - | - | - | 6.5 | - | 6.5 | - | - | - | - |
| Viscosity Ratio | - | - | - | - | - | - | - | - | - | 3.0 | - | 3.0 | - | - | - | - | - |
| Tests on latex: | | | | | | | | | |
| Tensile strength, die C dumbbell, psi | D 412 | - | - | - | - | - | - | - | - | - | 800 | - | 800 | - | - | - | - |
| Change in mass after immersion in rejuvenating agent, % | D 471 | - | - | - | - | - | - | - | - | - | - | - | 40 | - | 40 | - | - | - | - |
1. Exception to T 59: Bring the temperature on the lower thermometer slowly to 350°F (±0°F). Maintain at this temperature for 20 min. Complete total distillation in 60 min. (±5 min.) from the first application of heat.

2. CRS-2P must meet one of either the ductility or elastic recovery requirements.

3. With all precertification samples of CMS-1P or CMS-2P, submit certified test reports showing that the rejuvenating agent and latex meet the stated requirements. Submit samples of these raw materials if requested by the Engineer.

4. Preparation of latex specimens: Use any substrate and recovery method which produces specimens of uniform dimensions and which delivers enough material to achieve desired residual thickness.

5. Cut samples for tensile strength determination using a crosshead speed of 20 in./min.

6. Specimen must remain intact after exposure and removal of excess rejuvenating agent.

7. Modifier type is tire rubber.

Section 300.2.4., “Emulsified Asphalt”, is supplemented by the following:

Emulsified Asphalt. Provide emulsified asphalt that is homogeneous, does not separate after thorough mixing, and meets the requirements for the specified type and grade in Tables 7, 8, 9, and 10.

Table 10B

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Procedure</th>
<th>Quick Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>QS-1HH</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Viscosity, Saybolt Furol, 77°F, sec</td>
<td>T 72</td>
<td>15</td>
</tr>
<tr>
<td>Storage stability, 1 Day, %</td>
<td>T 59</td>
<td>--</td>
</tr>
<tr>
<td>Settlement, 5-day, %</td>
<td>T 59</td>
<td>2</td>
</tr>
<tr>
<td>Sieve test, %</td>
<td>T 59</td>
<td>--</td>
</tr>
<tr>
<td>Distillation test:¹</td>
<td>T 59</td>
<td>50</td>
</tr>
<tr>
<td>Residue by distillation, % by wt.</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>Oil distillate, by volume of emulsion</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>Test on residue from distillation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration, 77°F, 100 g, 5 sec.</td>
<td>T 49</td>
<td>--</td>
</tr>
<tr>
<td>Solubility in trichloroethylene, %</td>
<td>T 44</td>
<td>97.5</td>
</tr>
<tr>
<td>Softening point, °F</td>
<td>T 53</td>
<td>150</td>
</tr>
<tr>
<td>Dynamic shear, G*sin(δ), 82°C, 10 rad/s, kPa</td>
<td>T 315</td>
<td>1.0</td>
</tr>
</tbody>
</table>

1. Exception to AASHTO T-59: Bring the temperature on the lower thermometer slowly to 350°F ± 10°F. Maintain at this temperature for 20 min. Complete total distillation in 60 ± 5 min. from first application of heat.
Section 300.2.5., “Specialty Emulsions.” The first sentence is voided and replaced with the following:

Specialty emulsions may be either asphalt-based or resin-based and must meet the requirements of Table 11 or Table 11A.

Section 300.2.5., “Specialty Emulsions,” is supplemented by the following:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Procedure</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity, Krebs unit, 77°F, Krebs units</td>
<td>D 562</td>
<td>45</td>
<td>75</td>
</tr>
<tr>
<td>Softening point, °F</td>
<td>T 53</td>
<td>250</td>
<td>--</td>
</tr>
<tr>
<td>Uniformity</td>
<td>D 2939</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Resistance to heat</td>
<td>D 2939</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Resistance to water</td>
<td>D 2939</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Wet flow, mm</td>
<td>D 2939</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Resistance to Kerosene (optional)</td>
<td>D 2939</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet exposure, UVA-340, 0.77 W/m², 50°C chamber, 8 hours UV lamp, 5 min spray, 3 hours 55 minutes condensation, 1000 hr total exposure</td>
<td>G 154</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Abrasion loss, 1.6 mm thickness, liquid only, %</td>
<td>ISSA TB-100</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>Tests on residue from evaporation: Penetration, 77°F, 100 g, 5 sec.</td>
<td>T 49</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Flash point, Cleveland open cup, °F</td>
<td>T 48</td>
<td>500</td>
<td>--</td>
</tr>
<tr>
<td>Tests on base asphalt before emulsification Solubility in trichloroethylene, %</td>
<td>T 44</td>
<td>98</td>
<td>--</td>
</tr>
</tbody>
</table>

1. Cure the emulsion in the softening point ring in a 200°F ± 5°F oven for 2 hr.
2. Product shall be homogenous and show no separation or coagulation that cannot be overcome by moderate stirring.
3. No sagging or slippage of film beyond the initial reference line.
4. No blistering or re-emulsification.
5. Recommended for airport applications or where fuel resistance is desired.
6. No absorption of Kerosene into the clay tile past the sealer film. Note sealer surface condition and loss of adhesion.
7. Other exposure cycles with similar levels of irradiation and conditions may be used with Department approval.
8. No cracking, chipping, surface distortion, or loss of adhesion. No color fading or lightening.
Special Provision to Item 302
Aggregates for Surface Treatments

Item 302, “Aggregates for Seal Coats,” of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Section 2.1., “Aggregate.” Tables 2 and 3 are voided and replaced by the following.

Table 2
Aggregate Gradation Requirements (Cumulative % Retained)

<table>
<thead>
<tr>
<th>Sieve Grade</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/8”</td>
<td>0-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4”</td>
<td>20-35</td>
<td>0-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5/8”</td>
<td>85-100</td>
<td>20-40</td>
<td>0-5</td>
<td>0-2</td>
<td>0</td>
</tr>
<tr>
<td>1/2”</td>
<td>-</td>
<td>80-100</td>
<td>55-85</td>
<td>20-40</td>
<td>0-5</td>
</tr>
<tr>
<td>3/8”</td>
<td>95-100</td>
<td>95-100</td>
<td>95-100</td>
<td>80-100</td>
<td>60-80</td>
</tr>
<tr>
<td>1/4”</td>
<td>-</td>
<td>-</td>
<td>95-100</td>
<td>95-100</td>
<td>-</td>
</tr>
<tr>
<td>#4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>95-100</td>
<td>95-100</td>
</tr>
<tr>
<td>#8</td>
<td>99-100</td>
<td>99-100</td>
<td>99-100</td>
<td>98-100</td>
<td>98-100</td>
</tr>
</tbody>
</table>

1. Round test results to the nearest whole number.

Table 3
Aggregate Quality Requirements

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAC</td>
<td>AQMP</td>
<td>As shown on plans</td>
</tr>
<tr>
<td>Deleterious Material, %</td>
<td>Tex-217-F, Part I</td>
<td>-</td>
</tr>
<tr>
<td>Decantation, %</td>
<td>Tex-406-A</td>
<td>-</td>
</tr>
<tr>
<td>Flakiness Index, %</td>
<td>Tex-224-F</td>
<td>-</td>
</tr>
<tr>
<td>Gradation</td>
<td>Tex-200-F, Part I</td>
<td>Table 2 Requirements</td>
</tr>
<tr>
<td>Los Angeles Abrasion, %</td>
<td>Tex-410-A</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium Sulfate Soundness, 5 Cycle, %</td>
<td>Tex-411-A</td>
<td>-</td>
</tr>
<tr>
<td>Micro-Deval Abrasion, %</td>
<td>Tex-461-A</td>
<td>Note 3</td>
</tr>
<tr>
<td>Coarse Aggregate Angularity, 2 Crushed Faces, %</td>
<td>Tex-460-A, Part I</td>
<td>85</td>
</tr>
</tbody>
</table>

Additional Requirements for Lightweight Aggregate

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Loose Unit Wt., lb./cu. ft.</td>
<td>Tex-404-A</td>
<td>35</td>
</tr>
<tr>
<td>Pressure Slaking, %</td>
<td>Tex-431-A</td>
<td>-</td>
</tr>
<tr>
<td>Freeze-Thaw Loss, %</td>
<td>Tex-432-A</td>
<td>-</td>
</tr>
<tr>
<td>Water Absorption, 24hr., %</td>
<td>Tex-433-A</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Material requirements are listed below, unless otherwise shown on the plans.
2. Not required for lightweight aggregate.
3. Used to estimate the magnesium sulfate soundness loss in accordance with Section 2.1.1.
4. Only required for crushed gravel.
Section 2.1.1., “Micro-Deval Abrasion,” is added.

The Engineer will perform a minimum of one Micro-Deval abrasion test in accordance with Tex-461-A for each coarse aggregate source per project that has a Rated Source Soundness Magnesium (RSSM) loss value greater than 15 as listed in the BRSQC. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula.

\[Mg_{est.} = \frac{(RSSM)(MD_{act.})}{RSMD} \]

where:
- \(Mg_{est.} \) = magnesium sulfate soundness loss
- \(MD_{act.} \) = actual Micro-Deval percent loss
- \(RSMD \) = Rated Source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved by the Engineer. The Engineer may require additional testing before granting approval.

Section 2.2., “Precoating.” The third paragraph is voided and replaced by the following.

The Engineer retains the right to remove precoat material from aggregate samples in accordance with Tex-210-F, or as recommended by the Construction Division, and test the aggregate to verify compliance with Table 2 and Table 3 requirements. Gradation testing may be performed with precoat intact.

Section 2.3., “Sampling,” is added.

Personnel who conduct sampling and witnessing of sampling must be certified by the Department-approved certification program. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning construction and when personnel changes are made. At any time during the project, the Engineer may perform production tests as deemed necessary in accordance with Item 5, “Control of the Work.”

The Engineer will sample aggregate from stockpiles located at the production site, intermediate distribution site, or project location in accordance with Tex-221-F, Section 3.2.3. The Engineer will split each sample into 2 equal portions in accordance with Tex-200-F, Section 3.3, and label these portions “Engineer” and “Contractor” or “Supplier.” Witness the sampling and splitting, and take immediate possession of the samples labeled “Contractor” or “Supplier”.

Section 2.4., “Reporting and Responsibilities,” is added.

The Engineer will provide test results to the Contractor and Supplier within 10 working days from the date the stockpile was sampled for sources listed on the Department’s Bituminous Rated Source Quality Catalog (BRSQC), unless otherwise directed. The Engineer will provide test results for the LA Abrasion (Tex-410-A) and Magnesium Sulfate Soundness (Tex-411-A) tests within 30 calendar days for sources not listed on the BRSQC, or for sources not meeting the requirements of Section 2.1.1., “Micro-Deval Abrasion.” The Engineer will report to the other party within 24 hours when any test result does not meet the requirements listed in Table 2 or Table 3.
Special Provision to Item 316
Seal Coat

Item 316, “Seal Coat” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 4.8, “Asphalt Placement” is supplemented by the following:

4.8.5. Collect all samples in accordance with Tex-500-C, “Sampling Bituminous Materials, Pre-Molded Joint Fillers, and Joint Sealers” from the distributor and with witness by the Engineer.

At least once per project, collect split samples of each binder grade and source used. The Engineer will submit one split sample to MTD for testing and retain the other split sample.

In addition, collect one sample of each binder grade and source used on the project for each production day. The Engineer will retain these samples.

The Engineer will keep all retained samples for one yr., for hot-applied binders and cutback asphalts; or for two mo., for emulsified asphalts. The Engineer may submit retained samples to MTD for testing as necessary or as requested by MTD.
For this project, Item 340, “Dense-Graded Hot-Mix Asphalt (Small Quantity),” of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Section 340.2.5., “Tack Coat.” The first paragraph is voided and replaced by the following.

Furnish CSS-1H, SS-1H, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300, “Asphalts, Oils, and Emulsions.” Specialized tack coat materials listed on the Department’s MPL are allowed or required when shown on the plans. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.

Section 340.4.1., “Certification.” The paragraph is voided and replaced by the following.

Certification. Personnel certified by the Department-approved hot-mix asphalt certification program must conduct all mixture designs, sampling, and testing in accordance with Table 6. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2 certified specialist. Provide Level 1A certified specialists at the plant during production operations. Provide Level 1B certified specialists to conduct placement tests. Provide Level AGG101 certified specialists for aggregate testing.

Table 6, “Test Methods, Test Responsibility, and Minimum Certification Levels” is voided and replaced by the following.
Table 6

Test Methods, Test Responsibility, and Minimum Certification Levels

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Test Method</th>
<th>Contractor</th>
<th>Engineer</th>
<th>Level¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aggregate and Recycled Material Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling</td>
<td>Tex-221-F</td>
<td>✔</td>
<td>✔</td>
<td>1A/AGG101</td>
</tr>
<tr>
<td>Dry sieve</td>
<td>Tex-200-F, Part I</td>
<td>✔</td>
<td>✔</td>
<td>1A/AGG101</td>
</tr>
<tr>
<td>Washed sieve</td>
<td>Tex-200-E, Part II</td>
<td>✔</td>
<td>✔</td>
<td>1A/AGG101</td>
</tr>
<tr>
<td>Deleterious material</td>
<td>Tex-217-F, Parts I & III</td>
<td>✔</td>
<td>✔</td>
<td>AGG101</td>
</tr>
<tr>
<td>Deactination</td>
<td>Tex-217-F, Part II</td>
<td>✔</td>
<td>✔</td>
<td>AGG101</td>
</tr>
<tr>
<td>Los Angeles abrasion</td>
<td>Tex-410-A</td>
<td>✔</td>
<td></td>
<td>TxDOT</td>
</tr>
<tr>
<td>Magnesium sulfate soundness</td>
<td>Tex-411-A</td>
<td>✔</td>
<td></td>
<td>TxDOT</td>
</tr>
<tr>
<td>Micro-Deval abrasion</td>
<td>Tex-461-A</td>
<td>✔</td>
<td>✔</td>
<td>AGG101</td>
</tr>
<tr>
<td>Crushed face count</td>
<td>Tex-460-A</td>
<td>✔</td>
<td>✔</td>
<td>AGG101</td>
</tr>
<tr>
<td>Flat and elongated particles</td>
<td>Tex-280-F</td>
<td>✔</td>
<td>✔</td>
<td>AGG101</td>
</tr>
<tr>
<td>Linear shrinkage</td>
<td>Tex-107-E</td>
<td>✔</td>
<td>✔</td>
<td>AGG101</td>
</tr>
<tr>
<td>Sand equivalent</td>
<td>Tex-203-F</td>
<td>✔</td>
<td>✔</td>
<td>AGG101</td>
</tr>
<tr>
<td>Organic impurities</td>
<td>Tex-408-A</td>
<td>✔</td>
<td>✔</td>
<td>AGG101</td>
</tr>
<tr>
<td>2. Asphalt Binder & Tack Coat Sampling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt binder sampling</td>
<td>Tex-500-C, Part II</td>
<td>✔</td>
<td>✔</td>
<td>1A/1B</td>
</tr>
<tr>
<td>Tack coat sampling</td>
<td>Tex-500-C, Part III</td>
<td>✔</td>
<td>✔</td>
<td>1A/1B</td>
</tr>
<tr>
<td>3. Mix Design & Verification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and JMF changes</td>
<td>Tex-204-F</td>
<td>✔</td>
<td>✔</td>
<td>2</td>
</tr>
<tr>
<td>Mixing</td>
<td>Tex-205-F</td>
<td>✔</td>
<td>✔</td>
<td>2</td>
</tr>
<tr>
<td>Molding (TGC)</td>
<td>Tex-206-F</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Molding (SGC)</td>
<td>Tex-241-F</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Laboratory-molded density</td>
<td>Tex-207-F, Parts I & VI</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Rice gravity</td>
<td>Tex-227-F, Part II</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Ignition oven correction factors²</td>
<td>Tex-236-F, Part II</td>
<td>✔</td>
<td>✔</td>
<td>2</td>
</tr>
<tr>
<td>Indirect tensile strength</td>
<td>Tex-226-F</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Hamburg Wheel test</td>
<td>Tex-242-F</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Boil test</td>
<td>Tex-530-C</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>4. Production Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixture sampling</td>
<td>Tex-222-F</td>
<td>✔</td>
<td>✔</td>
<td>1A/1B</td>
</tr>
<tr>
<td>Molding (TGC)</td>
<td>Tex-206-F</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Molding (SGC)</td>
<td>Tex-241-F</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Laboratory-molded density</td>
<td>Tex-207-F, Parts I & VI</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Rice gravity</td>
<td>Tex-227-F, Part II</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Gradation & asphalt binder content²</td>
<td>Tex-236-F, Part I</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Moisture content</td>
<td>Tex-212-F, Part II</td>
<td>✔</td>
<td>✔</td>
<td>1A/AGG101</td>
</tr>
<tr>
<td>Hamburg Wheel test</td>
<td>Tex-242-F</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>Boil test</td>
<td>Tex-530-C</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>5. Placement Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-place air voids</td>
<td>Tex-207-F, Parts I & VI</td>
<td>✔</td>
<td>✔</td>
<td>1A</td>
</tr>
<tr>
<td>In-place density (nuclear method)</td>
<td>Tex-207-F, Part III</td>
<td>✔</td>
<td>✔</td>
<td>1B</td>
</tr>
<tr>
<td>Establish rolling pattern</td>
<td>Tex-207-F, Part IV</td>
<td>✔</td>
<td>✔</td>
<td>1B</td>
</tr>
<tr>
<td>Ride quality measurement</td>
<td>Tex-1001-S</td>
<td>✔</td>
<td>✔</td>
<td>Note 3</td>
</tr>
</tbody>
</table>

1. Level 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.
2. Refer to Section 340.4.8.3., “Production Testing,” for exceptions to using an ignition oven.
3. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when Surface Test Type B is specified.
Section 340.4.4.2., Mixing and Discharge of Materials. The first paragraph is voided and replaced by the following.

Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed 350°F (or 275°F for WMA). The Department will not pay for or allow placement of any mixture produced above 350°F.

Section 340.4.6.2., “Tack Coat.” The paragraph is voided and replaced by the following.

4.6.2.1 **Application.** Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply the tack coat to all surfaces the will come in contact with the subsequent HMA placement, unless otherwise directed. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.

4.6.2.2 **Sampling.** The Engineer will obtain at least one sample of the tack coat binder per project in accordance with Tex-500-C, Part III, and test it to verify compliance with Item 300, “Asphalts, Oils, and Emulsions.” The Engineer will obtain the sample from the asphalt distributor immediately before use.

For emulsions, the Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300, “Asphalts, Oils, and Emulsions.”

Section 340.5., “Measurement,” is voided and replaced by the following.

5.1 **Dense Graded Hot-Mix Asphalt (SQ).** Hot mix will be measured by the ton of composite hot-mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, “Weighing and Measuring Equipment.”

5.2 **Tack Coat.** Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

The Engineer may allow the use of a metering device to determine asphalt volume used and application rate if the device is accurate within 1.5% of the strapped volume.

Section 340.6., “Payment,” the first paragraph is voided and replaced with the following.

The work performed and materials furnished in accordance with this Item and measured as provided under Article 340.5.1, “Measurement,” will be paid for at the unit bid price for “Dense Graded Hot-Mix Asphalt (SQ)” of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, materials, placement, equipment, labor, tools, and incidentals.

Section 340.6., “Payment,” is supplemented by the following.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 340.5.2, “Measurement,” will be paid for at the unit bid price for “Tack Coat” of the tack coat provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals.
Special Provision to Item 421
Hydraulic Cement Concrete

Item 421, "Hydraulic Cement Concrete" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 421.4.2, “Mix Design Proportioning,” Table 8 is voided and replaced by the following.

Table 8
Concrete Classes

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Design Strength,(^1) Min Fr. (psi)</th>
<th>Max w/cm Ratio</th>
<th>Coarse Aggregate Grades(^2,4)</th>
<th>Cement Types</th>
<th>Mix Design Options</th>
<th>Exceptions to Mix Design Options</th>
<th>General Usage(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,000</td>
<td>0.60</td>
<td>1–6</td>
<td>I, II, III, IL, IP, IS, IT, V</td>
<td>1, 2, 4, & 7</td>
<td>When the cementitious material content does not exceed 520 lb./cu. yd., Class C fly ash may be used instead of Class F fly ash.</td>
<td>Curb, gutter, curb & gutter, conc. retards, sidewalks, driveways, back-up walls, anchors, non-reinforced drilled shafts</td>
</tr>
<tr>
<td>B</td>
<td>2,000</td>
<td>0.60</td>
<td>2–7</td>
<td>I, II, III, IP, IS, IT, V</td>
<td>1–8</td>
<td>Seal concrete</td>
<td>Riprap, traffic signal controller foundations, small roadside signs, and anchors</td>
</tr>
<tr>
<td>C(^i)</td>
<td>3,600</td>
<td>0.45</td>
<td>1–6</td>
<td>I, II, III, IP, IS, IT, V</td>
<td>1–8</td>
<td>When the cementitious material content does not exceed 520 lb./cu. yd., Class C fly ash may be used instead of Class F fly ash.</td>
<td>Drilled shafts, bridge substructure, bridge railing, culverts except top slab of direct traffic culverts, headwalls, wing walls, inlets, manholes, concrete traffic barrier</td>
</tr>
<tr>
<td>E</td>
<td>3,000</td>
<td>0.50</td>
<td>2–5</td>
<td>I, II, III, IL, IP, IS, IT, V</td>
<td>1–8</td>
<td>Do not use Type III cement in mass placement concrete. Up to 20% of blended cement may be replaced with listed SCMs when Option 4 is used for precast concrete.</td>
<td>Railroad structures; occasionally for bridge piers, columns, or bents</td>
</tr>
<tr>
<td>F(^ii)</td>
<td>Note(^5)</td>
<td>0.45</td>
<td>2–5</td>
<td>I, II, III, IP, IS, IT, V</td>
<td>1–5</td>
<td>Use a minimum cementitious material content of 658 lb./cu. yd. of concrete. Limit the alkali loading to 4.0 lbs./cu. yd. or less when using option 7.</td>
<td>Precast concrete, post-tension members</td>
</tr>
<tr>
<td>H(^i)</td>
<td>Note(^5)</td>
<td>0.45</td>
<td>3–6</td>
<td>I, II, III, IL, IP, IS, IT, V</td>
<td>1–5</td>
<td>Use a minimum cementitious material content of 658 lb./cu. yd. of concrete. Limit the alkali loading to 4.0 lbs./cu. yd. or less when using option 7.</td>
<td>Bridge slabs, top slabs of direct traffic culverts, approach slabs</td>
</tr>
<tr>
<td>S(^i)</td>
<td>4,000</td>
<td>0.45</td>
<td>2–5</td>
<td>I, II, III, IL, IP, IS, IT, V</td>
<td>1–8</td>
<td>Concrete pavement</td>
<td>Bridge deck concrete overlay</td>
</tr>
<tr>
<td>P</td>
<td>See Item 360, "Concrete Pavement."</td>
<td>0.50</td>
<td>2–3</td>
<td>I, II, III, IL, IP, IS, IT, V</td>
<td>1–8</td>
<td>Use a minimum cementitious material content of 658 lb./cu. yd. of concrete. Limit the alkali loading to 4.0 lbs./cu. yd. or less when using option 7.</td>
<td>Slurry displacement shafts, underwater drilled shafts</td>
</tr>
<tr>
<td>CO(^h)</td>
<td>4,600</td>
<td>0.40</td>
<td>6</td>
<td>I, II, III, IP, IS, IT, V</td>
<td>1–8</td>
<td>Bridge deck concrete overlay</td>
<td>Latex-modified concrete overlay</td>
</tr>
<tr>
<td>LMC(^h)</td>
<td>4,000</td>
<td>0.40</td>
<td>6–8</td>
<td>I, II, III, IP, IS, IT, V</td>
<td>1–8</td>
<td>Use a minimum cementitious material content of 658 lb./cu. yd. of concrete. Limit the alkali loading to 4.0 lbs./cu. yd. or less when using option 7.</td>
<td>Slurry displacement shafts, underwater drilled shafts</td>
</tr>
</tbody>
</table>

\(^1\) Min Fr. = Minimum Fracture Strength

\(^2\) Coarse Aggregate Grades: 1, 2, 3, 4, 5, 6, 7, 8

\(^3\) General Usage: Curb, gutter, curb & gutter, conc. retards, sidewalks, driveways, back-up walls, anchors, non-reinforced drilled shafts

\(^4\) Cement Types: I, II, III, IL, IP, IS, IT, V

\(^5\) Note: Use a minimum cementitious material content of 658 lb./cu. yd. of concrete. Limit the alkali loading to 4.0 lbs./cu. yd. or less when using option 7.
<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Design Strength, Min f_c' (psi)</th>
<th>Max w/cm Ratio</th>
<th>Coarse Aggregate Grades</th>
<th>Cement Types</th>
<th>Mix Design Options</th>
<th>Exceptions to Mix Design Options</th>
<th>General Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>K(^5)</td>
<td>Note(^8)</td>
<td>0.40</td>
<td>Note(^8)</td>
<td>I, II, III, IP, IS, IT, V</td>
<td>1-8</td>
<td>Mix design options do not apply. 700 lb. of cementitious material per cubic yard limit does not apply.</td>
<td>Note(^8)</td>
</tr>
<tr>
<td>HES</td>
<td>Note(^8)</td>
<td>0.45</td>
<td>Note(^8)</td>
<td>I, II, III, IP, IS, IT, V</td>
<td>1-5, 8</td>
<td>Maximum fly ash replacement for Options 1 and 3 may be increased to 45%. Up to 20% of a blended cement may be replaced with listed SCMs for Option 4. Do not use Option 8 for precast concrete.</td>
<td>Concrete pavement, concrete pavement repair</td>
</tr>
<tr>
<td>“X” (HPC)(^6)</td>
<td>Note(^11)</td>
<td>0.45</td>
<td>Note(^11)</td>
<td>I, II, III, IP, IS, IT, V</td>
<td>1-4, 7</td>
<td>Do not use Class C Fly Ash. Type III-MS may be used where allowed. Type I and Type III cements may be used with Options 1-3, with a maximum w/cm of 0.40. Up to 20% of blended cement may be replaced with listed SCMs when Option 4 is used for precast concrete. Do not use Option 7 for precast concrete.</td>
<td></td>
</tr>
<tr>
<td>“X” (SRC)(^6)</td>
<td>Note(^11)</td>
<td>0.45</td>
<td>Note(^11)</td>
<td>I, II, IP, IS, IT, V</td>
<td>1-4, 7</td>
<td>Do not use Type IT cements containing > 5% limestone. Type I and Type III cements may be used with Options 1-4, with a maximum w/cm of 0.40. Up to 20% of blended cement may be replaced with listed SCMs when Option 4 is used for precast concrete. Do not use Option 7 for precast concrete.</td>
<td></td>
</tr>
</tbody>
</table>

1. Design strength must be attained within 56 days.
2. Do not use Grade 1 coarse aggregate except in massive foundations with 4 in. minimum clear spacing between reinforcing steel bars, unless otherwise permitted. Do not use Grade 1 aggregate in drilled shafts.
3. Use Grade 8 aggregate in extruded curbs unless otherwise approved.
4. Other grades of coarse aggregate maybe used in non-structural concrete classes when allowed by the Engineer.
5. For information only.
7. Do not use Type IT cements containing > 5% limestone.
8. As shown on the plans or specified.
9. “X” denotes class of concrete shown on the plans or specified.
11. Same as class of concrete shown on the plans.
12. Option 7 will be allowed for precast concrete products included in Items 462, 464, and 465.

Article 421.4.2.2, “Aggregates,” is supplemented by the following.

Use the following equation to determine if the aggregate combination meets the sand equivalency requirement when blending fine aggregate or using an intermediate aggregate:

$$\frac{(SE_1 \times P_1) + (SE_2 \times P_2) + (SE_{ia} \times P_{ia})}{100} \geq 80\%$$

where:
- SE_1 = sand equivalency (%) of fine aggregate 1
- SE_2 = sand equivalency (%) of fine aggregate 2
- SE_{ia} = sand equivalency (%) of intermediate aggregate passing the 3/8 in. sieve
- P_1 = percent by weight of fine aggregate 1 of the fine aggregate blend
- P_2 = percent by weight of fine aggregate 2 of the fine aggregate blend
- P_{ia} = percent by weight of intermediate aggregate passing the 3/8 in. sieve

Article 421.4.2.5, “Slump,” the second paragraph is voided and not replaced.
Article 421.4.2.7, “Optimized Aggregate Gradation (OAG) Concrete,” the first sentence of the first paragraph is voided and replaced by the following.

The gradations requirements in Table 4 and Table 6 do not apply when OAG concrete is specified or used by the Contractor unless otherwise shown on the plans.

Article 421.4.6.2, “Delivering Concrete,” the fifth paragraph is voided and replaced with the following:

Begin the discharge of concrete delivered in truck mixers within the times listed in Table 14. Concrete delivered after these times, and concrete that has not begun to discharge within these times will be rejected.

Article 421.4.8.3, “Testing of Fresh Concrete,” is voided and replaced with the following:

Testing Concrete. The Engineer, unless specified in other Items or shown on the plans, will test the fresh and hardened concrete in accordance with the following methods:

- Slump. Tex-415-A
- Air Content. Tex 414-A or Tex-416-A
- Temperature. Tex-422-A
- Making and Curing Strength Specimens. Tex-447-A
- Compressive Strength. Tex-418-A
- Flexural Strength. Tex-448-A
- Maturity. Tex-426-A

Flexural strength and maturity specimens will not be made unless specified in other items or shown on the plans. Concrete not meeting fresh concrete testing requirements will be rejected. Fresh concrete exhibiting segregation and excessive bleeding will be rejected.

Article 421.4.8.3.1. “Job-Control Testing,” is voided and not replaced.
Special Provision to Item 441
Steel Structures

Item 441, “Steel Structures” of the Standard Specifications is amended with respect to the clause cited below. No other clauses or requirements of this Item are waived or changed.

Article 2.3., “High-Strength Bolts,” is revised and replaced by the following:

High-Strength Bolts. Use fasteners that meet Item 447, “Structural Bolting.” Use galvanized fasteners on field connections of bridge members when ASTM F3125-Grade A325 bolts are specified and steel is painted.

Section 441.3.1.5.1, “Plants,” The second and third paragraphs are voided and replaced with the following:

Fabrication plants that produce the following non-bridge steel members must be approved in accordance with DMS-7380, “Steel Non-Bridge Member Fabrication Plant Qualification.”

- Item 610 – Roadway Illumination Poles,
- Item 613 – High Mast Illumination Poles,
- Item 614 – High Mast Rings and Support Assemblies,
- Item 650 – Overhead Sign Support Structures,
- Item 654 – Sign Walkways,
- Item 686 – Traffic Signal Poles, and
- Special Specification Item 6064 – Intelligent Transportation System (ITS) Poles.

The Construction Division maintains a list of approved non-bridge fabrication plants on the Department MPL that produce these members.
Special Provision to Item 442
Metal for Structures

Item 442, “Metal for Structures” of the Standard Specifications is amended with respect to the clause cited below. No other clauses or requirements of this Item are waived or changed.

Section 442.2.1.3.3., “Fasteners.” The first sentence of the first paragraph is replaced by the following:

Fasteners. Provide high-strength bolts that meet ASTM F3125-Grade A325 unless otherwise shown on the plans.

Section 442.2.1.3.3., “Fasteners.” The third paragraph is deleted and not replaced.
Special Provision to Item 446
Field Cleaning and Painting Steel

For this project, Item 446, “Field Cleaning and Painting Steel,” of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Section 446.4.1., “Qualification,” the first and second paragraphs are voided and replaced by the following:

Submit to the Engineer documentation verifying SSPC QP 1 or NACE NIICAP AS-1 certification for work requiring the removal or application of coatings. Additionally, submit to the Engineer documentation verifying SSPC QP 2 Cat A or NACE NIICAP AS-2 certification when work requires removal of coatings containing hazardous materials. Maintain certifications throughout the project. No work may be performed without current and active certifications unless otherwise shown on the plans. The Engineer may waive certification requirements for minor, touch-up repair work and coating steel members repaired in accordance with Item 784, “Steel Member Repair.”

The Engineer may waive certification requirements, when stated on the plans, for the purpose of qualification in either contractor certification program if the project has been accepted as a qualification project as part of the process for obtaining SSPC QP1 Cat A or NACE NIICAP AS-1 certification. Submit certification applications and proof of acceptance before beginning work or provide SSPC QP 7 certification when required on the plans.

Section 446.4.7.3.2., “Classes of Cleaning,” is amended with the following:

Prepare all surfaces of painted steel members subsequently exposed from structural operations, such as deck removal or steel repair, in accordance with this Item. Prevent loose or damaged paint from entering the environment.
Item 449, “Anchor Bolts” of the Standard Specifications is amended with respect to the clause cited below. No other clauses or requirements of this Item are waived or changed.

Section 449.2.1., “Bolts and Nuts.” Table 1 is replaced by the following:

<table>
<thead>
<tr>
<th>Specified Anchor Bolt Category</th>
<th>Bolt Standards</th>
<th>Nut Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild steel</td>
<td>ASTM A307 Gr. A, F1554 Gr. 36, or A36</td>
<td>ASTM A563</td>
</tr>
<tr>
<td>Medium-strength, mild steel</td>
<td>ASTM F1554 Gr. 55 with supplementary requirement S1</td>
<td>ASTM A194 Gr. 2 or A563 Gr. D or better</td>
</tr>
<tr>
<td>High-strength steel</td>
<td>ASTM F3125-Grade A325 or ASTM A449(^1)</td>
<td>ASTM A194 or A563, heavy hex</td>
</tr>
<tr>
<td>Alloy steel</td>
<td>ASTM A193 Gr. B7 or F1554 Gr. 105</td>
<td>ASTM A194 Gr. 2H or A563 Gr. DH, heavy hex</td>
</tr>
</tbody>
</table>

1. If headed bolts are specified, ASTM A449 bolts must be heavy hex head.

Section 449.3.3.1, “Anchor Bolt Thread Lubricant Coating.” The first sentence of the first paragraph is voided and replaced by the following.

Coat anchor bolt threads before installing nuts with an electrically conducting lubricant compound described in Section 449.3.3.2.1., “Definitions,” for traffic signal poles, roadway illumination poles, high mast illumination poles, intelligent transportation system poles, overhead sign support structures, and steel electrical service supports.

Section 449.3.3.2, “Anchor Bolt Tightening Procedure,” The first sentence of the first paragraph is voided and replaced by the following.

Tighten anchor bolts for traffic signal poles, shoe base and concrete traffic barrier base roadway illumination poles, high mast illumination poles, intelligent transportation system poles, and overhead sign support structures in accordance with this Section.
Special Provision to Item 465
Junction Boxes, Manholes, and Inlets

Item 465, “Junction Boxes, Manholes, and Inlets,” of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Section 2.1., “Concrete,” The section is voided and replaced with the following.

Furnish concrete per DMS-7305 for formed and machine-made precast junction boxes, manholes, and inlets. Furnish Class C concrete for cast-in-place junction boxes, manholes, and inlets unless otherwise shown on the plans.

Section 3.1., “Precast Junction Boxes, Manholes, and Inlets,” The section is voided and replaced with the following.

Construct formed and machine-made precast junction boxes, manholes, and inlets in accordance with DMS-7305, “Fabrication and Qualification Procedure for Multi-Project Fabrication Plants of Precast Concrete Drainage Structures” and the Contract Plans, except as otherwise noted in this Item.

Multi-project fabrication plants as defined in Item 424 “Precast Concrete Structural Members (Fabrication),” that produce junction boxes, manholes, and inlets will be approved by the Materials and Tests Division in accordance with DMS-7305, “Fabrication and Qualification Procedure for Multi-Project Fabrication Plants of Precast Concrete Drainage Structures.” The Department’s MPL has a list of approved multi-project fabrication plants.

Section 3.1.1., “Lifting Holes,” The section is voided and not replaced.

Section 3.1.2., “Marking.” The section is voided and replaced with the following.

Marking. Clearly mark each precast junction box, manhole, and inlet unit with the following information:

- name or trademark of fabricator and plant location;
- product designation;
- ASTM designation (if applicable);
- date of manufacture;
- designation “TX” for precast units fabricated per DMS-7305;
- designated fabricator’s approval stamp for each approved unit; and
- designation “SR” for product meeting sulfate-resistant concrete plan requirements (when applicable).
Item 502, “Barricades, Signs and Traffic Handling” of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Article 502.1. “Description,” is supplemented with the following:

The requirements of this Item do not include traffic control devices included as pay items in other specifications. Such traffic control devices include, but are not limited to Truck Mounted Attenuators and Trailer Attenuators, Portable Changeable Message Signs, and Portable Traffic Signals.
Special Provision to Item 506
Temporary Erosion, Sedimentation, and Environmental Controls

Item 506, “Temporary Erosion, Sedimentation, and Environmental Controls,” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 506.1., “Description.” The second paragraph is voided and replaced by the following.

Contractor is considered primary operator to have day-to-day operational control as defined in TPDES GP TXR150000.

1.1. For projects with soil disturbance of less than 1 acre, no submittal to TCEQ will be required but Contractor will follow SWP3. For projects with soil disturbance of 1 acre to less than 5 acres a small site notice will be posted at the site. For projects with soil disturbance of 5 acres or more a notice of intent (NOI) is required and a large site notice posted at site. Postings will be in accordance with TPDES GP TXR150000. Postings not associated with project specific locations will be in same location as Department’s postings.

1.2. Notice of Intent (NOI). Submit a NOI, if applicable, with the TCEQ under the TPDES GP TXR150000 at least 7 days prior to commencement of construction activities at the project site. Provide a signed copy to the Engineer and any other MS4 operators at the time of submittal. The Department will submit their NOI prior to contractor submission and will provide a copy for Contractor’s use in completing the Contractor’s NOI form.

1.3. Notice of Change (NOC). Upon concurrence of the Engineer, submit a NOC, if applicable, to the TCEQ within 14 days of discovery of a change or revision to the NOI as required by the TPDES GP TXR150000. Provide a signed copy of the NOC to the Engineer and any other MS4 operators at the time of submittal.

1.4. Notice of Termination (NOT). Upon concurrence of the Engineer, submit a NOT, if applicable, to the TCEQ within 30 days of the Engineer’s approval that 70% native background vegetative cover is met or equivalent permanent stabilization have been employed in accordance with the TPDES GP TXR 150000. Provide a signed copy of the NOT to the Engineer and any other MS4 operators at the time of submittal.

Section 506.3.3., “Training,” is supplemented by the following:

Training is provided by the Department at no cost to the Contractor and is valid for 3 yr. from the date of completion. The Engineer may require the following training at a frequency less than 3 yr. based on environmental needs:

- “Environmental Management System: Awareness Training for the Contractor” (English and Spanish) (Approximate running time 20 min.), and
- “Storm Water: Environmental Requirements During Construction” (English and Spanish) (Approximate running time 20 min.).

The contractor responsible person environmental (CRPE), alternate CRPE designated for emergencies, Contractor’s superintendent, Contractor, and subcontractor lead personnel involved in soil disturbing or SWP3 activities must enroll in and complete the training listed below and provide the certificate of completion to the Engineer before performing soil disturbing or SWP3 activities on the project. Training is provided by a third party and is valid for 3 years from the date shown on the Certificate of Completion. Coordinate enrollment as prescribed by the Department and pay associated fees for the following training:

- “Revegetation During Construction”
- “Construction General Permit Compliance,” and
“Construction Stage Gate Checklist (CSGC).”

Training and associated fee will not be measured or paid for directly but are subsidiary to this Item.
Special Provision to Item 512
Portable Traffic Barrier

Item 512, “Portable Traffic Barrier” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 512.2.2, “Furnished by the Department” is supplemented by the following:

2.2.1. **Connection Hardware.** When shown on the plans provide connection hardware in accordance with the plan details conforming to the requirements of Item 442, “Metal for Structures.” Connection hardware is defined as being sufficient hardware for one complete connection between two traffic-barrier sections, including the required bolts, nuts, washers, structural-steel shapes and dowels.

Article 512.4., “Measurement,” is supplemented by the following:

When shown on the plans, connection hardware will be measured by the each for Department-furnished barrier sections.

Article 512.5., “Payment.” The first bullet of the first paragraph is voided and replaced by the following:

- For concrete barrier only, bid for “Portable Traffic Barrier” of the work category (Furnish and Install, Designated Source, Move, Stockpile, Remove, or Connection Hardware), shape (e.g., Single Slope, F-Shape, or Low Profile) and Type (1, 2, 3, etc.) of barrier sections specified. This price includes equipment, labor, tools, and incidentals.

Article 512.5., “Payment,” is supplemented by the following:

5.6 **Connection Hardware.** This price is full compensation for furnishing and installing connection hardware on Department-furnished barrier sections.

Section 512.5.2, “Designated Source,” is voided and replaced with the following:

5.2 **Designated Source.** This price is full compensation for delivering and installing Department-furnished barrier sections from a designated place.
Special Provision to Item 540
Metal Beam Guard Fence

Item 540, “Metal Beam Guard Fence” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 540.4.7, “Measurement,” is voided and replaced with the following:

Long Span System. Measurement will be by each long span system, complete in place. Each long span system will be from the first CRT to the last CRT in the system.
Item 643, “Sign Identification Decals,” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 2. “Materials.” The sign identification decal design shown in Figure 1 and the description for each row in Table 1 are supplemented by the following.

<table>
<thead>
<tr>
<th>Texas Department of Transportation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrication Date</td>
<td>T</td>
</tr>
<tr>
<td>J F M A M J J A S O N D</td>
<td>1</td>
</tr>
<tr>
<td>201 202 203 204 205</td>
<td>2</td>
</tr>
<tr>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sheeting MFR - Substrate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D E F G H J K L M</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Film MFR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D E F G H J K L M</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sheeting MFR - Legend</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D E F G H J K L M</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installation Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3</td>
<td>8</td>
</tr>
<tr>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>9</td>
</tr>
<tr>
<td>J F M A M J J A S O N D</td>
<td>10</td>
</tr>
<tr>
<td>201 202 203 204 205</td>
<td>11</td>
</tr>
<tr>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Sign Fabricator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Address</td>
<td></td>
</tr>
<tr>
<td>City, State, Zip Code</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1

Decal Design (Row numbers explained in Table 1)
<table>
<thead>
<tr>
<th>Decal Description</th>
<th>Row Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Sign fabricator</td>
<td></td>
</tr>
<tr>
<td>2 – Month fabricated</td>
<td></td>
</tr>
<tr>
<td>3 – First 3 digits of year fabricated</td>
<td></td>
</tr>
<tr>
<td>4 – Last digit of year fabricated</td>
<td></td>
</tr>
<tr>
<td>5 – Manufacturer of the sheeting applied to the substrate</td>
<td></td>
</tr>
<tr>
<td>6 – Film (colored transparent or non-reflective black) manufacturer</td>
<td></td>
</tr>
<tr>
<td>7 – Manufacturer of the sheeting for the legend</td>
<td></td>
</tr>
<tr>
<td>8 – Tens digit of date installed</td>
<td></td>
</tr>
<tr>
<td>9 – Ones digit of date installed</td>
<td></td>
</tr>
<tr>
<td>10 – Month installed</td>
<td></td>
</tr>
<tr>
<td>11 – First 3 digits of year installed</td>
<td></td>
</tr>
<tr>
<td>12 – Last digit of year installed</td>
<td></td>
</tr>
<tr>
<td>13 – Name of sign fabricator and physical location of sign shop</td>
<td></td>
</tr>
</tbody>
</table>
Special Provision to Item 654
Sign Walkways

Item 654, “Sign Walkways” of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Section 654.3.2, “Fabrication.” The following language is added after the first paragraph.

Fabrication plants that produce sign walkways must be approved in accordance with DMS-7380, “Steel Non-Bridge Member Fabrication Plant Qualification.” The Construction Division maintains a list of approved sign walkway fabrication plants on the Department’s Material Producers List.
Item 666, "Retroreflectorized Pavement Markings," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 2.3., “Glass Traffic Beads.” The first paragraph is voided and replaced by the following:

Furnish drop-on glass beads in accordance with DMS-8290, "Glass Traffic Beads," or as approved. Furnish a double-drop of Type II and Type III drop-on glass beads for longitudinal pavement markings where each type bead is applied separately in equal portions (by weight), unless otherwise approved. Apply the Type III beads before applying the Type II beads. Furnish Type II beads for work zone pavement markings and transverse markings or symbols.

Section 4.3.1., “Type I Markings.” is supplemented by the following:

4.3.1.3. Spot Striping. Perform spot striping on a callout basis with a minimum callout quantity as shown on the plans.

Section 4.3.2., “Type II Markings,” is supplemented by the following:

4.3.2.1. Spot Striping. Perform spot striping on a callout basis with a minimum callout quantity as shown on the plans.

Section 4.4., “Retroreflectivity Requirements,” is voided and replaced by the following:

Type I markings for Contracts totaling more than 20,000 ft. of pavement markings must meet the following minimum retroreflectivity values for all longitudinal edgeline, centerline or no passing barrier-line, and lane line markings when measured any time after 3 days, but not later than 10 days after application.

- White markings: 250 milli-candela per square meter per lux (mcd/m²/lx)
- Yellow markings: 175 mcd/m²/lx

Retroreflectivity requirements for Type I markings are not required for Contracts with less than 20,000 ft. of pavement markings or Contracts with callout work, unless otherwise shown on the plans.

Section 4.5., “Retroreflectivity Measurements,” is voided and replaced by the following:

Use a mobile retroreflectometer to measure retroreflectivity for Contracts totaling more than 50,000 ft. of pavement markings, unless otherwise shown on the plans. For Contracts with less than 50,000 ft. of pavement markings, mobile or portable retroreflectometers may be used at the Contractor's discretion. Coordinate with and obtain authorization from the Engineer before starting any retroreflectivity data collection.

Section 4.5.1., “Mobile Retroreflectometer Measurements.” The last paragraph is voided and replaced by the following.

Restripe again at the Contractor's expense with a minimum of 0.060 in. (60 mils) of Type I marking material if the average of these measurements falls below the minimum retroreflectivity requirements. Take measurements every 0.1 miles a minimum of 10 days after this third application within that mile segment for that series of markings. If the markings do not meet minimum retroreflectivity after this third application, the Engineer may require removal of all existing markings, a new application as initially specified, and a repeat of the application process until minimum retroreflectivity requirements are met.
Section 4.5.2., “Portable Retroreflectometer Measurements.” The first and second paragraphs are voided and replaced by the following.

Provide portable measurement averages for every 1.0 mile unless otherwise specified or approved. Take a minimum of 20 measurements for each 1-mi. section of roadway for each series of markings (e.g., edgeline, center skip line, each line of a double line) and direction of traffic flow when using a portable reflectometer. Measure each line in both directions for centerlines on two-way roadways (i.e., measure both double solid lines in both directions and measure all center skip lines in both directions). The spacing between each measurement must be at least 100 ft. The Engineer may decrease the mileage frequency for measurements if the previous measurements provide satisfactory results. The Engineer may require the original number of measurements if concerns arise.

Restripe at the Contractor's expense with a minimum of 0.060 in. (60 mils) of Type I marking material if the averages of these measurements fail. Take a minimum of 10 more measurements after 10 days of this second application within that mile segment for that series of markings. Restripe again at the Contractor's expense with a minimum of 0.060 in. (60 mils) of Type I marking material if the average of these measurements falls below the minimum retroreflectivity requirements. If the markings do not meet minimum retroreflectivity after this third application, the Engineer may require removal of all existing markings, a new application as initially specified, and a repeat of the application process until minimum retroreflectivity requirements are met.

Section 4.6. “Performance Period.” The first sentence is voided and replaced by the following:

All longitudinal markings must meet the minimum retroreflectivity requirements within the time frame specified. All markings must meet all other performance requirements of this specification for at least 30 calendar days after installation.

Article 6. “Payment.” The first two paragraphs are voided and replaced by the following.

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Pavement Sealer” of the size specified; “Retroreflectorized Pavement Markings” of the type and color specified and the shape, width, size, and thickness (Type I markings only) specified, as applicable; “Retroreflectorized Pavement Markings with Retroreflective Requirements” of the types, colors, sizes, widths, and thicknesses specified; “Retroreflectorized Profile Pavement Markings” of the various types, colors, shapes, sizes, and widths specified; or “Reflectorized Pavement Marking (Call Out)” of the shape, width, size, and thickness (Type I markings only) specified, as applicable; or “Pavement Sealer (Call Out)” of the size specified.

This price is full compensation for materials, application of pavement markings, equipment, labor, tools, and incidentals.
Special Provision to Item 680
Highway Traffic Signals

Item 680, “Highway Traffic Signals” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 680.3.1.2, "Conduit," The fourth sentence of the first paragraph is voided and replaced by the following.

Seal the ends of each conduit with approved sealant, after all cables and conductors are installed.
Special Provision to Item 730
Roadside Mowing

For this project, Item 730, “Roadside Mowing,” of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 730.4., “Measurement,” is voided and replaced by the following:

This Item will be measured by the cycle or the acre.

4.1. Strip and Full-Width Mowing. “Strip Mowing” and “Full-Width Mowing” will be measured by the cycle.

4.2. Spot Mowing. “Spot Mowing” will be measured by the acre mowed. The minimum quantity per callout is 3 acres, unless otherwise shown on the plans.
Special Specification 3020
Remove Shoulder Texturing

1. DESCRIPTION

Remove shoulder texturing to provide a smooth surface with the line and grade conforming to the adjacent pavement surface.

2. MATERIALS

Furnish materials that meet the requirements of the following items:
- Item 300, "Asphalt, Oils, and Emulsions"
- Item 330, "Limestone Rock Asphalt Pavement"
- Item 334, "Hot-Mix Cold-Laid Asphalt Concrete Pavement"
- Item 340, "Dense-Graded Hot-Mix Asphalt (Small Quantity)"

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, “Equipment for Asphalt Concrete Pavement” and Item 354, “Planing and Texturing Pavement.” Use of other equipment may be permitted with written approval of the Engineer.

4. WORK METHODS

Use one of the following operations. Dispose of removed material in accordance with federal, state, and local regulations. Asphalt concrete placed in the textured or planed areas shall be in accordance with the following:
- Item 330, “Limestone Rock Asphalt Pavement” (Type I Grade D Fine Surface or Type II Grade FS Thin Surface)
- Item 334, “Hot-Mix Cold-Laid Asphalt Concrete Pavement” (Type F)
- Item 340, “Dense-Graded Hot-Mix Asphalt (Small Quantity)” (Type F)

4.1. Plane and Inlay. Plane to the width and depth of the existing texture. Do not extend planed area into the travel lane or more than 6 in. wider than the existing texture, unless otherwise directed. Do not plane deeper than the existing texture, unless otherwise directed. Plane in accordance with Item 354, “Planing and Texturing Pavement.” Remove loose and foreign materials from the planed areas. Remove water, dry, and apply tack coat to planed surface, including sides. Place asphalt concrete and compact to the requirements in the pertinent item.

5. MEASUREMENT

This Item will be measured by the foot.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Remove Shoulder Texturing.” This price is full compensation for surface preparation, all materials, equipment, labor, tools, incidentals and supplies.
necessary to complete the work. Trial batches for asphalt concrete will not be paid for unless they are incorporated into pavement work approved by the Department.
Special Specification 3021
Concrete Pavement Wide Flange Terminals

1. DESCRIPTION

Construct wide flange terminals for concrete pavement.

2. MATERIALS

Furnish materials conforming to the following:
- Item 360, “Concrete Pavement,”
- Item 421, “Hydraulic Cement Concrete,”
- Item 440, “Reinforcement for Concrete,” and
- Item 442, “Metal for Structures.”

Use ASTM A 36 steel for wide-flange structural steel. Shop-fabricate wide-flange beams in accordance with the plans. Unless otherwise shown on the plans, wide-flange beams are not required to be welded or spliced at longitudinal construction joints.

3. CONSTRUCTION

Construct concrete pavement wide flange terminals in accordance with the plans.

3.1. Excavation, Backfilling, and Base Preparation. Excavate and backfill in accordance with Item 400, “Excavation and Backfill for Structures,” and the plans. Avoid over-excavation. Restore subgrade and base layers damaged by excavation. Construct subgrade, base, and pavement layers in accordance with the plans.

3.2. Reinforcement and Structural Steel. Secure reinforcement in position before concrete placement in accordance with Item 440, “Reinforcement for Concrete,” and the plans. Accurately secure wide-flange beams in position in accordance with the plans and with sufficient supports to safely maintain alignment during concrete placement and finishing.

3.3. Concrete Placement and Finishing. Use Class P hydraulic cement concrete. Place hydraulic concrete pavement in accordance with Item 360, “Concrete Pavement.” Place bridge approach slabs in accordance with Item 422, “Concrete Superstructures.”

3.4. Opening to Traffic. Open concrete pavement terminal to traffic in conformance with Item 360, “Concrete Pavement.”

4. MEASUREMENT

This Item will be measured by the foot of concrete pavement terminal complete in place. Measurement will be made perpendicular to the direction of the flow of traffic.

This is a plans quantity measurement Item. The quantity to be paid is the quantity shown in the proposal, unless modified by Article 9.2, “Plans Quantity Measurement.” Additional measurement or calculations will be made if adjustments of quantities are required.
5. PAYMENT

The work performed and the materials furnished in accordance with this Item and measured as specified under “Measurement” will be paid for at the unit price bid for “Wide Flange Pavement Terminals.”

This price is full compensation for excavation, disposal of waste material, backfilling, 12 in. cement treatment, hydraulic cement concrete (sleeper slab and support slab) underneath the concrete pavement, joint material, reinforcing steel, wide-flange beams, equipment, materials, labor, tools and incidentals.

Subgrade treatment, asphalt concrete, base material, and curbing required by the plans will be measured and paid for in accordance with pertinent Items. Concrete pavement constructed as part of the concrete pavement terminal will be paid for under Item 360, “Concrete Pavement.”
Special Specification 6001
Portable Changeable Message Sign

1. DESCRIPTION

Furnish, operate, and maintain portable trailer mounted changeable message sign (PCMS) units.

2. MATERIALS

Furnish new or used material in accordance with the requirements of this Item and the details shown on the plans. Provide a self-contained PCMS unit with the following:
- Sign controller
- Changeable Message Sign
- Trailer
- Power source

Paint the exterior surfaces of the power supply housing, supports, trailer, and sign with Federal Orange No. 22246 or Federal Yellow No. 13538 of Federal Standard 595C, except paint the sign face assembly flat black.

2.1. Sign Controller. Provide a controller with permanent storage of a minimum of 75 pre-programmed messages. Provide an external input device for random programming and storage of a minimum of 75 additional messages. Provide a controller capable of displaying up to 3 messages sequentially. Provide a controller with adjustable display rates. Enclose sign controller equipment in a lockable enclosure.

2.2. Changeable Message Sign. Provide a sign capable of being elevated to at least 7 ft. above the roadway surface from the bottom of the sign. Provide a sign capable of being rotated 360° and secured against movement in any position.

Provide a sign with 3 separate lines of text and 8 characters per line minimum. Provide a minimum 18 in. character height. Provide a 5 × 7 character pixel matrix. Provide a message legibility distance of 600 ft. for nighttime conditions and 800 ft. for normal daylight conditions. Provide for manual and automatic dimming light sources.

The following are descriptions for 3 screen types of PCMS:
- Character Modular Matrix. This screen type comprises of character blocks.
- Continuous Line Matrix. This screen type uses proportionally spaced fonts for each line of text.
- Full Matrix. This screen type uses proportionally spaced fonts, varies the height of characters, and displays simple graphics on the entire sign.

2.3. Trailer. Provide a 2 wheel trailer with square top fenders, 4 leveling jacks, and trailer lights. Do not exceed an overall trailer width of 96 in. Shock mount the electronics and sign assembly.

2.4. Power Source. Provide a diesel generator, solar powered power source, or both. Provide a backup power source as necessary.

2.5. Cellular Telephone. When shown on the plans, provide a cellular telephone connection to communicate with the PCMS unit remotely.
3. **CONSTRUCTION**

Place or relocate PCMS units as shown on the plans or as directed. The plans will show the number of PCMS units needed, for how many days, and for which construction phases.

Maintain the PCMS units in good working condition. Repair damaged or malfunctioning PCMS units as soon as possible. PCMS units will remain the property of the Contractor.

4. **MEASUREMENT**

This Item will be measured by each PCMS or by the day used. All PCMS units must be set up on a work area and operational before a calendar day can be considered measurable. When measurement by the day is specified, a day will be measured for each PCMS set up and operational on the worksite.

5. **PAYMENT**

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Portable Changeable Message Sign." This price is full compensation for PCMS units; set up; relocating; removing; replacement parts; batteries (when required); fuel, oil, and oil filters (when required); cellular telephone charges (when required); software; and equipment, materials, tools, labor, and incidentals.
1. DESCRIPTION

Perform or furnish testing, training, documentation, final acceptance, and warranty on the applicable equipment or systems.

2. TESTING

Unless otherwise shown on the plans, perform the following tests on the applicable equipment or systems.

2.1. Test Procedures Documentation. Provide 5 copies of the test procedures and blank data forms 60 days prior to testing for each test required on this project. Include the sequence of the tests in the procedures. The Engineer will approve test procedures prior to submission of equipment for tests. Conduct all tests in accordance with the approved test procedures.

Record test data on the data forms, as well as quantitative results. Ensure the data forms are signed by an authorized representative (company official) of the equipment manufacturer. Submit 1 copy of the completed and signed data forms for acceptance or rejection of the test or equipment.

2.2. Design Approval Test. Conduct a Design Approval Test on randomly selected units from the prototype design manufacturing run. If only 1 design prototype is manufactured, perform this test on that unit. If supplying multiple types of the equipment, provide and test a sample of each type.

Certification from an independent testing laboratory of a successfully completed Design Approval Test is acceptable. Ensure that the testing by this laboratory is performed in accordance with the requirements of this specification. Failure of independent tests to comply with the requirements of this specification will be grounds for rejection of any certification.

Notify the Engineer 10 working days before conducting this testing. The Department may witness all the tests. Perform the following tests:

2.2.1. Power Service Transients. The equipment must meet the performance requirements, specified in the parent specification, when subjected to the power service transients as specified in Section 2.2.7.2, “Transient Tests (Power Service)” of the NEMA TS 2 standard, latest edition.

2.2.2. Temperature and Condensation. The equipment must meet the performance requirements, specified in the parent specification, when subjected to the following conditions in the order specified below:

- Stabilize the equipment at -30°F and test as specified in Sections 2.2.7.3., “Low-Temperature Low-Voltage Tests” and 2.2.7.4., “Low-Temperature High-Voltage Tests” of the NEMA TS 2 standard, latest edition.

- Allow the equipment to warm up to room temperature in an atmosphere having relative humidity of at least 40%. Operate the equipment for 2 hr., while wet, without degradation or failure.

- Stabilize the equipment at 165°F and test as specified in Sections 2.2.7.5., “High-Temperature High Voltage Tests” and 2.2.7.6, “High-Temperature Low-Voltage Tests” of the NEMA TS 2 standard, latest edition.
2.2.3. **Relative Humidity.** The equipment must meet the performance requirements, specified in the parent specification, within 30 min. of being subjected to a temperature of 165°F and a relative humidity of 18% for 48 hr.

2.2.4. **Vibration.** The equipment must show no degradation of mechanical structure, soldered components, or plug-in components and must operate in accordance with the manufacturer's equipment specifications after being subjected to the vibration tests as described in Section 2.2.8, “Vibration Test,” of the NEMA TS 2 standard, latest edition.

2.2.5. **Power Interruption.** The equipment must meet the performance requirements, specified in the parent specification, when subjected to nominal input voltage variations as specified in Section 2.2.10, “Power Interruption Test,” of the NEMA TS 2 standard, latest edition.

2.3. **Demonstration Test.** Conduct a Demonstration Test on applicable equipment at an approved Contractor facility. Notify the Engineer 10 working days before conducting this testing. The Department may witness all the tests. Perform the following tests:

2.3.1. **Examination of Product.** Examine each unit carefully to verify that the materials, design, construction, markings and workmanship comply with the requirements of the parent specification.

2.3.2. **Continuity Tests.** Check the wiring to determine conformance with the requirements of the appropriate paragraphs in the parent specification.

2.3.3. **Operational Test.** Operate each unit for at least 15 min. to permit equipment temperature stabilization and an adequate number of performance characteristics to ensure compliance with the requirements of the parent specification.

2.4. **Stand-Alone Tests.** Conduct a Stand-Alone Test for each unit after installation. The test must exercise all stand-alone (non-network) functional operations. Notify the Engineer 5 working days before conducting this test. The Department may witness all the tests.

2.5. **System Integration Test.** Conduct a System Integration Test on the complete functional system. Demonstrate all control and monitor functions for each system component for 72 hr. Supply 2 copies of the System Operations manual before the System Integration Test. Notify the Engineer 10 working days before conducting this testing. The Department may witness all the tests.

2.6. **Final Acceptance Test.** Conduct a Final Acceptance Test on the complete functional system. Demonstrate all control, monitor, and communication requirements for 90 days. The Engineer will furnish a Letter of Approval stating the first day of the Final Acceptance Test. The completion of the Final Acceptance Test occurs when system downtime due to mechanical, electrical, or other malfunctions to equipment furnished or installed does not exceed 72 hr. and any individual points of failure identified during the test period have operated free of defects as required in Section 2.7.5., “Consequences of Final Acceptance Test Failure.”

2.7. **Consequences of Test Failure.** If a unit fails a test, submit a report describing the nature of the failure and the actions taken to remedy the situation prior to modification or replacement of the unit. If a unit requires modification, correct the fault and then repeat the test until successfully completed. Correct minor discrepancies within 30 days of written notice to the Engineer. If a unit requires replacement, provide a new unit and then repeat the test until successfully completed. Major discrepancies that will substantially delay receipt and acceptance of the unit will be sufficient cause for rejection of the unit.

If a failure pattern develops in similar units within the system, implement corrective measures, including modification or replacement of units, to all similar units within the system as directed. Perform the corrective measures without additional cost or extension of the contract period.

2.7.1. **Consequences of Design Approval Test Failure.** If the equipment fails the Design Approval Test, correct the fault and then repeat the Design Approval Test until successfully completed.
2.7.2. **Consequences of Demonstration Test Failure.** If the equipment fails the Demonstration Test, correct the fault and then repeat the Demonstration Test until successfully completed.

2.7.3. **Consequences of Stand-Alone Test Failure.** If the equipment fails the Stand-Alone Test, correct the fault and then repeat the Demonstration Test until successfully completed.

2.7.4. **Consequence of System Integration Test Failure.** If the equipment fails the System Integration Test, correct the fault and then repeat the Systems Integration Test until successfully completed.

2.7.5. **Consequences of Final Acceptance Test Failure.** If a defect within the system is detected during the Final Acceptance Test, document and correct the source of failure. Once corrective measures are taken, monitor the point of failure until a consecutive 30 day period free of defects is achieved.

If after completion of the initial test period, the system downtime exceeds 72 hr. or individual points of failure have not operated for 30 consecutive days free of defects, extend the test period by an amount of time equal to the greater of the downtime in excess of 72 hr. or the number of days required to complete the performance requirement of the individual point of failure.

3. **TRAINING**

When required on the plans, provide a minimum of 24 hr. of instruction to 10 designated personnel in the operation and maintenance procedures of equipment or systems installed. Provide the training during installation, testing, and integration. Provide the training through practical demonstrations, seminars, and other related technical procedures.

Furnish a training session agenda, a complete set of training material (manuals and schematics), and the names and qualifications of proposed instructors for approval 60 days before the training. Provide a training location. Provide 1 copy of the course material for each person. Provide training in the following areas of interest and as shown on the plans:

- The “Hands-on” operation for each type of equipment.
- Explanation of all system commands, their function and usage.
- Required preventative maintenance procedures.
- All equipment servicing procedures.
- System “troubleshooting”/problem identification procedures.

4. **DOCUMENTATION**

Provide “as-built” documentation for the entire system and all of its individual components. Supply one (1) 11 in. x 17 in. reproducible copy of the wiring diagrams. Supply three (3) copies of the following in a manual for each equipment component:

- Complete and accurate schematic diagrams.
- Complete and accurate cabinet, enclosure, and building wiring diagrams.
- Complete installation procedures.
- Complete performance specifications (functional, electrical, mechanical and environmental) on the unit.
- Complete parts list including names of vendors for parts not identified by universal part numbers such as JEDEC, RETMA, or EIA.
- Pictorial of component layout on circuit board.
- Complete maintenance and trouble-shooting procedures.
- Complete stage-by-stage explanation of circuit theory and operation.
- Complete and detailed system operations manuals.

Furnish additional information as shown on the plans.
5. **FINAL ACCEPTANCE**

Final acceptance is made when all work is complete, the system has successfully completed all test requirements, and the Engineer, in writing, accepts all work for the work locations in the Contract in accordance with Article 5.12., “Final Acceptance.” Final acceptance relieves the Contractor from further Contract responsibilities.

6. **WARRANTY**

Guarantee equipment furnished and installed to perform according to the manufacturer’s published specifications. Warrant equipment against defects or failure in design, materials, and workmanship in accordance with the manufacturer’s standard warranty. Supply equipment with no less than 95% of the manufacturer’s warranty remaining on the date that equipment invoices are submitted for final payment. Any equipment with less than 95% warranty remaining will be rejected.

The Contractor will warrant or guarantee all such electronic, electrical, and mechanical equipment, materials, technical data, and products furnished and installed for a period of 1 yr. after final acceptance of the project by the Department. The Contractor’s warranty or guarantee must provide for the “on-site” repair or replacement, at the Contractor’s option, within 2 working days and at no cost to the Department.

Once the Contractor’s warranty or guarantee expires, assign to the Department any manufacturer’s standard warranty or guarantee coverage still remaining on all such electronic, electrical, and mechanical equipment, materials, technical data, and products furnished for and installed on the project. Repair or replace defective equipment, at the manufacturer’s option, at no cost to the Department.

7. **MEASUREMENT AND PAYMENT**

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly but will be considered subsidiary to bid items of the Contract.
1. DESCRIPTION

Use electronic components to manufacture electronic equipment.

2. MATERIALS AND CONSTRUCTION METHODS

Use electronic components that comply with Electronic Industries Association (EIA) and Joint Electronic Device Engineering Council (JEDEC) Specifications. Provide industry standard electronic components available from several manufacturers. When special monolithic integrated circuits are necessary for cost-effective designs, waiving the multi-source requirements will be as directed.

Design the electronic circuitry to ensure an adjustment range from normal adjustment settings of variable components. Provide a range of adjustment to compensate for composite variations in the associated circuitry due to changes in part values during the normal or specified life of the device. Ensure the range of adjustment can compensate for variations in replacement parts within the specified tolerances. Unless otherwise shown on the plans, design the components to be under operating conditions 24 hr. a day for 10 yr. Derate electronic components by 20% with regard to ambient temperature, applied voltage, and power dissipation.

On electronic components weighing more than 2 oz., use supports other than the component’s pins or electrical connectors. Solder electronic components of 2 or more leads in place. Mark the circuit reference symbol next to the component.

Meet the above requirements and satisfy the following specific requirements for the different components:

2.1. Capacitors. Provide industrial grade capacitors. Insulate the capacitors. Mark capacitors with their capacitance value, working voltage, and polarity.

Provide capacitor encasements resistant to cracking, peeling, and discoloration due to humidity and changes in temperature. Provide electrolytic capacitors capable of operating at least 185°F. Do not use electrolytic capacitors of less than 1.0 microfarad.

Use a clamp or fastener to support a capacitor to avoid damage by shock or vibration. Use a capacitor with a specific ripple or AC voltage rating, if possibly subjected to a ripple voltage in excess of 10% of the actual DC voltage across the capacitor. Use an aluminum electrolytic capacitor only when continually energized.

2.2. Diodes. If low forward drop is required in logic circuit applications, furnish justification for use of Germanium diodes prior to incorporation in the design. Mark diodes with the JEDEC part number, using an industry approved color code or clearly legible printing. Indicate the diode polarity on the diode case by the use of the diode symbol, by the 360° band on the cathode end, or by the shape of case.

2.3. Indicators. Use solid-state (LED) indicators with a useful life at least 25,000 hr.

2.4. Integrated Circuits. Print the manufacturer’s part number and any information required to install the integrated circuit assembly upon the package. Test integrated circuits with at least 1 test from each group below:
2.4.1. **Group 1:**
- Stabilization Bake
- Temperature Cycling
- Power Burn-in

2.4.2. **Group 2:**
- Functional test with the device at the manufacturer's maximum specified temperature
- Static and dynamic test per manufacturer's data sheet

2.5. **Potentiometers and Rheostats.** Use industrial grade potentiometers. Use potentiometers with a power rating at least 100% greater than the maximum power requirements of the circuit.

2.6. **Printed Circuit Boards.**

2.6.1. **Design, Fabrication and Mounting.** Use NEMA Grade G-10 glass epoxy or equivalent for printed circuit boards (refer to NEMA Publications No. L1 1-1982, Industrial Laminated Thermosetting Products). Provide a nominal thickness of 1/32 in. for circuit boards not exceeding 2 in. in any dimension. Provide a nominal thickness of 1/16 in. for circuit boards exceeding 2 in. in any dimension.

Coat the printed circuit board assembly with a protective coating to combat mildew, moisture, and fungus. Plate the through holes that carry electrical connections from one side of the board to the other. Use 1 oz. per square foot of copper to plate through holes. Use non-corrosive material for electrical mating surfaces.

Design and fabricate printed circuit boards and the mounting of parts and assemblies in accordance with MIL-STD-275 (latest revision) except as follows:
- Mount semiconductor devices on spacers or transipads if the device dissipates more than 250 mW or if the case temperature will rise 20°F above ambient.
- Remove residual flux from the printed circuit board.
- Provide a resistance between any 2 isolated, independent conductor paths of at least 100 megohms when a 500 VDC potential is applied.

Mark operating circuit components mounted on the circuit boards. Reference the identifying characters to their respective components in the schematic diagram and in the parts list.

2.6.2. **Soldering.** Hand solder in accordance with MIL-STD-55110. Use of automatic flow soldering is acceptable.

2.7. **Relays.** Install diodes across the coils for transient suppression in DC relays. Provide replaceable relays that do not require special tools for replacement.

2.8. **Resistors.** Use fixed composition insulated resistors in accordance with the performance requirements of MIL-R-11. Provide industrial grade resistors with a 15-yr. design life. Mark with their resistance value, using EIA color codes or industry approved marking technique.

Use resistors with a 10% tolerance or better and a resistance variation of no more than 5% over the temperature range 0°F to 165°F. Do not use resistors with a power rating greater than 2 W unless special ventilation or heat sinking is provided. Insulate these resistors from the printed circuit board.

2.9. **Transistors.** Use JEDEC registered transistors. Mark the JEDEC part number on the case. Designate the emitter or collector by use of an industry approved marking technique.

2.10. **Transformers.** Mark transformers with the manufacturer’s part number on the case or frame, using a Radio-Electronics-Television Manufacturers Association (RETMA) color code or numbered in a manner to facilitate proper installation.
2.11. **Switches.** Derate switch contacts 50% from their maximum current ratings.

3. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly, but will be subsidiary to the bid items of the Contract.
Special Specification 6007

Intelligent Transportation System (ITS) Fiber Optic Cable

1. DESCRIPTION

Furnish, install, relocate and remove Intelligent Transportation System (ITS) fiber optic cable, fiber patch panels and splice enclosures as shown on the plans.

2. MATERIALS

2.1. General Requirements. Provide, assemble, fabricate and install materials that are new, corrosion resistant, and in accordance with the details shown on the plans and in these Specifications.

Furnish, install, splice, and test all new fiber optic cable. Provide all splicing kits, fiber optic cable caps, connectors, moisture or water sealants, terminators, splice trays, fiber optic jumpers, pig tails, fiber patch panels, fiber interconnect housing, and accessories necessary to complete the fiber optic network. Provide all equipment necessary for installation, splicing, and testing.

2.2. Cable Requirements. Furnish all-dielectric, dry-filled, gel-free, loose tube fiber optic cable, with low water peak, suitable for underground conduit environments or aerial applications.

Furnish self-supporting, all-dielectric, dry-filled, gel-free, loose tube fiber optic cable, with low water peak suitable for aerial applications when not lashing to strands. All fiber optic cable furnished must have a design life of 20 yr. when installed to the manufacturer’s specifications.

Splice fiber optic cables in ground boxes, field cabinets, or buildings. Terminate fiber optic cables in field cabinets and buildings that comply with the details shown on the plans and in this Specification.

Provide all fiber optic cable from the same manufacturer and the manufacturer is International Organization for Standardization (ISO) 9001 certified. Ensure the cables meet or exceed United States Department of Agriculture Rural Utilities Service (RUS) CFR 1755.900, American National Standards Institute/Insulated Cable Engineers Association (ANSI/ICEA) S-87-640, and Telecommunications Industry Association/Electronic Industries Alliance (TIA/EIA)-492-CAAB standard.

2.3. Optical Requirements.

2.3.1. Optical Fiber. Provide ITU G.652 single mode fiber optic cable with a core diameter of 8.3 ± 0.7 microns and a cladding diameter of 125 ± 0.7 microns. Provide optical fiber made of glass consisting of a silica core surrounded by concentric silica cladding, free of imperfections and inclusions.

2.3.2. Core/Clad Concentricity. Provide an offset between the center of the core and cladding less than 0.5 microns.

2.3.3. Mode Field Diameter. Provide single mode fiber optic cable with the effective area or Mode Field Diameter of the fiber must be 9.2 ± 0.4 µm at 1310 nm and 10.5 ± 1.0 µm at 1550 nm.

2.3.4. Primary Coating. Provide fiber with a coating diameter of 250 ± 15 microns.
2.3.5. **Attenuation.** Provide single mode fiber optic cable with nominal attenuation of 0.35 dB/km maximum at a wavelength of 1310 nm and nominal attenuation of 0.25 dB/km maximum at a wavelength of 1550 nm.

Attenuation at water peak must be less than 0.35 dB/km at 1383 nm.

2.3.6. **Bandwidth and Dispersion.** Provide single mode fiber optic cable with a maximum dispersion of:

- 3.2 ps/nm-km at a wavelength of 1310 nm, and
- 18 ps/nm-km at a wavelength of 1550 nm.

Zero dispersion wavelength must be between 1300 nm and 1324 nm and the zero dispersion slope at the zero dispersion wavelength must be less than 0.092 ps/(nm²•km).

The cutoff wavelength must be less than 1260 nm for single mode fibers specified to operate at 1310 nm.
The cutoff wavelength must be less than 1480 for single mode fibers specified to operate only at 1550 nm or higher.

The macrobend attenuation per 100 turns must not exceed 0.05 dB at 1310 nm and 1550 nm.

2.3.7. **Mechanical Requirements (Tensile Strength).** Provide a cable withstanding a pulling tension of 600 lbf without increasing attenuation by more than 0.8 dB/mi when installing in underground conduit systems in accordance with EIA-455-33A. Conduct an impact test in accordance with TIA/EIA-455-25C (FOTP-25) and a compression load test in accordance with TIA/EIA-455-41A (FOTP-41).

For all-dielectric self-supporting cable (ADSS) and other self-supporting cables, meet tensile strength requirements in accordance with Section 25, Loading of Grades B and C, of National Electric Safety Code (NESC), for the maximum span and sag information as shown in the plans for aerial construction.

2.3.8. **Bend Radius.** Provide a cable withstanding a minimum bending radius of 10 times its outer diameter during operation, and 20 times its outer diameter during installation, removal and reinstallation without changing optical fiber characteristics. Test the cable in accordance with EIA-455-33A.

2.3.9. **Buffering.** Use a buffering tube or jacket with an outer diameter of 1.0 to 3.0 mm containing 12 individual fiber strands. The fibers must not adhere to the inside of the buffer tube.

2.3.10. **Color Coding.** Provide fiber and buffer tubes with a color coating applied to it by the manufacturer. Coating must not affect the optical characteristics of the fiber. Provide color configuration in accordance with TIA/EIA-598 as follows:

- 1. Blue
- 2. Orange
- 3. Green
- 4. Brown
- 5. Slate
- 6. White
- 7. Red
- 8. Black
- 9. Yellow
- 10. Violet
- 11. Rose
- 12. Aqua

3. **EQUIPMENT**

3.1. **Cable Type.** Provide cables with a reverse oscillation or planetary stranding structure.

Jacket construction and group configuration should separate at splice points to cut and splice 1 set of fibers while the others remain continuous. All cable jackets must have a ripcord to aid in the removal of the outer jacket. Submit cable designs for approval.

Strand loose buffer tubes around a dielectric central anti-buckling strength member. Provide dielectric aramid or fiber glass strength members with specified strength for the cable. Provide cable with a water-blocking material, which is non-hygroscopic, non-nutritive to fungus, non-conductive, non-toxic, and homogeneous.
The water blocking material must comply with TIA/EIA-455-81B and 455-82B as well as TIA/EIA-455-98.
Ensure a polyethylene inner jacket is applied over the cable core, and that the entire cable is enclosed with a polyethylene outer jacket. Ensure the outer jacket contains black carbon to provide UV protection for the cable. Ensure each cable is marked with the manufacturer's name, the date of manufacture (month/year), the fiber count (example 48F SM), and sequential length markings at maximum 2 ft. increments, measured in U.S. units.

For aerial installation, provide standard fiber optic cable lashed to steel messenger cable or ADSS in accordance with the Institute of Electrical and Electronics Engineers (IEEE) 1222 Standard for Testing and Performance for All-Dielectric Self-Supporting (ADSS) Fiber Optic Cable for Use on Electric Utility Power Lines, or most current version. Provide ADSS cable in accordance with the maximum span distance, weather load rating, and allowable sag as shown on the plans. “Figure 8” self-supporting cable with integrated messenger cable within the outer jacket for aerial installation is acceptable.

3.1.1. **Cable Size.** Furnish cables with a maximum diameter not exceeding 19 mm.

3.1.2. **Environmental Requirements.** Provide cable that functions in a temperature range from -40°F to 158°F.

3.2. **Fiber Optic Accessories.**

3.2.1. **Splice Enclosures.** Furnish and install 1 of 3 types of underground splice enclosures at locations shown on the plans to accommodate the cables being spliced at that point. The types are as follows:

- **Type 1:** 4 cable entry ports total – 2 ports to accommodate backbone fiber of up to 144 fibers and 2 ports for drop cables of up to 48 fibers,
- **Type 2:** 6 cable entry ports total – 4 to accommodate backbone or arterial cables of up to 144 fibers and 2 ports for drop cables of up to 48 fibers, and
- **Type 3:** 8 cable entry ports total – 4 to accommodate backbone or arterial cables of up to 144 fibers and 4 ports for drop cables of up to 48 fibers.

Provide the end cap of the canister splice closure with re-enterable quick-seal cable entry ports to accommodate additional branch cables or backbone cables. Provide fiber optic splice enclosures with strain relief, splice organizers, and splice trays from the same manufacturer as the splice enclosure. Select the appropriate splice enclosure type based on the number of splices called for in the plans. Suspend all splice closures off floor of the ground box and secure to cable rack assembly on side wall of ground box.

For end of reel splicing, use a fiber optic splice enclosure sized to accommodate full cable splice in one enclosure. Fiber optic splice enclosure must be of the same manufacturer as other supplied on a project. Splice enclosure and fusion splicing required for end of reel will be incidental to the fiber optic cable.

Comply with the Telcordia Technologies’ GR-711-CORE standard and all applicable NEC requirements.

Contain all optical fiber splices within a splice enclosure, providing storage for fiber splices, nonspliced fiber, and buffer tubes. Provide sufficient space inside the enclosure to prevent microbending of buffer tubes when coiled.

Ensure that the splice enclosure maintains the mechanical and environmental integrity of the fiber optic cable, encases the sheath opening in the cable, and organizes and stores optical fiber. Ensure all hinges and latching devices are stainless steel or of a non-corrosive material designed for harsh environments. Ensure that the enclosure is airtight and prevents water intrusion. Ensure that splice enclosures allow re-entry and are hermetically sealed to protect internal components from environmental hazards and foreign material such as moisture, dust, insects, and UV light.

3.2.2. **Field Rack Mount Splice Enclosures.** Provide a 19 in. EIA rack mounted splice enclosure module to hold spliced fibers as shown in the plans inside field equipment cabinets or buildings.
Splice or terminate fibers inside rack mounted fiber optic splice enclosures. Provide an enclosed unit designed to house a minimum of 4 cables, sized to accommodate at a minimum the cables shown on the plans plus future expansion.

Provide splice enclosures containing mounting brackets with a minimum of 4 cable clamps. Install cable according to manufacturer recommendations for the cable distribution panel.

3.2.3. **Fiber Patch Panels.** Provide fiber patch panels that are compatible with the fiber optic cable being terminated and color coded to match the optical fiber color scheme. Coil and protect a maintenance loop of at least 5 ft. of buffer tube inside the rack mount enclosure, patch panel, or splice tray. Allow for future splices in the event of a damaged splice or pigtail.

3.2.3.1. **Cabinet.** Terminate or splice fibers inside the compact and modular fiber patch panel in the cabinet. Provide fiber patch panel for installation inside a 19 in. EIA rack and sized appropriately to accommodate the fiber terminations shown on the plans or as directed by the Engineer. Provide each patch panel housing with pre-assembled compact modular snap-in simplex connector panel modules, each module having a minimum of 6 fiber termination/connector capabilities. Provide modules with a removable cover having 6 pre-connectorized fiber pigtails, interconnection sleeves, and dust caps installed by the manufacturer. Provide a 12 fiber or greater fusion splice tray capability housing, each tray holding 12 fusion splices as shown in the plans. Stack splice trays on a rack to permit access to individual trays without disturbing other trays. Locate splice trays in a rack within a pull-out shelf. Protect the housing with doors capable of pivoting up or down. Document the function of each terminated/spliced fiber, along with the designation of each connector on labels or charts located either on the inside or outside of the housing door. Provide labels or charts that are UV resistant design for harsh environments and used inside field equipment cabinets. Use permanent marker or method of identification that will withstand harsh environments. Provide each housing with strain relief. Terminate single mode fiber optic cable with SC connectors to the patch panels, unless otherwise shown on the plans.

Install the fiber patch panel as an integral unit as shown on the plans.

3.2.3.2. **Building.** Provide a fiber patch panel with a modular design allowing interchangeability of connector panel module housing and splice housing within the rack, as shown on the plans.

Provide the number of single mode fibers, connector panel module housings, and splice housings for the patch panel unit in the building as shown on the plans.

Provide a fiber patch panel unit, installed at a height less than 7 ft., capable of housing 8 connector panel module housings or 8 splice housings. Protect the housing with doors capable of pivoting up or down and sliding into the unit.

Provide 12 snap-in simplex connector panel modules with each connector panel module housing, each module having 6 fiber termination/connector capabilities. Use a pre-assembled compact modular unit with a removable cover for the snap-in simplex connector panel module having 6 pre-connectorized fiber pigtails, interconnection sleeves, and dust caps installed by the manufacturer. Provide each connector panel module housing with a jumper routing shelf, storing up to 5 ft. (minimum) of cable slack for each termination within the housing. Provide the fiber distribution unit with strain relief.

Provide splice enclosure with 24 fusion splice tray capabilities, each splice tray holding 12 or more fusion splices. Stack splice trays on a rack to permit access to individual trays without disturbing other trays. Locate the rack on a pull-out shelf.

Document the function of each terminated/spliced fiber, along with the designation of each connector on labels or charts located either on the inside or outside of the housing door. Provide labels or charts that are UV resistant design for harsh environments and used inside field equipment cabinets. Use permanent marker or method of identification that will withstand harsh environments. Also provide documentation of the function of each terminated or spliced fiber along with the designation of each connector on charts or
diagrams matching the fiber patch panel configuration and locate inside cabinet document drawer. Provide documentation at the conclusion of fiber terminations and splicing.

Allow terminations only in the fiber interconnect housings placed in the cabinets as shown on the plans or as directed.

3.2.4. **Splice Trays.** Use splice tray and fan-out tubing kit for handling each fiber. Provide a splice tray and 12 fiber fan-out tubing with each housing for use with the 250 microns coated fiber. The fan-out will occur within the splice tray (no splicing of the fiber required). Allow each tube to fan out each fiber for ease of connectorization. Label all fibers in splice tray on a log sheet securing it to the inside or outside of the splice tray. Provide UV resistant log sheet suitable for harsh environments, located inside field cabinets or splice enclosures. Provide fan-out tubing with 3 layers of protection consisting of fluoropolymer inner tube, a dielectric strength member, and a 2.9 mm minimum outer protective PVC orange jacketing.

3.2.5. **Jumpers.** Provide fiber optic jumper cables to cross connect the fiber patch panel to the fiber optic transmission equipment as shown on the plans or as directed. Match the core size, type, and attenuation from the cable to the simplex jumper. Use yellow jumpers and provide strain relief on the connectors. Provide fiber with a 900 micron polymer buffer, Kevlar strength member, and a PVC jacket with a maximum outer jacket of 2.4 mm in diameter.

Provide 5 ft. long jumpers, unless otherwise shown on the plans. On the patch panel end of each jumper, provide an SC connector. On the opposite end of the jumper, provide a connector that is suitable to be connected to the fiber optic transmission equipment selected. When providing jumpers for existing equipment, provide connectors suitable to be connected to patch panels and fiber optic transmission equipment in use. All jumpers must have factory terminated connectors. Field terminations of connectors is prohibited.

3.2.6. **Fiber Optic Cable Storage Device.** Furnish fiber optic cable storage device designed to store slack fiber optic cable by means of looping back from device to device on an aerial run. Furnish storage devices that are non-conductive and resistant to fading when exposed to UV sources and changes in weather. Ensure storage devices have a captive design such that fiber-optic cable will be supported when installed in the aerial rack apparatus and the minimum bending radius will not be violated. Provide stainless steel attachment hardware for securing storage devices to messenger cable and black UV resistant tie-wraps for securing fiber-optic cable to storage device. Provide tie-wraps that do not damage fiber when securing to storage device. Ensure storage devices are stackable so multiple cable configurations are possible. Ensure cable storage devices furnished are compatible with the type of aerial cable furnished and installed. Aerial cable storage devices will be considered incidental to the installation of the fiber optic cable.

4. **CONSTRUCTION**

Install fiber optic cable in accordance with United States Department of Agriculture Rural Utilities Service CFR 1755.900 specifications for underground and aerial plant construction without changing the optical and mechanical characteristics of the cables.

Utilize available machinery, jacking equipment, cable pulling machinery with appropriate tension monitors, splicing and testing equipment, and other miscellaneous tools to install cable, splice fibers, attach connectors and mount hardware in cabinets employed with the above “Mechanical Requirements.” Do not jerk the cable during installation. Adhere to the maximum pulling tensions of 600 lbf and bending radius of 20 times the cable diameter or as specified by the manufacturer, whichever is greater.

Use installation techniques and fixtures that provide for ease of maintenance and easy access to all components for testing and measurements. Take all precautions necessary to ensure the cable is not damaged during transport, storage, or installation. Protect as necessary the cables to prevent damage if being pulled over or around obstructions along the ground.
Where plans call for removal of existing cable to salvage or reuse elsewhere, take care to prevent damaging the existing cable during removal adhering to all of the requirements for installation that pertain to removal.

4.1. **Packaging, Shipping, and Receiving.** Ensure the completed cable is packaged for shipment on reels. Ensure the cable is wrapped in weather and temperature resistant covering. Ensure both ends of the cable are sealed to prevent the ingress of moisture.

Securely fasten each end of the cable to the reel to prevent the cable from coming loose during transit. Provide 6 ft. of accessible cable length on each end of the cable for testing. Ensure that the complete outer jacket marking is visible on these 6 ft. of cable length. Provide each cable reel with a durable weatherproof label or tag showing the Manufacturer’s name, the cable type, the actual length of cable on the reel, the Contractor’s name, the contract number, and the reel number. Include a shipping record in a weatherproof envelope showing the above information and also include the date of manufacture, cable characteristics (size, attenuation, bandwidth, etc.), factory test results, cable identification number and any other pertinent information. Ensure that all cable delivered has been manufactured within 6 mo. of the delivery date. Ensure that the minimum hub diameter of the reel is at least 30 times the diameter of the cable. Provide the cable in one continuous length per reel with no factory splices in the fiber. Provide a copy of the transmission loss test results as required by the TIA/EIA-455-61 standard, as well as results from factory tests performed prior to shipping.

4.2. **Installation in Conduit.** Install fiber optic cable in conduits in a method that does not alter the optical properties of the cable. If required, relocate existing cable to allow new fiber optic cable routing in conduits.

When pulling the cable, do not exceed the installation bending radius. Use rollers, wheels, or guides that have radii greater than the bending radius. Use a lubricating compound to minimize friction. Use fuse links and breaks to ensure that the cable tensile strength is not exceeded. Measure the pulling tension with a mechanical device and mechanism to ensure the maximum allowable pulling tension of 600 lb is not exceeded at any time during installation.

Provide a single 1/C #14 XHHW insulated tracer wire in conduit runs where fiber optic cable is installed. Provide cable that is UL listed solid copper wire with orange color low density polyethylene insulation suitable for conduit installation and with a voltage rating of 600V. When more than one fiber optic cable is installed through a conduit run, only one tracer wire is required. Fuse or join tracer wires used in backbone, arterial, and drop runs, so that you have one continuous tracer wire. Terminate tracer wire at fiber optic test markers or equipment cabinets as identified in the plans for access to conduct a continuity test. Tracer wire will be paid for under Item 620, “Electrical Conductors.”

Provide flat pull cord with a minimum tensile strength of 1,250 lb. in each conduit containing fiber optic cable. A traceable pull cord, with a metallic conducting material integral to the pull cord, may be substituted for a 1/C #14 tracer wire only with approval from the Department.

Seal conduit ends with a 2 part urethane after installation of fiber optic cable.

4.3. **Cable Installation between Pull Boxes and Cabinets or Buildings.** Do not break or splice a second fiber optic cable to complete a run when pulling the cable from the nearest ground box to a cabinet or building. Pull sufficient length of cable in the ground box to reach the designated cabinet or building. Pull the cable through the cabinet to coil, splice, or terminate the cable in the cabinet or building. Do not bend the cable beyond its minimum bend radius of 20 times the diameter.

Coil and tie cable inside cabinet, building, or boxes for future splicing or termination as shown in the plans. Cut off and remove the first 10 ft. of pulled or blown fiber stored. This work is incidental to this Item. Coat the open end of the coiled cable with protective coating and provide a dust cap.

4.4. **Aerial Installation.** Use pole attachment hardware and roller guides with safety clips to install aerial run cable. Maintain maximum allowable pulling tension of 600 lb. ft. during the pulling process for aerial run cable by using a mechanical device. Do not allow cable to contact the ground or other obstructions between poles during installation. Do not use a motorized vehicle to generate cable pulling forces. Use a cable suspension
clamp when attaching cable tangent to a pole. Select and place cable blocks and corner blocks so as not to exceed the cable’s minimum bending radius. Do not pull cable across cable hangers. Store 100 ft. of fiber-optic cable slack, for future use, on all cable runs that are continuous without splices or where specified on the plans. Store spare fiber optic cable on fiber-optic cable storage racks of the type compatible with the aerial cable furnished. Locate spare cable storage in the middle of spans between termination points. Do not store spare fiber-optic cable over roadways, driveways or railroads.

Install standard cable on timber poles by lashing to steel messenger cable. Provide steel messenger cable in accordance with Item 625, “Zinc Coated Steel Wire Strand.” Install all-dielectric self-supporting cable (ADSS) cable on timber poles using clinching clamp with cable hanger. Install aerial run cable in accordance with these specifications and as shown on the plans.

Locate aerial fiber in accordance with the NESC, Section 23, with respect to vertical clearances over the ground, between conductors carried on different supporting structures, and required separation distance of the cable from bridges, buildings, and other structures.

4.5. **Blowing Fiber Installation.** Use either the high-air speed blowing (HASB) method or the piston method. When using the HASB method, ensure that the volume of air passing through the conduit does not exceed 600 cu. ft. per min. or the conduit manufacturer’s recommended air volume, whichever is more restrictive. When using the piston method, ensure that the volume of air passing through the conduit does not exceed 300 cu. ft. per min. or the conduit manufacturer’s recommended air volume, whichever is more restrictive.

4.6. **Slack Cable.** Pull and store excess cable slack inside ITS ground boxes as shown on the plans. The following are minimum required lengths of slack cable, unless otherwise directed:

- ground boxes (No Splice) - 25 ft.,
- ground boxes (With Splice) - 100 ft.,
- future splice point - 100 ft., and
- cabinets - 25 ft.

Note that the slack is to be equally distributed on either side of the splice enclosure and secured to cable storage racks within the ground boxes.

Provide proper storage of slack cable, both long term and short term. Neatly bind cables to be spliced together from conduit to splice enclosure with tape. Do not over bind by pinching cable or fiber. Ground and bond the armor when installing armored fiber optic cable. Meet NEC and NESC requirements for grounding and bonding when using armored cable.

4.7. **Removal, Relocation and Reinstallation of Fiber Optic Cable.** Remove fiber optic cable from conduit as shown on plans. Use care in removing existing fiber optic cables so as not to damage them. Provide cable removal and reinstallation procedures that meet the minimum bending radius and tensile loading requirements during removal and reinstallation so that optical and mechanical characteristics of the existing cables are not degraded. Use entry guide chutes to guide the cable out of and in to existing or proposed conduit, utilizing lubricating compound where possible to minimize cable-to-conduit friction. Use corner rollers (wheels) with a radius not less than the minimum installation bending radius of cable. Dispose of removed fiber optic cable unless plans show it to be re-used (relocated/re-installed) or salvaged and delivered to the Department. See plans for details. Test each optical fiber in the cable for performance and for loss at existing terminations or splices prior to cutting and removal. Retest following removal and following re-installation to ensure the removal and reinstallation has not affected the optical properties of the cable. Any fiber optic cable damaged by the contractor that is to be re-used shall be replaced by the contractor at no cost to the Department with new fiber optic cable meeting the approval of the Engineer. The Engineer reserves the right to reject the fiber based on the test results.

Maintain the integrity of existing cables, conduit, junction boxes and ground boxes contiguous to the section of cables to be removed. Replace or repair any cables, conduit, junction boxes or ground boxes damaged during work at the Contractor’s expense. The replacement or repair method must be approved by the Engineer, prior to implementation.
4.8. **Splicing Requirements.** Fusion splice fibers as shown on the plans, in accordance with TIA/EIA-568 and TIA/EIA-758.

Use fusion splicing equipment recommended by the cable manufacturer. Clean, calibrate, and adjust the fusion splicing equipment at the start of each shift. Use splice enclosures, organizers, cable end preparation tools, and procedures compatible with the cable furnished. Employ local injection and detection techniques and auto fusion time control power monitoring to ensure proper alignment during fusion splicing.

When approaching end of shift or end of day, complete all splicing at the location. Package each spliced fiber in a protective sleeve or housing. Re-coat bare fiber with a protective 8 RTV, gel or similar substance, prior to application of the sleeve or housing.

Perform splices with losses no greater than 0.10 dB. Use an Optical Time Domain Reflectometer (OTDR) to test splices in accordance with Section 4.13.1.1. Record splice losses on a tabular form and submit for approval.

4.9. **Termination Requirements.** Provide matching connectors with 900 micron buffer fiber pigtails of sufficient length and splice the corresponding optical fibers in cabinets where the optical fibers are to be connected to terminal equipment. Buffer, strengthen, and protect pre-terminated fiber assemblies (pigtails) with dielectric aramid yarn and outer PVC jacket to reduce mishandling that can damage the fiber or connection. Pigtails must be duplex stranding with a yellow PVC outer jacket. Fiber optic pigtails must be factory terminated with SC connectors, unless otherwise shown on the plans. When providing pigtails for existing equipment, provide connectors suitable to be connected to patch panels and fiber optic transmission equipment in use.

Connectors must meet the TIA/EIA-568 and TIA/EIA-758 standards and be tested in accordance to the Telcordia/Bellcore GR-326-CORE standard. When tested according to TIA/EIA-455-171 (FOTP-171), ensure that the connectors test to an average insertion loss of less than or equal to 0.4 dB and a maximum loss of less than or equal to 0.75 dB for any mated connector. Maintain this loss characteristic for a minimum of 500 disconnections and reconnections with periodic cleanings per EIA-455-21A (FOTP-21). Qualify and accept connectors by the connector-to-connector mating using similar fibers. Ensure that the connector operating range is -40°F to 167°F. Provide connectors with a yellow color body or boot.

Test connections at the patch panel and splices made between cables to pigtails with the OTDR to verify acceptable losses.

Remove 5 ft. of unused optical fibers at the ends of the system from the buffer tube(s) and place coiled fibers into a splice tray. Clean the water blocking compound from all optical fibers destined for splice tray usage.

Install cable tags at all splice points identifying key features of each cable such as cable name or origin and destination and fiber count. Ensure tags are self-laminating or water resistant. Print the information onto the tags electronically or write neatly using a permanent marker. Locate tags just prior to entrance into splice enclosure.

4.10. **Mechanical Components.** Provide stainless steel external screws, nuts and locking washers. Do not use self-tapping screws unless approved. Provide corrosion resistant material parts and materials resistant to fungus growth and moisture deterioration.

4.11. **Experience Requirements.**

4.11.1. **Installing Fiber Optic Cable.** The Contractor or designated subcontractor involved in the installation of the fiber optic cable must meet the experience requirements in accordance with the following:

- minimum of 3 yr. of continuous existence offering services in the installation of fiber optic cable through an outdoor conduit system or aerial and terminating in ground boxes, field cabinets or enclosures or buildings, and
completed a minimum of 3 projects where the personnel pulled a minimum of 5 mi. in length of fiber optic cable through an outdoor conduit system of aerial for each project. The completed fiber optic cable systems must have been in continuous satisfactory operation for a minimum of 1 yr.

4.11.2. Splicing and Testing of Fiber Optic Cable. The Contractor or designated subcontractor involved in the splicing and testing of fiber optic cable must meet the experience requirements in accordance with the following:

4.11.2.1. Minimum Experience. 3 yr. continuous existence offering services in the fields of fusion splicing and testing of fiber optic cable installed through a conduit system and terminating in ground boxes, field cabinets or enclosures or buildings. Experience must include all of the following:

- termination of a minimum of 48 fibers within a fiber distribution frame,
- OTDR testing and measurement of end to end attenuation of single mode and multimode fibers,
- system troubleshooting and maintenance,
- training of personnel in system maintenance,
- use of water-tight splice enclosures, and
- fusion splicing of fiber optic cable which meet the tolerable decibel (dB) losses within the range of 0.05 dB – 0.10 dB for single mode.

4.11.2.2. Completed Projects. A minimum of 3 completed projects where the personnel performed fiber optic cable splicing and terminations, system testing, system troubleshooting and maintenance during the course of the project and provided training on system maintenance. Each project must have consisted of a minimum 5 mi. of fiber optic cable installed, measured by project length not linear feet of fiber installed. The completed fiber optic cable systems must have been in continuous satisfactory operation for a minimum of 1 yr.

4.12. Documentation Requirements. Provide a minimum of 2 complete sets of fiber optic equipment submittal literature documenting compliance with the requirements of this Item including operation and maintenance manuals in hard copy format, bound, as well as an electronic version in Adobe PDF format on a CD/DVD or removable flash drive that includes the following:

- fiber optic cable literature consisting of manufacturer specification and cut sheets,
- fiber optic equipment literature consisting of manufacturer specification and cut sheets for splice enclosures, patch panels, splice trays, jumpers, cable storage devices, and fiber optic labeling devices,
- complete factory performance data documenting conformance with the performance and testing standards referenced in this Item, including pre-installation test results of the cable system,
- installation, splicing, terminating and testing plan and procedures,
- documentation of final terminated or spliced fibers, function, and equipment designation,
- OTDR calibration certificate,
- post-installation, post termination, subsystem, and final end-to-end test results,
- loss budget calculation and documentation,
- complete parts list including names of vendors,
- complete maintenance and trouble-shooting procedures, and
- proof of minimum experience and completed projects.

4.12.1. Installation Practice. Submit for approval electronic copy of the Contractors Installation Practices 30 working days prior to installation. Submit installation practices and procedures and a list of installation, splicing and test equipment used. Provide detailed field quality control procedures and corrective action procedures.

4.12.2. Manufacturer’s Certification. Accompany each reel of fiber optic cable with the manufacturer’s test data showing the conformance to the requirements in this Item.

4.12.3. Test Procedures. Submit test procedures and data forms for the pre-installation, post-installation, subsystem, final end to end test, and loss budget calculations for approval. Test procedures will require
approval before performing tests. Submit 1 copy data forms containing data and quantitative results, as well as an authorized signature. Submit a copy of the OTDR results as a hard copy or electronic copy in PDF format including all OTDR traces and clearly identifying each event (fusion splice, jumper, connector, etc.) with the measured loss identified.

4.13. **Testing.** Perform tests in accordance with testing requirements in this Item, USDA RUS CFR 1755.900, and TIA/EIA-455-61 test specifications. For all tests, provide test forms to be used that compare measured results with threshold values.

4.13.1. **Test Methods.**

4.13.1.1. **Optical Time Domain Reflectometer (OTDR) Tests.** Use the OTDR to measure fiber optic cable for overall attenuation (signal loss dB/km), fiber cable length, and identify fiber optic cable anomalies such as breaks. Perform the following 4 OTDR tests:
- pre-Installation test (Acceptance test),
- post installation test,
- post termination test, and
- final end to end test.

OTDR Settings:
- generate a file name for each OTDR scan. The file name must indicate the location or direction the test was run from, as well as the fiber number being tested,
- set the “A” cursor at the beginning of the fiber trace and set the “B” cursor at the end of the fiber trace. The distance to cursor “B” indicates the length of the fiber cable segment being measured,
- match the index of refraction to the index of the factory report,
- set the loss indicator to dB/km for the acceptance test,
- the reflectance is automatically set internally by the OTDR,
- set the pulse width at a medium range. Change the pulse width to a slow pulse width when an anomaly occurs on the fiber trace so that it can be examined closely,
- set the average at medium speed. Change the average to slow when an anomaly appears on the fiber trace to allow for closer examination of the anomaly, and
- set wavelength at 2 windows for single mode cable: 1310 nm and 1550 nm.

Provide the current OTDR calibration certificate for the device used, showing the unit has been calibrated within the last year. Show all settings on test result fiber scans.

4.13.1.2. **Pre-installation Tests.** Test and record the fiber optic cable at the site storage area prior to installation.

Conduct bi-directional OTDR tests for each fiber strand. Test each optical fiber in the cable from one end with an OTDR compatible with wavelength and fiber type. Check testing for length, point discontinuity, and approximate attenuation. Record each measurement by color, location, and type of fiber measured. Perform a measurement from the opposite end of that fiber in case a measurement cannot be made from one end. Wait for notification if loss per kilometer exceeds manufacturer’s test data by more than 0.5 dB/km or point discontinuity greater than 0.05 dB.

Perform this test within 5 days from receipt of the fiber optic cable. Test overall attenuation (dB/km), total cable length, anomalies, and cable problems. Test cable at both wavelengths (1310 nm and 1550 nm for single mode cable). Verify that the cable markings on the outer jacket are within 1% of the total cable length.

Compare factory test results with test results and return to manufacturer if test results are not identical to factory test results. If identical, document the test results. Deliver documentation for future reference.

4.13.1.3. **Post-installation Tests.** Re-test and re-record each optical fiber in the cable after installation, before termination, for loss characteristics. Test both directions of operations of the fiber.
Immediately perform the post installation test after the fiber optic cable has been installed. Test cable for overall attenuation, cable segment length, and evidence of damage or microbend with the OTDR. Replace any cable segment that is damaged during the test and document test results. Submit test results for approval.

Use the same OTDR settings for Post-Installation Tests as the Pre-Installation Tests.

4.13.1.4. Post Termination Tests. Perform the post termination test after the cable is terminated or spliced, including termination of fiber cable to fiber cable or fiber cable to fiber pigtail and fiber cable to patch panels. Check attenuation, fusion or termination point problems, and overall fiber cable segment. Determine if the attenuation and quality of the termination complies with these Specifications; if not, re-terminate the fiber and re-test until the Specification requirements are met. Test the fiber segment for attenuation and anomalies after termination acceptance. Document and submit test results after fiber segment acceptance.

4.13.1.5. Subsystem Tests. Perform network subsystem tests after integration to the fiber optic network. Test the capability of the fiber optic cable to transmit video and digital information from node to node. A node is defined as a communication cabinet, hub cabinet, surveillance cabinet, or hub building where network hub switches are located. Complete and submit approved data forms for approval.

Correct and substitute components in the subsystem if the subsystem tests fail and repeat the tests. Components may include: cable, jumper, patch panel module, or connector.

Prepare and submit a report if a component was modified as result of the subsystem test failure. Describe in the report the failure and action taken to remedy the situation.

4.13.1.6. Final End-to-End Test. Perform final end to end Test after fiber cable segments of the system are terminated using the OTDR and an optical Power Meter and Light Source (PMLS).

Perform the Part 1 of the final end to end test using OTDR:

- measure the overall fiber cable system length,
- measure the overall system attenuation, and
- check for anomalies.

Perform the Part 2 of the final end to end test using a PMLS:

- measure the absolute power of the fiber optic signal across all links, and
- check for anomalies.

Document and submit results after test acceptance.

4.13.2. Loss Budget Calculation and Documentation. Calculate the total loss budget of the system according to the following calculations and compare the actual loss in each segment of the system to the calculated budget. Submit the results for each section of fiber optic cable in tabular format reporting if the total loss is within the limits of these Specifications by noting “pass” or “fail” for each segment of fiber. A segment of fiber is defined as one that terminates at each end. Use the following calculations to determine the loss budget for each segment:

- splice loss budget = number of splices x 0.1 dB/splice,
- connector loss budget = number of connectors x 0.75 dB/connector,
- length loss budget = length of fiber optic cable (measured by OTDR) x 0.35 dB/km for 1310 nm wavelength or 0.25 dB/km for 1550 nm wavelength, and
- total Loss Budget = splice loss budget + connector loss budget + length loss budget.

Provide loss budget calculation equations on test form to be submitted as part of the documentation requirements. Provide threshold calculations described above along with measured results.
4.14. **Training.** Conduct a BISCI or IMSA certified training class (minimum of 16 hr.) for up to 10 representatives designated by the Department on procedures of installation, operations, testing, maintenance and repair of all equipment specified within this specification. Submit to the Engineer for approval, 10 copies of the training material at least 30 days before the training begins. Conduct training within the local area unless otherwise authorized by the Engineer. Include the following training material:

- NESC, NEC, and ANSI/TIA 590 code compliance,
- fiber optic cable pulling and installation techniques,
- use of installation tools,
- splicing and terminating equipment and test instruments,
- trouble shooting procedures, and
- methods of recording installation and test data.

4.15. **Warranty.** Provide a warranty for all materials furnished in this Item. Ensure that the fiber optic cable, the splice enclosures, splice centers, and cable markers have a minimum of a 2 yr. manufacturer’s warranty and that 95% of that warranty remains at the date of final acceptance by the Engineer. If the manufacturer’s warranties for the components are for a longer period, those longer period warranties will apply. Guarantee that the materials and equipment furnished and installed for this project performs according to the manufacturer’s specifications.

Ensure that the manufacturer’s warranties for off-the-shelf equipment consisting of splice enclosures, splice trays, connectors, fiber jumper cables, and fiber patch panels are fully transferable from the Contractor to the Department. Ensure that these warranties require the manufacturer to furnish replacements for any off-the-shelf part or equipment found to be defective during the warranty period at no cost to the Department within 10 calendar days of notification by the Department.

Ensure that the manufacturer’s warranty for fiber optic cable is fully transferable from the Contractor to the Department. Ensure that the warranty requires the manufacturer to furnish replacement fiber optic cable found to be defective during the warranty period at no cost to the Department within 45 calendar days of notification by the Department.

5. **MEASUREMENT**

Fiber optic cable installed, relocated and removed will be measured by the linear foot. Fiber optic splice enclosures, rack mounted splice enclosures and fiber optic patch panels will be measured by each unit installed. Splicing of Fiber Optic Cables will be measured by each fusion splice performed.

6. **PAYMENT**

6.1. **Furnish and Install.**

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Fiber Optic Cable” of the various types, and number of fibers specified. This price is full compensation for furnishing and installing all cable; for pulling through conduit or duct; aerial installation; terminating; testing; and for materials, equipment, labor, tools, documentation, warranty, training and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Fiber Optic Splice Enclosure” of the various types and “Rack Mounted Splice Enclosure.” This price is full compensation for furnishing and installing all enclosures whether aerial, underground, in cabinet or in building; and for materials, equipment, labor, tools, documentation, warranty, training and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Fiber Optic Fusion Splice” for each fusion splice performed.
shown on the plans and performed. This price is full compensation for splicing; testing; and for materials, equipment, labor, tools, documentation, warranty, training and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Fiber Patch Panel” of the various types and sizes specified. This price is full compensation for furnishing and installing all patch panels and terminating fibers on the panel as shown on the plans; and for materials, equipment, labor, tools, documentation, warranty, training and incidentals.

Conduit will be paid for under Item 618, “Conduit” and Special Specification 6016, “ITS Multi-Duct Conduit.”

Electrical conductors will be paid for under Item 620, “Electrical Conductors.”

6.2. **Install Only.** The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit bid price for “Fiber Optic Cable (Install Only)” of the various types, and number of fibers specified. This price is full compensation for installing fiber optic cable furnished by the Department; for pulling through conduit or duct; aerial installation; terminating; testing; and for materials, equipment, labor, tools, documentation, warranty, training and incidentals.

Conduit will be paid for under Item 618, “Conduit” and Special Specification 6016, “ITS Multi-Duct Conduit.”

Electrical conductors will be paid for under Item 620, “Electrical Conductors.”

6.3. **Relocate.** The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Relocate Fiber Optic Cable.” This price is full compensation for relocating all cable, regardless of cable size; for pulling through conduit or duct; aerial installation; terminating; testing; and for materials, equipment, labor, tools, documentation, and incidentals.

6.4. **Remove.** The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Remove Fiber Optic Cable”. This price is full compensation for removing all cable for salvage, regardless of cable size; testing; returning to the Department; and for materials, equipment, labor, tools, documentation, and incidentals.
1. **DESCRIPTION**

Furnish, fabricate, deliver, install, and test Intelligent Transportation System (ITS) ground mounted cabinets of the various types and sizes at locations shown on the plans, or as directed.

1.1. **ITS Ground Mounted Cabinet Application.** Provide ITS ground mounted cabinet to house ITS field equipment as shown on the plans, or as directed. ITS equipment applications inside the cabinet may include, but are not limited to:

- radar vehicle sensing device (RVSD),
- wireless Ethernet radio,
- closed circuit television (CCTV) field equipment,
- bluetooth reader,
- automatic vehicle identification (AVI),
- loop detection equipment,
- dynamic message sign (DMS) equipment,
- DMS controller,
- lane control signal (LCS) controller units,
- drop/insert multiplexor/demultiplexor,
- data fiber optic transceivers,
- modular fiber distribution housing,
- subrate data multiplexor distribution panel,
- ramp meter control panel,
- fiber optic video transmitter,
- fiber optic splice trays,
- CCTV color video compression system (CVCS),
- solar power assembly,
- Environmental Sensor Station (ESS),
- highway advisory radio (HAR),
- terminal servers,
- surge arrestors,
- hardened ethernet switches, and
- codecs.

Provide each cabinet complete with all internal components, back and side panels, terminal strips, harnesses, and connectors. Provide all mounting hardware necessary to provide for installation of equipment as described in this Specification. Typically, an ITS ground mounted cabinet may contain, but is not limited to the following:

- 19-in. EIA racks,
- adjustable shelves,
- fan and thermostat assemblies,
- cabinet lights,
- power distribution panel, (as required on the plans or as directed),
- right or left side panel (as required on the plans or as directed),
- surge protection,
- terminal strips,
- interconnect harnesses with connectors,
- laptop shelf and slide out drawer with telescoping drawer guides “door open” connection to back panel,
- ITS equipment hardware (as listed in Article 2.1), and
- all necessary installation and mounting hardware.

Ensure all cabinets are identical in size, shape and quality for each type as provisioned in the plans or as directed. Equip and configure the cabinet set-up as defined in this Specification and as detailed in the ITS ground mounted cabinet standards.

Submit details of the cabinet design and equipment layout for each cabinet to the Engineer for review and approval prior to fabrication.

Ensure the equipment, design, and construction use industry standard techniques with a minimum number of different parts, subassemblies, circuits, cards, and modules to maximize standardization and commonality.

Design equipment for ease of maintenance. Component parts must be readily accessible for inspection and maintenance. Tools and test instruments required for maintenance by maintenance personnel must be simple hand held tools, basic meters and oscilloscopes.

2. MATERIALS

Provide new materials that comply with the details shown on the plans, the requirements of this Item, and the pertinent requirements of the following Items:

- Item 421, “Hydraulic Cement Concrete”
- Item 440, “Reinforcing Steel”
- Item 449, “Anchor Bolts”
- Item 618, “Conduits”
- Item 620, “Electrical Conductors”
- Item 656, “Foundations for Traffic Control Devices,” and
- Item 740, “Graffiti Removal and Anti-Graffiti Coating”.

2.1. Electrical Requirements.

2.1.1. Primary Input Power Interruption. Use material that meets all the requirements in Section 2.1.4., “Power Interruption” of the National Electrical Manufacturers Association (NEMA) Standard TS2 for Traffic Control System, or most current version.

2.1.2. Power Service Transients. Use material that meets all the requirements in Section 2.1.6., “Transients” of the National Electrical Manufacturers Association (NEMA) Standard TS 2 for Traffic Control System, or most current version.

2.1.3. Power Service Protection. Ensure that equipment contains readily accessible, manually resettable or replaceable circuit protection devices (such as circuit breakers or fuses) for equipment and power source protection. Provide circuit breakers or fuses sized such that no wire, component, connector, PC board or assembly is subjected to sustained current in excess of their respective design limits upon failure of any single circuit element or wiring.

2.1.4. Power Distribution Panel. Provide cabinets with a 120 VAC +/− 5 VAC power distribution panel. Provide the following components on the panel:

2.1.4.1. Duplex Receptacles. Provide two 120 VAC NEMA Type 5-15R duplex receptacles, or as shown on the plans, protected by a circuit breaker. Permanently label duplex receptacles “For Internal ITS Equipment.
Only. Install duplex receptacles in an isolated location and provide a clear 1/8 in. thick removable cover made from transparent thermoplastic material to cover the duplex receptacles. Ensure this cover is installed as not to interfere with the functional operation within the cabinet and allows enough space to plug in AC adapters and any necessary equipment. Submit alternative cover material for approval as part of the documentation submittal requirement.

2.1.4.2. **Ground Fault Circuit Interrupter (GFCI) Duplex Receptacles.** Provide at least one 120 VAC NEMA Type 5-15R GFCI duplex receptacle, or as shown on the plans, protected by a circuit breaker. This GFCI duplex receptacle is intended for maintenance personnel and is not to be used to serve equipment inside the cabinet. Permanently label GFCI duplex receptacles “For Personnel Use.” Install GFCI duplex receptacles in a readily accessible location.

Provide a 120 VAC, rack mountable outlet strip with 6 NEMA Type 5-15R receptacles with surge suppression. Plug outlet strip into GFCI duplex receptacle and label for personnel use.

Circuit Breakers. Determine the ampere rating, quantity, and configuration for main, accessory, spare, and equipment circuit breakers to support ITS equipment loads as shown on the plans. Provide Underwriters Laboratories (UL) 489 listed circuit breakers capable of operating in accordance with Section 2, “Environmental Standards and Test Procedures” of NEMA TS2-2003, or most current version. Provide circuit breakers with an interrupt capacity of 5,000 A. and insulation resistance of 100 megohms at 500 VDC. Provide minimum ampere rating for the following circuit types:

2.1.4.2.1. **Main Breaker.** Size the main circuit breaker such that the load of all branch circuits is less than the main circuit breaker ampere rating in accordance with the most current version of the National Electrical Code (NEC).

2.1.4.2.2. **Accessory Breaker.** Minimum 15 A. Size accessory circuit breaker to protect lighting, door switches, fans, and GFCI duplex receptacle in accordance with the most current version of the NEC.

2.1.4.2.3. **Equipment Breakers.** Minimum 15 A. Size equipment breaker to protect ITS equipment and duplex receptacles in accordance with the most current version of the NEC.

2.1.4.2.4. **Spare Equipment Breaker.** Minimum 20 A. Provide one spare equipment breaker for future use.

Furnish breakers, which are in addition to any auxiliary fuses, with the electronic equipment to protect component parts. Provide 3-terminal lightning arrestor to protect the load side of all circuit breakers. Connect the arrestor into the circuit with size 8 AWG or larger stranded copper conductors. Connect arrestor to the line filter as recommended by the manufacturer.

2.1.4.3. **Power Line Surge Protection.** Provide and install power line surge protection devices that meet the requirements of Article 2.4.1.

2.1.4.4. **Power Cable Input Junction Terminals.** Provide power distribution blocks suitable for use as a power feed and junction points for 2 and 3 wire circuits. Accommodate up to No. 4 AWG conductors on the line side of each circuit. Provide appropriate sized lugs at the junction terminals for conductors larger than a No. 4 AWG when shown on the plans.

Electrically isolate the AC neutral and equipment ground wiring from the line wiring by an insulation resistance of at least 10 megohms when measured at the AC neutral. Color code the AC neutral and equipment grounding wiring white and green respectively in accordance with the most current version of the NEC.

Utilize the back panel to distribute and properly interconnect all cabinet wiring related to the specific complement of equipment called out on the plans. Each item of equipment including any furnished by the Department must have the cable harness properly terminated at terminal boards on the back panel. Ensure all functions available at the equipment connector are carried in the connector cable harness to the terminal blocks from the power distribution panel mounted on the left side panel of the cabinet.
2.1.5. **Right Side Panel.** When shown on the plans, for a required ITS application, provide fully wired loop input distribution panel to be mounted on the lower right inside wall when facing the front inside of the door opening of the cabinet. Provide a detailed layout for approval by the Engineer. Provide a panel with the following:

2.1.5.1. **Power Distribution.** If any 115 VAC power is needed on the right side panel, it will be obtained from the power distribution terminal board located on the left side panel, which is fed from the equipment circuit breaker located on the left side panel.

2.1.5.2. **Loop Surge Protection.** Mount surge protection for incoming loop pairs on the right side panel.

2.1.6. **Back Panel.** When shown on the plans, for a required ITS application, provide cabinet with a fully wired equipment panel to be mounted on the lower rear inside wall of the cabinet. Provide a detailed layout for approval by the Engineer. Panel to include detector terminal boards to accommodate equipment shown on the plans or as directed.

2.1.7. **Alternative Power Option.** When shown on the plans, accommodate renewable electrical power source for the design load specified in accordance with “ITS Solar Power System” Specification. Renewable electrical power source may, or may not, be integrated with public utility electrical services, as shown on the plans or as directed. Accommodate solar system components including batteries and solar charge controller.

2.1.8. **Wiring.** Ensure all cabinet wiring identified by the use of insulated pre-printed sleeving slipped over the wire before attachment of the lug or making the connection. Supply enough text on wire markers in plain words or abbreviations with sufficient level of detail so that a translating sheet will not be required to identify the type and size of wire.

Cut all wires to the proper length before assembly. Ensure no wires are doubled back to take up slack. Ensure harnesses to connectors are covered with braided cable sleeves. Secure cables with nylon cable clamps.

Provide service loops to facilitate removal and replacement of assemblies, panels, and modules. Use insulated parts and wire rated for at least 600 V. Color-code harnesses and wiring.

Route and bundle all wiring containing line voltage AC separately or shield from all low voltage, i.e., control circuits. Cover all conductors and live terminals or parts, which could be hazardous to maintenance personnel, with suitable insulating material.

Provide AC internal cabinet wiring identified in accordance with the most current version of the NEC. Provide white insulated conductors for AC common. Provide green insulated conductors for equipment ground. Provide any color different from the foregoing on other conductors in accordance with the most current version of the NEC. For equipment that requires grounding, provide ground conductors and do not use conduit for grounding. Provide No. 22 AWG or larger stranded conductors for internal cabinet wiring. Provide conductors that are UL-listed THHN in accordance with the most current version of the NEC. Ensure the insulation has at least a thickness of 10 mm. Ensure all wiring containing line voltage is at least size No. 14 AWG. No strands of any conductor may be trimmed to “fit” the wiring into the breaker or terminal block.

2.1.9. **Terminal Strips.** Provide terminal strips located on the back panel that are accessible to the extent that it is not necessary to remove the electronic equipment from the cabinet to make an inspection or connection.

Ensure terminal blocks are 2 position, multiple pole barrier type.

Provide shorting bars in each of the positions provided, along with an integral marking strip.

Arrange terminal blocks such that they will not upset the entrance, training and connection of incoming field conductors.
Identify all terminals with legends permanently affixed and attached to the terminal blocks.

Ensure not more than 3 conductors are brought to any 1 terminal screw.

Ensure no electrically energized components or connectors extend beyond the protection afforded by the barriers.

Locate all terminal blocks below the shelves.

Ensure terminals used for field connections are secure conductors by means of a No. 10-32 nickel or cadmium plated brass binder head screw.

Ensure terminals used for interwiring connections, but not for field connections, are secure conductors by means of a No. 5-32 nickel plated brass binder head screw.

Terminate all connections to and from the electronic equipment to an interwiring-type block. These blocks will act as intermediate connection points for all electronic equipment input and output.

Provide termination panels that are used to distribute and properly interconnect all cabinet wiring related to the specific complement of equipment as shown on the plans. Provide properly terminated cable harnesses for each item, including any furnished by the Department. Provide all functions available at the equipment terminals that are carried in the connector cable harness.

2.1.10. **Cabinet Internal Grounding.** The cabinet internal ground consists of at least 1 ground bus-bar permanently affixed to the cabinet and connected to the grounding electrode.

Use bare stranded No. 4 AWG copper wire between bus-bars and between the bus-bar and grounding electrode.

Ensure each copper ground bus-bar has at least 14 connection points, each capable of securing bare conductor ranging in size from No 4 AWG to No 14 AWG.

Return AC neutral and equipment ground wiring to these bus-bars.

2.1.11. **Door Switch.** Provide a door switch meeting the following requirements:

- momentary, pin-type door switch,
- installed in the cabinet or on the door,
- connected to a terminal so that the equipment installed in the cabinet can confirm input is connected to logic ground when the cabinet door is open, and
- engage cabinet light when the door is opened.

Provide 2 momentary, pin-type door switches for each door provided with the cabinet. Wire 1 switch to turn on the cabinet lights when the door is open, and off when the door is closed. Wire the other in parallel to a terminal block to detect a cabinet intrusion condition.

2.2. **Mechanical Requirements.**

2.2.1. **Size and Construction.** Provide ITS ground mounted cabinets meeting the configuration types detailed in the ITS Ground Mounted Cabinet standards.
Determine the suitability of the listed cabinet configuration types for the equipment at each field location identified on the plans or as directed.

2.2.2. **Ventilation.** Provide the cabinet with vent openings to allow cooling of electronic components.

Locate louvered air intake vent openings on the lower portion of the cabinet doors and cover fully inside with a commercially available disposable 3 layer graded pleated type filter with a minimum size of 16 in. (high) x 16 in. (wide) and a thickness of 1 in. For Type 5 cabinet, provide 2 filters for each door. Securely mount so that any air entering the cabinet must pass through the filter. Ensure the cabinet opening for intake of air is large enough to accommodate filter size. Screen the exhaust to prevent entry of insects. Provide the screen openings no larger than 0.0125-sq. in.

Vent and cool the cabinet by thermostatically controlled electric fans. Provide adjustable thermostat with an adjustment range of 70 to 110°F. Provide a press-to-test switch to test the operation of the fan.

Provide at least 4 commercially available fans with a capacity of at least 110 cfm each. Provide the total free air opening of the vent large enough to prevent excessive back-pressure on the fan.

2.2.3. **Lighting.** Provide minimum 15 W fluorescent light fixtures above each door inside the cabinet, each with clear shatter proof lens. NEMA TS2 rated light-emitting diode (LED) fixtures are acceptable instead of fluorescent light fixtures. Determine the appropriate number of fixtures to achieve at least 1000 lumens to illuminate the equipment. Position the fixtures to provide illumination to the face of the equipment in the cabinet and not into a technician’s eyes.

2.2.4. **Exterior Finish.** Provide cabinets with a smooth aluminum finish and the exterior in its unpainted natural color.

When shown on the plans or as directed, provide cabinets with an anti-graffiti coating in accordance with Item 740 “Graffiti Removal and Anti-Graffiti Coating.”

2.2.5. **Serial Number.** Provide the cabinets with a serial number unique to the manufacturer, preceded by an assigned 2 letter manufacturer’s code. Provide at least a 0.2 in. letter height. Stamp the entire identification code and number on a metal plate riveted to the cabinet, stamp directly on the interior cabinet wall, or engrave on a metalized mylar plate that is epoxied to the cabinet on the upper right hand cabinet side wall.

2.2.6. **Modular Design.** Provide cabinets that have a modular design and allow ITS equipment to be installed in a variety of mounting configurations as detailed on the plans or as directed.

Provide Type 4 cabinets with 1 Electronic Industries Alliance (EIA) 19 in. rack cage, sized appropriately based on cabinet type inside height dimension. Provide a rack with at least 1 1RU (RU = rack unit) horizontal power strip. Provide 2 unistrut or DIN rail channels on each side wall of the cabinet for mounting power panel and auxiliary ITS equipment.

Provide Type 5 and Type 6 cabinets with 2 side by side EIA 19 in. racks, sized appropriately based on cabinet type inside height dimension. Provide a rack with at least 1 1RU horizontal power strip. Provide 2 unistrut or DIN rail channels on each side wall of the cabinet for mounting power panel and auxiliary ITS equipment.
2.2.7. **Shelves.** Provide adjustable shelves in each cabinet as required to support the equipment as specified on the plans. Ensure shelf adjustment is at 1 RU intervals in the vertical position. Provide shelves that can be mounted to an EIA 19 in. rack cage or unistrut channel as detailed in the standards.

Provide shelves that are removable and capable of supporting the electronic equipment. Provide a minimum of 2 in. between the back and front edge of the shelf to back inside wall and door of the cabinet respectively to allow room for the equipment cables and connectors.

Provide each cabinet type with at least 1 slide out drawer with telescoping drawer guides to allow full extension from the rack frame. Provide at least 1.75 in. (high) x 16 in. (wide) x 14 in. (deep) drawer with a hinged lid to allow access to storage space.

2.3. **Surge Protective Devices (SPD).** Provide SPDs to protect electronics from lightning, transient voltage surges, and induced current. Install SPDs on all power, data, video, and any other conductive circuit.

2.3.1. **120 V or 120/240 V SPD at Service and ITS Cabinet Power Distribution Panel.** Install an SPD at the closest termination or disconnection point where the supply circuit enters the cabinet. Locate the SPD on the load side of the cabinet power distribution panel breakers and ahead of any and all electronic devices. Keep leads as short as possible with all conductor bends formed to the maximum possible radius. Connect the SPD ground lead directly to the ground bus. Use of wire nuts is prohibited. Install in accordance with manufacturers recommendations.

Provide UL Listed Type 1 or Type 2 SPD and labeled to UL1449 Third Edition, posted at UL.com, under Certifications UL Category Code VZCA, and have a 20kA I-nominal rating. Provide SPD rated as NEMA 4. SPD with integral EMI/RFI line filtering may be required if shown on the plans.

Do not exceed 700 V on the Voltage Protection Rating (VPR) on any mode (L-N, L-G, and N-G).

Do not exceed 150 V on the Maximum Continuous Operating Voltage (MCOV).

Equal or exceed 40kA the SPD surge current rating per mode (L-N), (L-G), (N-G).

Equal or exceed 50 kA or the available short circuit current, whichever is higher for the SPD Short Circuit Current Rating (SCCR).

Provide SPD with directly connected Metal Oxide Varistors (MOV) exceeding 32 mm in diameter with thermal safety disconnectors. Gas tube and spark gap SPD are not be permitted. Ensure each MOV’s operational status can be monitored via visual indicator, including N-G mode.

Provide SPD with one set of Normally Open (NO), Normally Closed (NC) Form C contacts for remote monitoring.

Ensure the SPD utilized for AC power does not dissipate any energy and does not provide any series impedance during standby operation. Return the unit to its non-shunting mode after the passage of any surge and do not allow the shunting of AC power.

2.3.2. **Parallel SPD for 120 V Equipment.** Install an SPD inside of the cabinet on the power distribution to the equipment. Keep leads as short as possible with all conductor bends formed to the maximum possible radius. Connect the SPD ground lead directly to the ground bus. Use of wire nuts is prohibited. Install in accordance with manufacturers recommendations.

Provide UL Listed Type 1 or Type 2 SPD labeled to UL1449 Third Edition, posted at UL.com, under Certifications UL Category Code VZCA, and have a 20kA I-nominal rating. Provide SPD rated as NEMA 4.

Do not exceed 700 V on the Voltage Protection Rating (VPR) on any mode (L-N and N-G).
Do not exceed 150 V on the Maximum Continuous Operating Voltage (MCOV).

Equal or exceed 40 kA the SPD surge current rating per mode (L-N) and (N-G).

Equal or exceed 50 kA or the available short circuit current, whichever is higher for the SPD Short Circuit Current Rating (SCCR).

Provide SPD with directly connected Metal Oxide Varistors (MOV) exceeding 32 mm in diameter with thermal safety disconnectors. Gas tube and spark gap SPD are not permitted. Ensure each MOV’s operational status can be monitored via visual indicator, including N-G mode.

Provide SPD with one set of Normally Open (NO), Normally Closed (NC) Form C contacts for remote monitoring.

2.3.3. Low-Voltage Power, Control, Data and Signal Systems SPD. Install a specialized SPD on all conductive circuits including, but not limited to, data communication cables, coaxial video cables, and low-voltage power cables. Ensure that these devices comply with the functional requirements shown in Table 2 for all available modes (i.e., power L-N, N-G; data and signal center pin-to-shield, L-L, L-G, and shield-G where appropriate).

These specialized SPD must have an operating voltage matching the characteristics of the circuit. Ensure that these specialized SPD are UL 497B or UL 497C Listed, as applicable.

Provide the SPD with 3 stages of surge suppression in a Pi (π) configuration. The first stage (primary side) consists of parallel-connected Gas Discharge Tubes (GDTs). The second stage consists of a series connected resistor or inductor. The third stage (secondary side) consists of parallel-connected transorbs or silicone avalanche diodes (SADs).

Ground the SPD to the DIN rail and a wire terminal connection point. (Grounding solely through the DIN rail connection is not adequate and does not meet the performance or intent of this specification.)

Install coaxial SPDs in a manner that prevents ground loops and resulting signal deterioration. This is usually caused where the cable has different references to ground at either end and connecting SPDs at both ends that have only Pin to Shield protection completes a ground loop circuit through the Shield. SPDs having Pin to Shield protection, and separate Shield to Ground protection are acceptable to eliminate ground loops.
2.4. **Environmental Design Requirements.** Provide cabinets that meet the functional requirements of this Item during and after subjection to any combination of the following requirements:

- ambient temperature range of -30 to 165°F,
- temperature shock at most 30°F per hour, during which the relative humidity does not exceed 95%,
- relative humidity range at most 95% over the temperature range of 40 to 110°F, and
- operates with moisture condensation on all surfaces caused by temperature changes.

2.5. **Vibration.** Material used must show no degradation of mechanical structure, soldered components, plug in components or satisfactory operation in accordance with the manufacturer's equipment specifications after being subjected to the vibration test as described in the NEMA standard TS2, Section 2.2.8, "Vibration Test", or the most current version.

3. **FABRICATION**

3.1. **Ground Mounted Cabinet.** Continuously weld all exterior seams for cabinet and doors. Fill edges to a radius of 0.03125 in. minimum. Smooth exterior welds.

Welding on aluminum cabinets are done by the gas metal arc (MIG) or gas tungsten arc (TIG) process using bare aluminum welding electrodes. Ensure electrodes conform to the requirements of the American Welding Society (AWS) A5.10 for ER5356 aluminum alloy bare welding electrodes.

Procedures, welding machines and welding machine operators for welding on aluminum must be qualified and conform with the requirements of AWS B3.0, "Welding Procedures and Performance Qualification", and to the practices recommended in AWS C5.6.

Table 2

<table>
<thead>
<tr>
<th>Circuit Description</th>
<th>Maximum Continuous Operating Voltage (MCOV)</th>
<th>Frequency/ Bandwidth/ Data Rate</th>
<th>Surge Capacity</th>
<th>Maximum Let-Through Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 VDC</td>
<td>15-20 V</td>
<td>N/A</td>
<td>5 kA per mode (8x20 µs)</td>
<td><150 Vpk</td>
</tr>
<tr>
<td>24 VAC</td>
<td>30-55 V</td>
<td>N/A</td>
<td>5 kA per mode (8x20 µs)</td>
<td><175 Vpk</td>
</tr>
<tr>
<td>48 VDC</td>
<td>60-85 V</td>
<td>N/A</td>
<td>5 kA per mode (8x20 µs)</td>
<td><200 Vpk</td>
</tr>
<tr>
<td>Coaxial Composite Video</td>
<td>4-8 V</td>
<td>Up to 1.5 GHz</td>
<td>10 kA per mode (8x20 µs)</td>
<td><100 Vpk</td>
</tr>
<tr>
<td>RS422/RS485</td>
<td>8-15 V</td>
<td>Up to 10 Mbps</td>
<td>10 kA per mode (8x20 µs)</td>
<td><30 Vpk</td>
</tr>
<tr>
<td>T1</td>
<td>13-30V</td>
<td>Up to 10 Mbps</td>
<td>10 kA per mode (8x20 µs)</td>
<td><30 Vpk</td>
</tr>
<tr>
<td>Ethernet Data</td>
<td>7-12V</td>
<td>Up to 100 Mbps</td>
<td>3 kA per mode (10x1000 µs)</td>
<td><30 Vpk</td>
</tr>
</tbody>
</table>
Construct all cabinets of welded sheet aluminum with a thickness of at least 0.125 in. meeting NEMA 3R standards. Do not allow wood, wood fiber product, or flammable products in the cabinet. Seal cabinet structure to prevent the entry of rain, dust, and dirt.

Provide a sunshield on the exterior top of the cabinet to reflect solar rays and mitigate temperature build-up inside the cabinet. Construct sunshield out of 0.125 in. thick aluminum and provide a minimum of 1.25 in. clearance above the top of cabinet secured in four locations.

Attach aluminum lifting eyes or ears to the top of the cabinet to permit lifting the cabinet with a sling. Lifting eyes may be permanently fabricated to the cabinet frame as long as they do not interfere with the construction and operation of the sunshield. Manufacturer may provide removable lifting eyes that can be removed after installation. Seal any penetrations to the cabinet exterior or sunshield after removal of lifting eyes.

Ensure cabinets conform to the requirements of ASTM designation: B209 for 5052-H32 aluminum sheet.

3.1.1. **Door.** Provide sturdy and torsionally rigid cabinet doors that overlap and substantially cover the full area of the front of the cabinet. Attach cabinet doors by a minimum of 3 heavy duty hinges or full length hinge. Provide stainless steel hinge pins.

Fabricate the doors and hinges to withstand a 100 lb. per vertical foot force applied to the outer edge of the door when open without permanent deformation or impairment of the door or cabinet body when the load is removed.

Fit the cabinet doors with Number 2 Corbin lock and aluminum or chrome plated handle with at least a 3/8 in. drive pin and a 3 point latch. Design the lock and latch so that the handle cannot be released until the lock is released. Provide a padlock of the type directed by the Engineer. Provide a locking ring for a padlock. Provide 2 keys for the door and 2 keys for the padlock with each cabinet. Design the lock and latch so that the handle cannot be released until the lock is released. Provide a padlock of the type directed by the Engineer. Provide a locking ring for a padlock. Provide 2 keys for the door and 2 keys for the padlock with each cabinet. Locate the lock clear of the arc of the handle. Keys must be removable in the locked position only. Mount locks with 2 stainless steel machine screws. Provide cabinet doors with a catch mechanism to hold the door open at 3 positions: 90°, 120°, and 160°.

Fabricate the door and door stop mechanism to withstand a simulated wind load of 5 lb. per sq. ft. applied to both inside and outside surfaces without failure, permanent deformation, or compromising of door position.

Provide cabinets without auxiliary police doors.

Provide a gasket to act as a permanent and weather resistant seal at the cabinet door facing. The gasket material must be of a non-absorbent material and maintain its resiliency after long term exposure to the outdoor environment.

Provide a gasket with a minimum thickness of 0.25 in. Locate the gasket in a channel provided for this purpose either on the cabinet or on the door. An "L" bracket is acceptable instead of this channel if the gasket is fitted snugly against the bracket to insure a uniformly dust and weather resistant seal around the entire door facing.

3.1.2. **Mechanical Components.** Ensure all external screws, nuts, and locking washers are stainless steel. Do not use self-tapping screws unless specifically approved by the Engineer.

Ensure all parts are made of corrosion resistant material, such as plastic, stainless steel, aluminum or brass.

Ensure all materials used in construction are resistant to fungus growth and moisture deterioration.

Separate dissimilar metals by an inert dielectric material.
4. CONSTRUCTION

4.1. General. For ITS cabinets installed on a slope, ensure the cabinet primary door faces and opens to the high side of the slope and provide safety railing in accordance with the ITS ground mounted cabinet standards. Safety railing is subsidiary to this Item. Stake cabinet foundation forms and underground conduit entering the foundation before installation and secure Department approval before pouring foundation. It is understood that cabinet location may vary from the plans to accommodate field conditions.

Construct the cabinet foundation in accordance with Item 656, “Foundations for Traffic Control Devices”, unless otherwise specified by the Engineer.

Concrete maintenance pads have been integrated into the foundation design found on the ITS ground mounted cabinet standards to accommodate door configuration options.

4.2. Mounting Hardware. Furnish anchor bolts to mount the cabinet to the foundation. Manufacturer to determine the appropriate size anchor bolts by cabinet type and foundation size. Provide appropriate mounting plates and any other necessary hardware to mount the cabinet on a foundation.

4.3. Installation. Ground the cabinet as depicted in the ITS grounding standards. For retrofit scenarios, measure resistance to ground before installing cabinet in accordance with IEEE 81. Provide additional grounding rods and install additional grounding conductors as detailed in the ITS Grounding Standards to achieve less than 5 ohms resistance. Additional ground rods and grounding conductors are subsidiary to this Item.

Immediately before mounting the cabinet on the foundation, apply a bead of silicone caulk to seal the cabinet base to the foundation.

Seal any space between conduit entering the cabinet and the foundation with silicone caulk or approved sealant compound.

Install conduits as shown on the plans or as directed and in accordance with Item 618, “Conduit.” Place wiring in a neat and orderly manner grouped together with nylon tie-downs.

After wiring is installed, seal the conduits terminated in the cabinet foundation with a duct seal or other similar approved sealant inside of the ends of the conduit in the cabinet to prevent moisture, insects and critters from entering the conduits.

4.3.1. Connection of Lead-In Cable. Connect the detector lead-in cables, when shown on the plans or as directed, to the detector terminal blocks in the following manner:

Dress each cable into position in conformance with the approved lead-in cable position on the panel (bundle cables together and broken out by their position on the terminal boards),

Place cable as close to the terminal points as possible and left floating, and

Ground the cable shield after testing and in accordance with the detector manufacturers’ specifications.

4.3.2. Connection of Miscellaneous Cables. Terminate connection of signal wires, sign control wires and any other wires required to complete connections for an operational system on terminal blocks.

Design the equipment for ease of maintenance. All component parts must be readily accessible for inspection and maintenance. The only tools and test instruments required for maintenance by maintenance personnel must be simple hand held tools, basic meters and oscilloscopes.

Mount cabinet plumb in all directions.
4.4. **Removal and Replacement of Curbs and Walks.** The Contractor to secure approval of the Engineer before cutting into or removing sidewalks or curbs not shown on the plans to be removed or replaced.

Restore any curbs or sidewalks after work is completed, which have been removed, to equivalent original condition and to the satisfaction of the Engineer.

All completed surfaces that are adjacent to the cabinet foundation must be level and free of trip hazards. Any difference in level of adjacent structures are to be addressed in the field and approved by the department.

4.5. **Relocation.** Before removal of the existing cabinet, disconnect and isolate the power cables from the electric power supply and disconnect all cables (power and communication) from the equipment.

Inspect the existing cabinet, with a representative from the Department, and document any evidence of structural damage before removal. Remove and deliver to the Department existing cabinets that fail structural inspection to an address to be supplied by the Department.

Remove the existing cabinet in a manner acceptable to the Engineer. Use a method that does not cause undue overstress or damage to the structure or appurtenances attached.

Remove the existing concrete foundation to a depth of at least 2 ft. below finish grade with all steel cut off. Backfill the excavation with material equal in composition and density to the surrounding area. Replace any surfacing, such as asphalt pavement, concrete riprap or brick pavers, with like material to equivalent condition as approved by the Engineer.

Supply all new anchor bolts required for the installation of the cabinet. Match bolt dimensions and lengths previously used or as shown on the plans or as directed.

4.6. **Removal.** Present the work in a neat, professional finished appearance. Maintain safe construction and operation practices. Use established industry and utility safety practices when removing cabinets near overhead or underground facilities. Consult with the appropriate utility company before beginning work.

Inspect the cabinet, with a representative from the Department, and remove any ITS equipment, associated mounting hardware, and cabling inside the cabinet before commencing work.

Before removal of the existing cabinet, disconnect and isolate the power cables from the electric power supply and disconnect all cables (power and communication) from the equipment. Remove and coil existing cabling to the nearest ITS ground box or as identified on the plans.

Carefully remove the cabinet and avoid damage or injury to surrounding objects or individuals. Deliver the cabinet to an address to be supplied by the Department.

Remove the existing foundation to a depth of 2 ft. below grade with all steel cut off. Backfill the excavation with material equal in composition and density to the surrounding area. Replace any surfacing, such as asphalt pavement, concrete riprap, or brick pavers, with like material to equivalent condition as approved by the Engineer.

4.7. **Testing.**

4.7.1. **Installation.** Unless otherwise shown on the plans, perform the following tests on cabinets supplied through this Item.

4.7.1.1. **Test Procedures Documentation.** Provide 5 copies of the test procedures to include tests identified in Article 4.9.2 through Article 4.9.4 inclusive and blank data forms to the Engineer for review and comment at least 45 days before testing for each test required on this project. Include the sequence of the tests in the procedures. The Engineer will comment, approve, or reject test procedures within 30 days after Contractor submittal of equipment for tests. Contractor to resubmit if necessary rejected test procedures for final
approval within 10 days before testing. Review time is calendar days. Conduct all tests in accordance with the approved test procedures. The Department may witness all tests.

Record test data and quantitative results on data forms. No bid item measurement or payment will be made until the Engineer has verified the test results meet the requirements of the specification. The data forms for all tests, except design approval tests, must be signed by an authorized representative of the Contractor.

Provide written notice to the Engineer within 48 hr. of discovery of any testing discrepancy performed in testing by the contractor. Furnish data forms containing the acceptable range of expected results and measured values.

4.7.1.2. Design Approval Test. Conduct a design approval test on 10 percent of the total number of cabinets supplied as part of the project, with at least 1 of each type of cabinet used on the project.

Certification from an independent testing laboratory of a successfully completed design approval test is acceptable. Ensure that the testing by this laboratory is performed in accordance with the requirements of this specification. Failure of independent tests to comply with the requirements of this specification will be grounds for rejection of any certification.

Provide a copy of the certification to the Engineer. The data forms for the design approval tests must be signed by an authorized representative (company official) of the equipment manufacturer or by an authorized representative of an independent testing facility.

Notify the Engineer 10 working days before conducting this testing. The Department may witness all the tests. Perform the following tests:

4.7.1.2.1. Power Service Transients. Provide equipment that meets the performance requirements, specified in this Item, when subjected to the power service transients as specified in NEMA TS 2, Section 2.2.7.2, “Transient Tests (Power Service)”, or most current version.

4.7.1.2.2. Temperature and Condensation. Provide equipment that meets the performance requirements, specified in this Item, when subjected to the following conditions in the order specified below:

- Stabilize the equipment at -30°F and test as specified in NEMA TS2, Sections 2.2.7.3, “Low-Temperature Low-Voltage Tests” and 2.2.7.4, “Low-Temperature High-Voltage Tests”, or most current version.
- Allow the equipment to warm up to room temperature in an atmosphere with relative humidity of at least 40%. Operate the equipment for 2 hr., while wet, without degradation or failure.
- Stabilize the equipment at 165°F and test as specified in NEMA TS2, Sections 2.2.7.5, “High-Temperature High Voltage Tests” and 2.2.7.6, “High-Temperature Low-Voltage Tests”, or most current version.

4.7.1.2.3. Relative Humidity. Provide equipment that meets the performance requirements, specified in this Item, within 30 min. of being subjected to a temperature of 165°F and a relative humidity of 18% for 48 hr.

4.7.1.2.4. Vibration. Provide equipment that shows no degradation of mechanical structure, soldered components, or plug-in components and will operate in accordance with the manufacturer’s equipment specifications after being subjected to the vibration tests as described in NEMA TS2, Section 2.2.8, “Vibration Test”, or most current version.

4.7.1.2.5. Power Interruption. Provide equipment that meets the performance requirements, specified in this Item, when subjected to nominal input voltage variations as specified in NEMA TS2, Section 2.2.10, “Power Interruption Test”, or most current version.

4.7.1.3. Stand-Alone Tests. Conduct a stand-alone test for each cabinet after installation. Exercise all stand-alone (non-network) functional operations consisting of the following, at a minimum:
- 19-in. EIA rack,
- adjustable shelves,
- locking mechanism,
- fan and thermostat,
- cabinet light,
- back panel,
- circuit breakers,
- surge protection,
- grounding system,
- terminal strips,
- interconnect harnesses with connectors,
- weatherproofing, and
- “Door Open” connection to back panel.

Notify the Engineer 5 working days before conducting this test. The Engineer may witness all the tests.

4.7.1.4. Consequences of Test Failure. If a unit fails a test, submit a report describing the nature of the failure and the actions taken to remedy the situation before modification or replacement of the unit. If a unit requires modification, correct the fault and then repeat the test until successfully completed. Correct minor discrepancies within 30 days of written notice to the Engineer. If a unit requires replacement, provide a new unit and then repeat the test until successfully completed. Major discrepancies that will substantially delay receipt and acceptance of the unit will be cause for rejection of the unit.

Failure to satisfy the requirements of any test is considered a defect and the equipment is subject to rejection by the Engineer. The rejected equipment may be offered again for retest provided all noncompliance has been corrected.

If a failure pattern develops in similar units within the system, implement corrective measures, including modification or replacement of units, to all similar units within the system as directed. Perform the corrective measures within 30 calendar days without additional cost or extension of the contract period.

4.7.1.4.1. Consequences of Design Approval Test Failure. If the equipment fails the design approval test, correct the fault within 30 days and then repeat the design approval test until successfully completed.

4.7.1.4.2. Consequences of Demonstration Test Failure. If the equipment fails the demonstration test, correct the fault within 30 days and then repeat the demonstration test until successfully completed.

4.7.1.4.3. Consequences of Stand-Alone Test Failure. If the equipment fails the stand-alone test, correct the fault and then repeat the stand-alone test until successfully completed.

4.7.2. Relocation.

4.7.2.1. Pre-Test. Conduct performance testing before removal of ITS ground mounted cabinets. Test all functional operations of the equipment, at a minimum, and document functional operations in the presence of representatives of the Contractor and the Department.
- locking mechanism,
- fan and thermostat,
- cabinet light,
- back panel,
- circuit breakers,
- surge protection system,
- grounding system, and
“Door Open” connection to back panel.

Ensure that both representatives sign the test report indicating that the equipment has passed or failed each function. Once removed, the equipment becomes the responsibility of the Contractor until accepted by the Department. Compare test data before removal and test data after installation.

4.7.2.2. Post Test. Testing of the ITS ground mounted cabinet is for the purpose of relieving the Contractor of maintenance of the system. The Contractor will be relieved of the responsibility for maintenance of the system in accordance with Item 7, “Legal Relations and Responsibilities”, after a successful test period. The Contractor will not be required to pay for electrical energy consumed by the system.

After all existing ITS equipment has been installed, perform the same functional operation test described under Article 4.9.2.1. Furnish test data forms containing the sequence of tests including all of the data taken and quantitative results for all tests. Submit the test data forms to the Engineer at least 30 days before the day the tests are to begin. Obtain Engineer’s approval of test procedures before submission of equipment for tests. Send at least 2 copies of the data forms to the Engineer.

The performance test results after relocation must be equal to or better than the test results before removal. Contractor is responsible to repair or replace those components within the system which failed after relocation but which passed before removal.

The Department will conduct approved ITS equipment system tests on the field equipment hardware with the central equipment. The tests will exercise all remote control functions and display the return status codes from the controller.

If any unit fails to pass a test, prepare a report and deliver it to the Engineer. Describe in the report the nature of the failure and the corrective action needed. If the failure is the result of improper installation or damage during reinstallation, reinstall or replace the unit and repeat the test until the unit passes successfully, at no additional cost to the Department or extension of the Contract period.

4.8. Documentation. Submit documentation for this Item consisting of the following:

4.8.1. Ground Mounted Cabinet. Shop drawings should clearly detail the following for ITS ground mounted cabinets when required as shown on the plans:

- dimensions,
- shelves,
- door,
- gasket,
- door look,
- materials list,
- exterior finish,
- ventilation,
- terminal strips,
- harnesses,
- filter,
- power distribution panel,
- surge suppression,
- back panel,
- outlets,
- circuit breakers,
- power cable terminals,
- wiring diagrams,
- cabinet grounding,
- environmental parameters, and
- connectors.

Submit shop drawings, signed, sealed, and dated by a registered professional Engineer in Texas showing the fabrication, interior configuration, electrical distribution, and cabinet mounting details for each cabinet in accordance with Item 5, “Control of the Work.”

Provide at least 2 complete sets of operation and maintenance manuals in hard copy format in addition to a CD/DVD or removable flash drive that includes the following:
- complete and accurate schematic diagrams,
- complete installation procedures,
- complete performance specifications (functional, electrical, mechanical and environmental) on the unit,
- complete parts list including names of vendors for parts not identified by universal part number such as JEDEC, RETMA, or EIA,
- pictorial of component layout on circuit board,
- complete maintenance and trouble-shooting procedures,
- complete stage-by-stage explanation of circuit theory and operation,
- recovery procedures for malfunction, and
- instructions for gathering maintenance assistance from manufacturer.

Identify material which is copyrighted or proprietary in nature as part of the documentation submittal. The Department will take proper provisions to secure such material and not distribute without written approval.

Provide the Department with certification documentation verifying conformance with environmental and testing requirements contained in the special specification. Certifications may be provided by the manufacturer or through independent labs.

4.9. Warranty. The start date of the manufacturer’s standard warranty will begin when the stand-alone test plan has been approved. Any equipment with less than 95% of its warranty remaining at the beginning of the stand-alone test will not be accepted by the Department. Guarantee that equipment furnished and installed for this project performs according to the manufacturer’s published specifications. Warrant the equipment against defects or failure in design, materials, and workmanship for a minimum of 5 years or in accordance with the manufacturer’s standard warranty if warranty period is greater. Assign, to the Department, all manufacturer’s normal warranties or guarantees on all electronic, electrical, and mechanical equipment, materials, technical data, and products furnished for and installed on the project. Repair or replace, at the manufacturer’s option, defective equipment during the warranty period at no cost to the Department.

Repair or replace equipment at the Contractor’s expense before beginning testing in the event of a malfunction or failure. Furnish replacement parts for all equipment within 30 days of notification of failure by the Department.

5. MEASUREMENT

This Item is measured as each unit furnished, installed, relocated, or removed as shown on the plans or as directed, excluding new conduit.

6. PAYMENT

6.1. Furnish and Install. The work performed and materials furnished in accordance with this Item and measured as provided for under “Measurement” will be paid for at the unit price bid for “ITS Ground Mount Cabinet” of the type and configuration specified. This price is full compensation for furnishing, fabricating, and installing ITS ground mounted cabinets as shown on the plans; for forming and setting the cabinet foundation; for furnishing and placing anchor bolts, nuts, and washers; for furnishing and placing electrical conduit in the foundation; for appropriately grounding the cabinet; and equipment, materials, labor, tools, and incidentals necessary to provide an ITS ground mounted cabinet, complete in place, and ready for the installation of ITS equipment.

New conduit will be paid for under Item 618, “Conduit” or Special Specification ITS Conduit.

6.2. Install Only. The work performed and materials furnished in accordance with this Item and measured as provided for under “Measurement” will be paid for at the unit price bid for “ITS Ground Mount Cabinet (Install Only) of the type and configuration specified. This price is full compensation for installing ITS ground mounted cabinets furnished by the Department as shown on the plans; for forming and setting the cabinet
foundation; for furnishing and placing anchor bolts, nuts, and washers; for furnishing and placing electrical conduit in the foundation; for appropriately grounding the cabinet; and equipment, materials, labor, tools, and incidentals necessary to install an ITS ground mounted cabinet, complete in place, and ready for the installation of ITS equipment.

New conduit will be paid for under Item 618, "Conduit" or Special Specification ITS Conduit.

6.3. **Relocate.** The work performed and materials furnished in accordance with this Item and measured as provided for under "Measurement" will be paid for at the unit price bid for “ITS Ground Mount Cabinet (Relocate)” of the type and configuration specified. This price is full compensation for removing existing ground mounted cabinets as shown on the plans; removing existing foundations; backfilling and surface placement; hauling and installing ITS ground mounted cabinets; for furnishing and placing anchor bolts, nuts, and washers; for appropriately grounding the cabinet; and equipment, materials, labor, tools, and incidentals necessary to relocate an existing ITS ground mounted cabinet, complete in place, and ready for the installation of ITS equipment.

New conduit will be paid for under Item 618, "Conduit" or Special Specification ITS Conduit.

6.4. **Remove.** The work performed and materials furnished in accordance with this Item and measured as provided for under "Measurement" will be paid for at the unit price bid for “ITS Ground Mount Cabinet (Remove)” of the type and configuration specified. This price is full compensation for removing existing ITS ground mounted cabinets as shown on the plans; removing existing foundations; backfilling and surface placement; loading and hauling; and equipment, materials, labor, tools, and incidentals necessary to complete the removal of existing ITS ground mounted cabinets.
Special Specification 6010

Closed Circuit Television (CCTV) Field Equipment

1. DESCRIPTION

Furnish, install, relocate, or remove closed circuit television (CCTV) field equipment at locations shown on the plans, or as directed.

2. MATERIALS

2.1. General Requirements. Fabricate, provide, assemble, and install materials that are new, corrosion resistant and in strict accordance with the details shown on the plans and in the specifications.

Provide CCTV field equipment that is compatible with software currently in operation in order to interface with the existing equipment and software located in the Department’s Traffic Management Control (TMC) Centers across the state.

CCTV field equipment to include the following:
- color video camera units,
- camera lenses, filters, control circuits and accessories,
- camera housing,
- medium duty pan and tilt units with click and drag position control,
- camera control receivers,
- local field control unit (if required for operation),
- video and camera control and power cable connectors and assemblies,
- video, data, and power surge suppression, and
- built-in ID generator.

2.2. Functional Requirements for Analog CCTV. Provide color video cameras that are solid state design and that meet the following functional requirements:

2.2.1. General.

2.2.1.1. Digital Signal Processing (DSP):
- digital zoom with manual override functionality,
- auto and manual iris control,
- auto and manual exposure control with built in frame buffer,
- auto and manual focus control, and
- built-in ID generator, with white letters on black outline minimum or approved equivalent.

2.2.1.2. Image Pickup Device. Single chip interline transfer solid state color matrix charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) sensor. Provide a sensor having a minimum of 752 (H) X 480 (V) effective pixels.

2.2.1.3. Resolution. Greater than 350 lines vertical and greater than 460 lines horizontal, interlaced 2:1, measured per EIA-170A Standard. No discernible interface jitter or line pairing on the viewing monitor. System limiting resolution that conforms to FCC regulations for broadcast signals.

2.2.1.4. Frame Rate. Adjustable frame rate frequency up to 30 frames per second.
2.2.1.5. **Encoded NTSC Video Signal Format.** Conformance to the National Television Standards Committee (NTSC) specification and produce NTSC compatible video in accordance with EIA-170A Standard, governed by the Electronic Components Association (ECA), for video output 1 V p-p composite also known as 140 IRE units per Institute of Radio Engineers (IRE). Provide up to 16 dB automatic gain control (AGC).

2.2.1.6. **Output Impedance.** 75 ohms ± 5%.

2.2.1.7. **Aspect Ratio.** Width to height aspect ratio of 4:3.

2.2.1.8. **Image Quality.** Ability to produce clear, free from distortion, usable video images of the areas, vehicles, objects, and other subjects visible from a roadside CCTV site. Ensure that video produced by the camera is true, accurate, distortion free, and free from transfer smear, oversaturation, and any other image defect that negatively impacts image quality under all lighting and weather conditions in both color and monochromatic modes.

2.2.1.9. **Over Exposure Protection.** Minimize glare and incur no permanent damage to the camera when pointed directly at strong light sources, including the sun, for brief periods of time.

2.2.1.10. **Geometric Distortion.** Zero.

2.2.1.11. **Signal to Noise Ratio (AGC Off).** 50 dB Minimum (weighted at 4.5 MHz).

2.2.1.12. **Electronic Shutter Speed.** Automatic shutter that is user selectable down to at least 1/10,000 sec.

2.2.1.13. **Electronic Image Stabilization.** User selectable on or off electronic image stabilization at 5 Hz and 10 Hz minimum.

2.2.1.14. **Day (Color) and Night (Mono).** Auto and manual switchover and iris control with user selectable modes for auto and manual control capabilities.

2.2.1.15. **Auto White Balance.** Color quality that is maintained by a continuous through the lens automatic white balance for color temperatures from 2850 K to greater than 5100 K with less than 10 IRE units unbalance.

2.2.1.16. **Inverted Operation.** Automatic or manual activation image inversion or “flip” operation when rotating through 0° or 180° vertical tilt positions.

2.2.1.17. **Mean Time Before Failure.** A minimum of 43,800 hr. or 5 yr. without mechanical malfunction or failure. Act of God failures are exempt.

2.2.2. **Lens.** Provide an integral lens assembly for each camera with the following features:

- an f/1.6 or better glass multi-coated zoom lens with variable focal lengths with a minimum 30X zoom range,
- 10X auto and manual digital zoom minimum, and
- automatic and manual focus and iris control.

Provide lenses with capabilities for remote control of the zoom, focus, and iris operations. Mechanical or electrical means provided to protect the motors from overrunning in extreme positions. Lens and controller system capable of both auto iris and remote manual iris operation. Capabilities of lens for auto and manual zoom and focus control. Motorized iris as opposed to auto iris type, for system control capability.

2.2.3. **Network Interface Requirements.** Provide equipment that is compatible with the Department’s Lonestar™ software and can be integrated into the Department’s TMC CCTV control sub-systems through NTCIP 1205 Version 1.08 or latest Department approved version, Open Network Video Interface Forum (ONVIF), or approved equal. Support Cohu, Pelco D, Pelco P protocols, or approved equal for control.
Provide equipment that is compatible with other devices using Telecommunications Industry Association/Electronic Industries Alliance (TIA/EIA)-232 or EIA-422/485 at a rate of 9600 bps.

Provide camera equipment that supports local and remote configuration and management. Configuration and management functions must include access to all user-programmed features, including but not limited to, network configuration, video settings, device monitoring, control setting, and security functions. Configuration and management is achieved through serial login, telnet login, web-based interface, or manufacturer software. Provide manufacturer software with camera for local configuration, system maintenance and management control.

2.3. Functional Requirements for Digital CCTV. Provide video cameras that produce digital video in standard definition or high definition that meet the following functional requirements:

2.3.1. General.

2.3.1.1. Digital Signal Processing (DSP):
- digital zoom,
- auto and manual iris control,
- auto and manual exposure control with built in frame buffer,
- auto and manual focus control, and
- built-in ID generator, with white letters on black outline minimum or approved equivalent.

2.3.1.2. Image Pickup Device. 1.2 megapixel (1,200,000 pixels), or better, progressive scan digital CCD or CMOS sensor.

2.3.1.3. Resolution. Support the following resolutions:
- 720p (1280 x 720 pixel array),
- D1 (720 x 480 pixel array),
- CIF (352 x 240 pixel array), and
- VGA (640 x 480 pixel array) at a minimum dependent on video stream configuration.

2.3.1.4. Frame Rate. Allow user selectable frame rates at 30, 15, 7, 4, 2, and 1 frames per second.

2.3.1.5. Data Rate. Scalable from 64 kbps to 8 Mbps

2.3.1.6. Video Stream Format. Allow simultaneous encoding and transmission, of a minimum, two configurable digital video streams in conformance with the Moving Picture Experts Group’s MPEG-4 part 10 (H.264) and Motion JPEG (MJPEG) video compression technology in accordance with the ISO and IEC requirements detailed in the ISO/IEC 14496-10 standard or most current version. Support configuration of the following at a minimum:
- H.264,
- MJPEG,
- H.264 + H.264, and
- H.264 + MJPEG.

2.3.1.7. Video Stream. Support both uni-cast (one-to-one) and multi-cast (one-to-many).

2.3.1.8. Aspect Ratio. Support width to height aspect ratio of 4:3 or 16:9 dependent on TMC monitor video format functionality.

2.3.1.9. Image Quality. Ensure that video produced by the camera is true, accurate, distortion free, and free from transfer smear, oversaturation, and any other image defect that negatively impacts image quality under all lighting and weather conditions in both color and monochromatic modes.
2.3.1.10. **Wide Dynamic Range (WDR).** Operation with manual override option.

2.3.1.11. **Over Exposure Protection.** Minimize glare and incur no permanent damage to the camera when pointed directly at strong light sources, including the sun, for brief periods of time.

2.3.1.12. **Geometric Distortion.** Zero.

2.3.1.13. **Signal to Noise Ratio (AGC Off).** 50 dB minimum (weighted at 4.5 MHz).

2.3.1.14. **Electronic Shutter Speed.** Automatic shutter that is user selectable down to at least 1/10,000 sec.

2.3.1.15. **Electronic Image Stabilization.** User selectable on or off electronic image stabilization at 5 Hz and 10 Hz minimum.

2.3.1.16. **Day (Color) and Night (Mono).** Auto and manual switchover and iris control with user selectable modes for auto and manual control capabilities.

2.3.1.17. **Auto White Balance.** Color quality that is maintained by a continuous through the lens automatic white balance for color temperatures from 2850 K to greater than 5100 K with less than 10 IRE units unbalance.

2.3.1.18. **Inverted Operation.** Automatic image inversion or “flip” when rotating through 0° or 180° vertical tilt positions when not an integrated unit.

2.3.1.19. **Mean Time Before Failure.** A minimum of 43,800 hr. or 5 yr. without mechanical malfunction or failure. Act of God failures are exempt.

2.3.2. **Lens.** Provide an integral lens assembly for each camera with the following features:
- an f/1.6 or better glass multi-coated zoom lens with variable focal lengths with a minimum 18X zoom range,
- 10X auto and manual digital zoom minimum, and
- automatic and manual focus and iris control.

Provide lenses with capabilities for remote control of the zoom, focus, and iris operations. Mechanical or electrical means provided to protect the motors from overrunning in extreme positions. Lens and controller system capable of both auto iris and remote manual iris operation. Capabilities of lens for auto and manual zoom and focus control. Motorized iris as opposed to auto iris type, for system control capability.

2.3.3. **Network Interface Requirements.**

Provide CCTV field equipment that can integrate with the Department’s Lonestar™ software and can be integrated into the Department’s TMC CCTV control sub-systems through NTCIP 1205 Version 1.08 or higher, Open Network Video Interface Forum (ONVIF), or approved equal. Support Cohu, Pelco D or Pelco P protocols, or approved equal for control.

Provide camera equipment with a Local Area Network (LAN) connection that supports the requirements detailed in the IEEE 802.3 Standard for 10/100 Ethernet connections for half-duplex or full-duplex and provide auto negotiation. Provide equipment with a minimum of 1 Ethernet port, which has a 10/100 Base-TX connection. Provide connectors that conform to EIA and TIA requirements.

Support, at a minimum, RTP, RTSP, UDP/IP, TCP/IP, IPv4, HTTP, IGMPv2, DHCP, NTP, IEEE 802.1x, Ethernet 802.3u, and Telnet.

Provide camera equipment that supports local and remote configuration and management. Configuration and management functions must include access to all user-programmed features, including but not limited to, network configuration, video settings, device monitoring, control setting, and security functions. Configuration
and management is achieved through serial login, telnet login, web-based interface, or manufacturer software. Provide manufacturer software with camera for local configuration, system maintenance and management control.

2.4. **Cable Assembly.** Provide camera power and communication cable assembly equipped with cables used for video feed, camera control including PTZ function, communications signaling, and power supply. Camera power and communication cable can be configured as a composite cable or series of isolated cables. The following cable functions may be required depending on the data and video communication interface requirements, as shown on the plans.

2.4.1. **Serial.** Provide shielded twisted pair serial based communication cable rated for outdoor use in conformance to EIA RS-232/422/485 Standards, governed by the Electronic Components Association (ECA). Provide serial based conversion hardware, if necessary, to achieve this function.

2.4.2. **Video.** Provide coaxial cable, rated for outdoor use, between the camera and the communications equipment interface that is a mid-range RG-59/U type with a solid center conductor with 100% shield coverage, with a cellular polyethylene dielectric, or a cable as recommended by the manufacturer of the CCTV field equipment.

2.4.3. **Ethernet.** Provide a shielded twisted pair (STP) Category 5E (or equivalent) at a minimum rated for outdoor use in conformance to TIA/EIA 568B Standard. Cable must not exceed an attenuation of 30 dB per 300 ft. of cable at 100 MHz.

2.4.4. **Power.** Provide 3-wire, insulated for 300 V minimum, 115 VAC or 24 VAC power cabling between the camera and the power supply. If 24 VAC power is required, provide needed power supply conversion equipment.

Provide power and communication cable assembly the entire length of the camera support structure from the camera to the cabinet with an additional 25 ft. of slack in the cabinet. Determine the appropriate length required for each site. The cable assembly is subsidiary to the camera unit.

Provide any necessary data, video, or power conversion hardware necessary to successfully integrate the camera unit into the field equipment cabinet hardware components and onto the communications backbone.

2.5. **Video Encoding Interoperability.** Digital video encoders and decoders are necessary to convert the analog signal to digital, transport digital packets via UDP/IP over fiber optic, copper Ethernet, wireless, or leased line networks and convert the digital packets back to an analog signal for viewing on a display monitor. Video encoding and decoding equipment may be achieved through software or hardware means. Ensure camera’s encoded video is interoperable with hardware and software decoders from other manufacturers. Ensure the camera’s encoded video can be decoded by a minimum of two other manufacturer’s software or hardware decoders that are currently in use by the Department. Contact the Department for decoders supported prior to procurement of camera unit.

2.6. **Camera Housing.** Provide camera housing assembly and hardware material that reflects sunlight.

Provide camera housing with a sunshield to reduce the solar heating of the camera. The total weight of the camera (including housing, sunshield, and all internal components) must not exceed 35 lb.

Construct viewing window in such a way that unrestricted camera views can be obtained at all camera and lens positions.

Provide gaskets at cable entry point to the camera housing to prevent moisture or dust entry.
When shown on the plans or identified in the general notes, provide heating or cooling functionality with temperature sensors to maintain internal temperatures within the manufacturer required operating temperature range.

2.7. **Pan-Tilt Unit.** Furnish and install a medium duty anodized aluminum weatherproof pan-tilt-unit at each camera site, conforming to National Electrical Manufacturer’s Association (NEMA) 4X and IP-66 rating or better, when not integral to the camera unit and housing. Provide mounting adapter and required attachment hardware to install the pan-tilt-unit to the pole or mounting bracket. Identify the type of mounting bracket and bolt pattern on shop drawings.

Provide a unit capable of a minimum of 180° vertical range of movement and horizontal movement of 360°, full, continuous rotation movement.

Provide a unit that has a pan and tilt speed of 20° per second minimum and is user adjustable through the full speed range. Unit must be capable of simultaneous pan-tilt movements with variable pan-tilt positioning control allowing variable speeds that are proportional through the zoom range.

Provide pan-tilt unit with a drive accuracy and drive repeatability of less than 1° and has an automatic preset position speed of 120° per second minimum to a user defined preset position that is user adjustable.

Provide a pan-tilt unit, when not integral to the camera housing, capable of maintaining static position and does not move by more than 1.0° in any direction in speeds greater than 35 mph.

Ensure that the pan-tilt unit has seals and gaskets to protect the motors, gears, and cables and that the seals and gaskets are resistant to ozone, ultraviolet radiation, and other pollutants inherent to all local environmental conditions.

When shown on the plans or identified in the general notes, provide pan-tilt unit with heater that conforms to NEMA 4X standard when not integral to the camera unit and housing.

2.8. **Preset Functions.** Provide a camera unit capable of storing a minimum 62 presets for pan, tilt, zoom, and focus settings.

Provide a camera unit capable of user programmable tours with a minimum of 4 tours of up to 32 presets per tour. Any tours may be programmed for panning tours.

Provide a camera unit capable of user programmable sector zones with a minimum of 8 zones allowing right and left pan limitations.

Provide a camera unit capable of user programmable privacy zones with a minimum of 8 zones. Capable of click and drag position control through software.

2.9. **Control Receivers.** Provide a camera unit with an integrated camera control receiver, unless otherwise directed, that will execute all camera and lens functions as well as forward communication of commands for the pan-tilt functions to the pan-tilt control receiver. Mount the pan-tilt control receiver inside the pan-tilt unit.

The control receiver receives the data from the camera controller, it decodes the digital command data signals transmitted through the communication transmission interface, checks for errors, and acts on valid data to drive the pan-tilt unit and the camera controls.

Local field control is achieved through compatible control software on a laptop or through local control unit hardware located inside the field cabinet that can be EIA 19 in. rack or shelf mountable. Document that the camera control receiver and pan-tilt control receiver will execute all camera, lens, and pan-tilt functions through a laptop interface or through use of the local control unit hardware. Provide local control unit hardware only when shown on the plans or identified in the general notes.
2.10. **Connectors.** Provide and install connectors that are compatible with the communications equipment interfaces identified in Article 2.3.3 and Article 2.4. Supply all mating connectors. Provide all connector pins and mating connectors that are plated to achieve good electrical connection and resistance to corrosion.

2.11. **Source ID Generator.** Use a built-in ID Generator to insert camera ID over each of the camera-generated videos.

Provide a minimum of 2 lines of alpha numeric, case specific, text supporting a minimum of 20 ASCII characters per line, with a minimum character height of 20 pixels, that is user programmable for displaying any combination of ID information consisting of camera, preset, privacy mask, low pressure warning, compass, and time and date at a minimum.

Allow user selectable location of text to be displayed on the video image at the extreme top or bottom. Text display on the side of the image display prohibited.

Automatically display the programmed ID with its associated video signal that can be turned on or off by user command.

In the event of loss of signal or video signal failure, ID Generator automatically passes through failure message to display over video.

Submit list of available text displays to the Department as part of documentation requirements.

2.12. **Cabinet Installation.** Install video communication equipment in a pole mounted equipment cabinet or in a ground mounted equipment cabinet as shown on the plans. Meet the following criteria:

Contains all the lightning protection devices for data and video.

Grounded to earth ground.

Provide connectors for all inputs and outputs for data and video and additional ports for testing video and communications. Use the external connectors for testing and for connections to communication devices.

2.13. **Surge Protection.** Provide surge protection for the camera meeting the following requirements:

- mounting adapter – Electrically bonded to mounting structure,
- pan-tilt mechanism – Electrically bonded to mounting adapter,
- camera housing – Electrically bonded to pan-tilt mechanism, and
- power and control cable surge protector – Integrated into cabinet surge protection system.

2.14. **Power Requirements.** Provide CCTV field equipment meeting all of its specified requirements when the input power is 115 VAC ± 20%, 60 Hz ± 3 Hz, and that maximum power required does not exceed 200 W including optional equipment.

Provide appropriate voltage conversion, power injectors, or other power supply hardware if the camera equipment or any camera-related ancillary devices requires operating voltages other than 115 VAC ± 20%, such as 24 VAC, 12 VDC from solar power systems, or rely on PoE. Appropriate voltage converters or injectors must accept an input voltage of 115 VAC or 12 VDC from solar power systems as shown on the plans.

2.15. **Primary Input Power Interruption.** Provide CCTV field equipment that meets all the requirements in Section 2.1.4., “Power Interruption” of the NEMA Standard TS2 for Traffic Control System, or most current version.

2.16. **Power Service Transients.** Provide CCTV Field Equipment that meets the requirements for Section 2.1.6., “Transients, Power Service” of the NEMA Standard TS2, or most current version.
2.17. **Power Service Protection.** Provide equipment that contains readily accessible, manually resettable or replaceable circuit protection devices (such as circuit breakers or fuses) for equipment and power source protection. Provide circuit breakers or fuses sized appropriately such that no wire, component, connector, PC board or assembly is subjected to current loads in excess of their respective design limits upon failure of any single circuit element or wiring.

2.18. **Modular Design.** Provide CCTV field equipment hardware installed inside the cabinet that is modular in design that can be either shelf mountable or EIA 19 in. rack mountable. Clearly identify modules and assemblies with name, model number, serial number and any other pertinent information required to facilitate equipment maintenance.

2.19. **Connectors and Harnesses.** Make all external connections by means of connectors that are uniquely keyed to preclude improper hookups. Color-code and appropriately label with UV resistant material all wires to and from the connectors. Provide connecting harnesses of appropriate length and terminated with matching connectors for interconnection with the communications system equipment. Provide plated pins and mating connectors to improve conductivity and are corrosion resistant. All connectors utilizing solder type connections must have each soldered connection covered by a piece of heat shrink tubing securely shrunk to protect the connection for short circuiting.

Provide a wiring diagram detailing wire function and connector pin-out.

2.20. **Environmental Design Requirements.** Provide equipment that conforms to NEMA TS2-2003 (R2008), International Electrotechnical Commission (IEC) 60529, and NEMA 250-2008, or most current version, for the following categories:

2.20.1. **Temperature.** Provide equipment that conforms to NEMA TS2 Section 2.1.5.1, or latest revision, and meets all the specified requirements during and after being subjected to any combination of the following conditions:

- ambient temperature range of -30 to 165°F,
- temperature shock not exceeding 30°F per hour,
- relative humidity of 0 to 100%,
- moisture condensation on all exterior surfaces caused by temperature changes, and
- provisions for a heater and blower function will be required to maintain internal temperatures within the manufacturer’s operating temperatures for temperature ranges internal to the camera unit not conforming to NEMA TS2 Standard 2.1.5.1.

2.20.2. **Vibration.** Provide equipment that conforms to NEMA TS2 Section 2.1.9 and Section 2.2.3, or most current version, and meets all the specified requirements during and after being subjected to a vibration of 5 to 30 Hz up to 0.5 g applied in each of three mutually perpendicular planes for 30 min.

2.20.3. **Shock.** Provide equipment that conforms to NEMA TS2 Section 2.1.10 and Section 2.2.4, or most current version, and does not yield permanent mechanical deformation or any damage that renders the unit inoperable when subjected to a shock of 10 g applied in each of three mutually perpendicular planes for 30 min.

2.20.4. **Environmental Contaminants.** Provide equipment that conforms to IEC 60529 Section 14.2.6, or most current version, for IP 66 or greater rating when providing a pressurized unit.

Provide equipment that conforms to IEC 60529 Section 14.2.7, or most current version, for IP 67 or greater rating when providing a non-pressurized unit.

2.20.5. **External Icing.** Provide equipment that is tested to conform to NEMA 250-2003 Section 5.6, or latest revision.
2.20.6. **Corrosion.** Provide equipment that is tested to conform to NEMA 250-2003 Section 5.10, or latest revision, when located in coastal Districts. Coastal Districts are Beaumont (BMT), Corpus Christi (CRP), Houston (HOU), Pharr (PHR), and Yoakum (YKM).

2.20.7. **Wind Rating.** Operational in adverse weather conditions and able to withstand wind loads in accordance with Department’s basic wind velocity zone map standard as shown on the plans without permanent damage to mechanical and electrical equipment.

3. **CONSTRUCTION**

3.1. **General.** Maximize standardization and consistency by utilizing industry standard techniques in equipment design and construction, with the minimum number of parts, subassemblies, circuits, cards, and modules. Design equipment for ease of maintenance.

Provide mounting bracket assemblies or apparatus to mount equipment on the following structures as detailed in the plans or on the ITS standards:

- ITS Pole,
- overhead sign bridge or cantilever overhead sign structure,
- retaining wall, and
- concrete column or parapet.

Provide mounting bracket design with documentation submittal for approval prior to fabrication. Include all mounting plates, screws, bolts, nuts, washers, and ancillary hardware needed to fabricate the entire mounting bracket.

3.2. **Mechanical Components.** Provide stainless steel external screws, nuts and locking washers. Self-tapping screws are not acceptable.

Provide parts that are made of corrosion resistant material; examples include: plastic, stainless steel, anodized aluminum, or brass.

Protect all materials used in construction from fungus growth and deterioration due to sustained moisture.

Separate dissimilar metals by an inert dielectric material.

3.3. **Wiring.** Provide wiring that meets the requirements of the National Electrical Code (NEC) most current version. Provide wires that are cut to proper length before assembly. It is not acceptable to “double-back” wires to take up slack inside the cabinet. Lace wires neatly with nylon lacing or plastic straps. Organize cables neatly inside the cabinet and secure cables with clamps. Provide service loops at connection points when connecting to hardware inside the cabinet. No splicing of cables or exposed wiring is allowed. Clearly label all wiring.

3.4. **Relocation of CCTV Field Equipment.** Perform the relocation in strict conformance with the requirements herein and as shown on the plans. Completion of the work will present a neat, workmanlike, and finished appearance. Maintain safe construction practices during relocation.

Inspect the existing CCTV field equipment, with a representative from the Department, and document any evidence of damage prior to removal. Conduct a pre-removal test in accordance with the testing requirements contained in this Item to document operational functionality. Remove and deliver to the Department, existing CCTV field equipment that fail inspection.

Prior to removal of existing CCTV field equipment, disconnect and isolate the power cables from the electric power supply and disconnect all communication cabling from the equipment located inside the cabinet. Coil and store power and communication cabling inside the cabinet until such time that it can be relocated.
Remove existing CCTV field equipment as shown on the plans only at such time as authorized by the Engineer.

Use care to prevent damage to any support structures. Any portion of CCTV field equipment or camera pole structure damaged or lost will be replaced by the Contractor at his expense. Contractor to document and report to the Department any existing damage to equipment prior to removal.

Make all arrangements for connection to the power supply and communication source including any permits required for the work to be done under the Contract. Provide wire for the power connection at least the minimum size indicated on the plans and insulated for 600 V. Meet the requirements of the NEC most current version.

3.5. Removal of CCTV Field Equipment. Disconnect and isolate any existing electrical power supply prior to removal of existing CCTV field equipment,

Perform removal in strict conformance with the requirements of this Specification, and the lines, grades, details and dimensions shown on the plans. Completion of the work will present a neat, workmanlike, and finished appearance.

Any portion of the CCTV field equipment or cabinet internal components damaged or lost will be replaced by the Contractor (with items requiring the approval of the Engineer) at no cost to the Department.

All materials not designated for reuse or retention by the Department will become the property of the Contractor and be removed from the project site at the Contractor’s expense. Deliver items to be retained by the Department to a location shown on the plans or general notes. The Contractor is fully responsible for any removed equipment until released by the Engineer.

3.6. Contractor Experience Requirements. Contractor or designated subcontractor must meet the following experience requirements:

3.6.1. Minimum Experience. Three years of continuous existence offering services in the installation of CCTV camera systems.

3.6.2. Completed Projects. Three completed projects consisting of a minimum of 5 cameras in each project where the personnel installed, tested and integrated CCTV cameras on outdoor, permanently mounted structure(s) and related camera control and transmission equipment. The completed CCTV camera system installations must have been in continuous satisfactory operation for a minimum of 1 yr.

3.6.3. Equipment Experience. Three projects (may be the three in the preceding paragraph) in which the personnel worked in cooperation with technical representatives of equipment suppliers to perform specific stages of work. The Contractor will not be required to furnish equipment on this project from the supplier who furnished documentation demonstrating this experience.

Submit the names, addresses and telephone numbers of the references that can be contacted to verify the experience requirements given above.

3.7. Documentation Requirements. Provide a minimum of 2 complete sets of operation and maintenance manuals in bound hard copy format, as well as an electronic copy in Adobe PDF format on a CD/DVD or removable flash drive that include the following:

- complete and accurate wiring schematic diagrams,
- complete installation procedures,
- compliance matrix documenting conformance to this specification,
- complete performance specifications (Functional, electrical, mechanical and environmental) on the unit,
- complete parts list including names of vendors for parts not identified by universal part number such as JEDEC, RETMA, or EIA,
3.8. Testing.

3.8.1. New Installations. Unless otherwise shown on the plans, perform the following tests on the applicable equipment or systems.

3.8.1.1. Test Procedures Documentation. Provide 5 copies of the test procedures to include tests identified in Article 5.1.2 through Article 5.1.7 inclusive and blank data forms to the Engineer for review and comment as part of material documentation requirements for each test required on this project. Include the sequence of the tests in the procedures. The Engineer will comment, approve, or reject test procedures within 30 days after Contractor submittal of test procedures. Contractor to resubmit if necessary rejected test procedures for final approval within 10 days. Review time is calendar days. Conduct all tests in accordance with the approved test procedures.

Record test data on the data forms, as well as quantitative results. No bid item measurement or payment will be made until the Engineer has verified the test results meet the minimum requirements of the specification. The data forms for all tests, except design approval tests, must be signed by an authorized representative of the Contractor.

Provide written notice to the Engineer within 48 hr. of discovery of any testing discrepancy identified during testing by the Contractor. Furnish data forms containing the acceptable range of expected results as well as the measured values.

3.8.1.2. Design Approval Test. Conduct a design approval test on one randomly selected unit from the prototype design manufacturing run. If only 1 design prototype is manufactured, perform this test on that unit. If supplying multiple types of the equipment, provide and test a sample of each type.

Certification from an independent testing laboratory of a successfully completed design approval test is acceptable. Ensure that the testing by this laboratory is performed in accordance with the requirements of this specification. Failure of independent tests to comply with the requirements of this specification will be grounds for rejection of any certification.

Provide a copy of the certification to the District in which this contract is executed. The data forms for the design approval tests must be signed by an authorized representative (company official) of the equipment manufacturer or by an authorized representative of an independent testing facility.

Notify the Engineer 10 working days before conducting this testing. The Department may witness all the tests. Perform the following tests:
3.8.1.2.1. **Power Service Transients.** Provide equipment that meets the performance requirements, specified in this Item, when subjected to the power service transients as specified in Section 2.2.7.2, “Transient Tests (Power Service)” of the NEMA TS2 standard, most current version.

3.8.1.2.2. **Temperature and Condensation.** Provide equipment that meets the performance requirements, specified in this Item, when subjected to the following conditions in the order specified below:
- stabilize the equipment at -30°F and test as specified in Sections 2.2.7.3, “Low-Temperature Low-Voltage Tests” and 2.2.7.4, “Low-Temperature High-Voltage Tests” of the NEMA TS2 standard, most current version
- allow the equipment to warm up to room temperature in an atmosphere having relative humidity of at least 40%. Operate the equipment for 2 hr., while wet, without degradation or failure, and
- stabilize the equipment at 165°F and test as specified in Sections 2.2.7.5, “High-Temperature High-Voltage Tests” and 2.2.7.6, “High-Temperature Low-Voltage Tests” of the NEMA TS2 standard, most current version.

3.8.1.2.3. **Relative Humidity.** Provide equipment that meets the performance requirements, specified in this Item, within 30 min. of being subjected to a temperature of 165°F and a relative humidity of 18% for 48 hr.

3.8.1.2.4. **Vibration.** Provide equipment that shows no degradation of mechanical structure, soldered components, or plug-in components and operates in accordance with the manufacturer’s equipment specifications after being subjected to the vibration tests as described in Section 2.2.8, “Vibration Test” of the NEMA TS2 standard, most current version.

3.8.1.2.5. **Power Interruption.** Provide equipment that meets the performance requirements, specified in this Item, when subjected to nominal input voltage variations as specified in Section 2.2.10 “Power Interruption Test” of the NEMA TS2 standard, most current version.

3.8.1.3. **Demonstration Test.** Conduct a demonstration test on applicable equipment at an approved Contractor facility. The Contractor may submit procedures and results from previous contracts in the same District as this Contract provided the materials and equipment are identical, provided results are less than 5 yr. old. Notify the Engineer 10 working days before conducting this testing. The Department may witness all the tests. Perform the following tests:

3.8.1.3.1. **Examination of Product.** Examine each unit carefully and document that the materials, design, construction, markings and workmanship comply with the requirements of this Item.

3.8.1.3.2. **Continuity Tests.** Check the wiring to determine conformance with the requirements of the appropriate paragraphs in this Item.

3.8.1.3.3. **Operational Test.** Operate each unit for at least 15 min. to permit equipment temperature stabilization and an adequate number of performance characteristics to ensure compliance with the requirements of this Item.

3.8.1.4. **Field Acceptance (Stand-Alone) Test.** Conduct a field acceptance test for each unit after installation as required by the Engineer in order to demonstrate compliance with the functional requirements with this Item. Exercise all stand-alone (non-network) functional operations. Notify the Engineer 5 working days before conducting this test. The field acceptance test may consist of the following:

3.8.1.4.1. **Physical Construction.** Document physical construction is completed in accordance with the plans and specification.

3.8.1.4.2. **Electrical and Communication.** Document that all connectors for grounding, surge suppression, and electrical distribution are tightened correctly. Document all power supplies and circuits are operating under the proper voltages. Document all power and communications cables are terminated correctly, secured inside the cabinet, and fitted with appropriate connectors.
3.8.1.4.3. Video Signal. For analog signal format, conduct an impedance test, through a short 75 ohm coaxial cable, to an oscilloscope waveform monitor to ensure 75 ohm output impedance to conform with NTSC standards.

Through use of a digital, hand-held, battery operated meter, conduct a test and measure the following video signal characteristics, if applicable:

3.8.1.4.3.1. Sync. Document the amplitude of the video synchronizing pulse and check for correct video level, coaxial cable continuity, and correct termination level is 40 IRE.

3.8.1.4.3.2. Luminance. Document the white level and correct brightness setting is 100 IRE.

3.8.1.4.3.3. Composite. Document the overall amplitude of the video signal is at 140 IRE or 1 V peak to peak.

3.8.1.4.3.4. Color Burst. Document color burst amplitude at 40 IRE.

3.8.1.4.3.5. Ground-loop. Document that no ground loop exists in the video picture. Ground loop voltages in the video signal causes bars to be present on the video picture.

Document video image is present and free from over-saturation and any other image defect in both color and monochrome modes.

Document video support of unicast and multicast video transmission modes.

Document the video signal from the camera is present and of consistent quality at all connection points between the camera, the cabinet, and any video conversion hardware.

3.8.1.4.4. Communication. For digital camera models, document network connection to the camera through ping or telnet session from a remote PC. For analog camera models, document serial data transmission to execute control through serial ports.

3.8.1.4.5. Pan-Tilt Mechanism. Exercise pan, tilt, zoom, and focus in all directions and execute a minimum of 3 other unique programming commands, specified by the Department, to ensure that the communication link between the cabinet and the camera is functioning properly.

3.8.1.5. System Integration Test. Conduct a system integration test on the complete functional system. Demonstrate all control and monitor functions for each system component for 72 hr. Notify the Engineer 10 working days before conducting this testing. The Department may witness all the tests.

Provide systems integration test procedures for proper adjustment and calibration of subsystem components. Proper adjustment and calibration involves documenting settings used to meet functional requirements while providing a margin for adjustment when future conditions change. Utilize the Department control software (when available) to perform subsystem testing. At a minimum, utilize this software to verify commands and confirms, as well as, detector actuations and occupancy dwell time. The Contractor is responsible for being familiar with any existing Department equipment and software.

The failure of any one component material or equipment item in a system integration test is justification for rejecting the entire subsystem. Each subsystem component must function as a complete integrated subsystem for a minimal continuous 72 hr. period during the system integration test.

3.8.1.6. Final Acceptance Test. Following completion of the demonstration test, standalone test, and system integration test for all subsystems, provide completed data forms containing all of the data taken, including quantitative results for all tests, a set of "as built" working drawings, and a written request to begin a data communication and final acceptance test. Provide "as built" working drawings indicating the actual material, equipment, and construction of the various subsystem components, including established and calculated XY coordinates based on project control points provided by the Engineer, when shown on the plans. Perform field surveying and calculations under the supervision of and sealed by a licensed land surveyor.
Within 10 calendar days of the request, execute a data communications test using a Department supplied software program or Contractor supplied software approved by the Department. The data communications test may be executed by the Engineer or the Contractor with the prior approval of the Engineer. The purpose of this test is to verify that the communications plant will operate with application software provided by the State.

Perform the data communications test for a period of 72 hr. If a message error or component failure occurs anywhere in the network, resume the test once repairs are completed. All components of the communications network must operate as an integral system for the duration of the test.

A message error is defined as the occurrence of a parity error, framing error, or data error in any component of the message. The error free message rate is defined as the ratio of the number of messages in which no message error occurs to the number of messages transmitted. The error free message rate must exceed 99.99% for acceptable transmission quality, both for the system as a whole, and for each component of the network.

Provide all additional test results to the Engineer for review once a successful data communications test has been completed. If all the requirements of this specification have been satisfied, contract time will stop and all subsystems will be placed into operation and operate as a complete system for a period of 90 days.

Notify the Engineer of any defects suspected in integration or function of material or equipment. Investigate any suspected defects and correct if necessary. Provide a report of finding within 2 calendar days of notice of any suspected defects. Describe the nature of the any defects reported and any corrective action taken in the report. The integrated subsystems must operate defect free as a single complete system for a minimum of 72 continuous hours during a 30 calendar day review period. If the number of defects or frequency of failures prevents any subsystems from operating as described above, the Engineer may reject the entire subsystem(s) integration test results and resume contract time. Provide any necessary corrections and resubmit subsystem(s) integration test results and a request to begin a final acceptance test which may include “as built” plans and a data communications test.

The CCTV field equipment under this Item will not be accepted until the system, inclusive of all subsystems, has operated satisfactorily for a period of 90 days and in full compliance with the plans and specifications after approval of all submitted test results and reports.

3.8.1.7. Consequences of Test Failure. If a unit fails a test, submit a report describing the nature of the failure and the actions taken to remedy the situation prior to modification or replacement of the unit. If a unit requires modification, correct the fault and then repeat the test until successfully completed. Correct minor discrepancies within 30 days of written notice to the Engineer. If a unit requires replacement, provide a new unit and then repeat the test until successfully completed. Major discrepancies that will substantially delay receipt and acceptance of the unit will be sufficient cause for rejection of the unit.

Failure to satisfy the requirements of any test is considered a defect and the equipment is subject to rejection by the Engineer. The rejected equipment may be offered again for retest provided all noncompliance has been corrected.

If a failure pattern develops in similar units within the system, implement corrective measures, including modification or replacement of units, to all similar units within the system as directed. Perform the corrective measures without additional cost or extension of the contract period.

3.8.1.7.1. Consequences of Design Approval Test Failure. If the equipment fails the design approval test, correct the fault within 30 days and then repeat the design approval test until successfully completed.

3.8.1.7.2. Consequences of Demonstration Test Failure. If the equipment fails the demonstration test, correct the fault within 30 days and then repeat the demonstration test until successfully completed.

3.8.1.7.3. Consequences of Field Acceptance (Stand-Alone) Test Failure. If the equipment fails the stand-alone test, correct the fault within 30 days and then repeat the stand-alone test until successfully completed.
3.8.1.7.4. **Consequence of System Integration Test Failure.** If the equipment fails the system integration test, correct the fault within 30 days and then repeat the systems integration test until successfully completed.

3.8.1.7.5. **Consequences of Final Acceptance Test Failure.** If a defect within the system is detected during the final acceptance test, document and correct the source of failure. Once corrective measures are taken, monitor the point of failure until a 30 consecutive day period free of defects is achieved.

If after completion of the initial test period, the system downtime exceeds 72 hr. or individual points of failure have not operated for 30 consecutive days free of defects, extend the test period by an amount of time equal to the greater of the downtime in excess of 72 hr. or the number of days required to complete the performance requirement of the individual point of failure.

3.8.2. **Relocation and Removal.**

3.8.2.1. **Pre-Test.** Provide 5 copies of the test procedures to include tests of the basic functionality of the unit and blank data forms to the Engineer for review and comment as part of material documentation requirements. Functionality tests may include, but are not limited to, physical inspection of the unit and cable assemblies, lens iris and zoom control, video signal, and pan-tilt mechanism. Include the sequence of the tests in the procedures along with acceptance thresholds. The Engineer will comment, approve, or reject test procedures within 30 days after Contractor submittal of test procedures. Contractor to resubmit if necessary rejected test procedures for final approval within 10 days. Review time is calendar days. Conduct all tests in accordance with the approved test procedures.

Conduct basic functionality testing prior to removal of CCTV field equipment. Test all functional operations of the equipment in the presence of representatives of the Contractor and the Department. Ensure that both representatives sign the test report indicating that the equipment has passed or failed each function. Once removed, the equipment becomes the responsibility of the Contractor until accepted by the Department. Compare test data prior to removal and test data after installation. The performance test results after relocation must be equal to or better than the test results prior to removal. Repair or replace those components within the system which failed after relocation but which passed prior to removal.

3.8.2.2. **Post Test.** Testing of the CCTV field equipment is for the purpose of relieving the Contractor of maintenance of the system. The Contractor will be relieved of the responsibility for maintenance of the system in accordance with Item 7, “Legal Relations and Responsibilities”, after a successful test period. The Contractor will not be required to pay for electrical energy consumed by the system.

After all existing CCTV field equipment has been installed, conduct approved continuity, stand alone, and equipment system tests. Furnish test data forms containing the sequence of tests including all of the data taken as well as quantitative results for all tests. Submit the test data forms to the Engineer at least 30 days prior to the day the tests are to begin. Obtain Engineer’s approval of test procedures prior to submission of equipment for tests. Send at least 1 copy of the data forms to the Engineer.

Conduct an approved stand-alone test of the equipment installation at the field site(s). At a minimum, exercise all stand-alone (non-network) functional operations of the field equipment with all of the equipment installed per the plans as directed by the Engineer. Complete the approved data forms with test results and turn over to the Engineer for review and either acceptance or rejection of equipment. Give at least 30 working days notice prior to all tests to permit the Engineer or his representative to observe each test.

The Department will conduct approved CCTV field equipment system tests on the field equipment with the central equipment. The tests will, as a minimum, exercise all remote control functions and display the return status codes from the controller.

If any unit fails to pass a test, prepare a report and deliver it to the Engineer. Describe in the report the nature of the failure and the corrective action needed. If the failure is the result of improper installation or damage during reinstallation, reinstall or replace the unit and repeat the test until the unit passes successfully, at no additional cost to the Department or extension of the Contract period.
3.9. **Warranty.** Warrant the equipment against defects or failure in design, materials, and workmanship for a minimum of 3 yr. or in accordance with the manufacturer’s standard warranty if that warranty period is greater. The start date of the manufacturer’s standard warranty will begin after the equipment has successfully passed all tests contained in the final acceptance test plan. Any CCTV field equipment with less than 90% of its warranty remaining after the final acceptance test is completed will not be accepted by the Department. Guarantee that equipment furnished and installed for this project performs according to the manufacturer’s published specifications. Assign, to the Department, all manufacturer’s normal warranties or guarantees on all electronic, electrical, and mechanical equipment, materials, technical data, and products furnished for and installed on the project.

CCTV field equipment will be repaired or replaced at the Contractor's expense prior to completion of the final acceptance test plan in the event of a malfunction or failure. Furnish replacement parts for all equipment within 10 days of notification of failure by the Department.

3.10. **Training.** Conduct a training class for a minimum of 24 hr., unless otherwise directed, for up to 10 representatives designated by the Department on procedures of installation, operations, programming hardware settings, IP programming, port settings, testing, maintenance, troubleshooting, and repair of all equipment specified within this specification. Submit to the Engineer for approval, 10 copies of the training material at least 30 days before the training begins. Conduct training within the local area unless otherwise authorized by the Engineer. Consider operations through Department's Lonestar software when developing training modules.

4. **MEASUREMENT**

This Item will be measured by each CCTV field equipment unit and mounting apparatus furnished, installed, relocated, or removed, of the types specified as shown on the plans, or as directed.

5. **PAYMENT**

5.1. **Furnish and Install.** The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit bid price for “CCTV Field Equipment (Analog)”, “CCTV Field Equipment (Digital)”, and “CCTV Field Controller”. This price is full compensation for making fully operational CCTV field equipment including any voltage converters or injectors, cables and connectors as shown on the plans; and all documentation, testing, training, software, equipment, labor, materials, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” for CCTV field equipment mounting assemblies will be paid for at the unit bid price for “CCTV Mount (Pole)”, “CCTV Mount (Post)”, “CCTV Mount (Wall)”, “CCTV Mount (Parapet)”, “CCTV Mount (Pendant)”, and “CCTV Mount (Mast)”. This price is full compensation for furnishing and installing mounting bracket assemblies, mounting bracket hardware; and all equipment, labor, materials, tools, equipment, and incidentals necessary to mount CCTV field equipment to mounting structures as shown on the plans.

5.2. **Install Only.** The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit bid price for “CCTV Field Equipment (Analog) (Install Only)” and “CCTV Field Equipment (Digital) (Install Only).” This price is full compensation for making fully operational CCTV field equipment including any voltage converters or injectors, furnishing and installing additional cables and connectors as shown on the plans; and all documentation, testing, training, software, equipment, labor, materials, tools, and incidentals.

5.3. **Relocate.** The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” for relocation of CCTV field equipment will be paid for at the unit bid price for “Relocate CCTV Field Equipment.” This price is full compensation for relocating and making fully operational existing CCTV field equipment as shown on the plans; furnishing and installing additional cables or connectors as shown on the plans; for testing, delivery and storage of components designated for salvage or reuse; and all testing, training, software, equipment, labor, materials, tools, and incidentals.
5.4. **Remove.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" for removal of CCTV field equipment will be paid for at the unit bid price for "Remove CCTV Field Equipment." This price is full compensation for removing existing CCTV field equipment as shown on the plans; removal of cables and connectors; for testing, delivery and storage of components designated for salvage; and all testing training, software, equipment, labor, materials, tools, and incidentals.
1. DESCRIPTION

Furnish and install Intelligent Transportation System (ITS) multi-duct conduit identified for fiber optic communication use of the type and size specified. Provide conduit suitable for installation in an outdoor underground environment including constant immersion in water, mounted to retaining walls, and mounted above ground on the underside of a bridge without any degradation to the conduit.

2. MATERIALS

Provide new materials that comply with the details shown on the plans, the requirements of this Item, and the requirements of the following Items:

- Item 400, “Excavation and Backfill for Structures,”
- Item 401, “Flowable Fill,”
- Item 402, “Trench Excavation Protection,”
- Item 421, “Hydraulic Cement Concrete,”
- Item 445, “Galvanizing,”
- Item 476, “Jacking, Boring, or Tunneling Pipe or Box,”
- Item 618, “Conduit,” and
- Item 620, “Electrical Conductors”.

In addition, provide ITS multi-duct conduit meeting the requirements of the following Items:

- Underwriters Laboratories (UL) 651, 2420, and 2515,
- National Electrical Manufacturers Association (NEMA) Standard TC-2,
- NEMA TC-7,
- NEMA TC-14B,
- National Electrical Code (NEC), and
- Departmental Materials Specification DMS 11030, “Conduit”.

Provide underground ITS multi-duct conduit materials that have been tested and listed as defined in the NEC for the specific use to meet the following industry standards:

- Bellcore/Telcordia Technologies document GR-356,
- ASTM-D1785, Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120,
- ASTM-D2122, Standard Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings,
- ASTM-F2160, Standard Specification for Solid Wall High Density Polyethylene (HDPE) Conduit Based in Controlled Outside Diameter,
- ASTM-D2412, Standard Test Method for Determination of External Loading, and
Provide above ground ITS multi-duct conduit materials that have been tested and listed as defined in the NEC for the specific use to meet the following industry standards:

- ASTM-A90, Standard Test Method for Weight of Coating on Iron and Steel Articles with Zinc-Alloy Coatings,
- ASTM-D2105, Standard Test Method for Longitudinal Tensile Properties of “Fiberglass” (Glass-Fiber-Reinforced Thermoplastic-Resin) Pipe and Tube, and

3. **EQUIPMENT**

3.1. **General Requirements.**

3.1.1. **Pre-Assembled Multi-Duct.** Provide a pre-assembled multi-duct conduit system of the material type specified with a nominal 4 in. inner diameter round outer duct containing 4 factory installed 1.25 in. nominal diameter round inner ducts. Inner ducts must be held together in a square configuration by a system of spacers. The design of the spacers, which hold the individual conduits in formation, must be capable of locking them tightly together to prevent free twisting of the inner ducts.

For pre-assembled multi-duct, provide a single protective end cap for each bundled 10 ft. or 20 ft. conduit sections, factory bends, and fittings.

3.1.2. **Fittings.** Provide all required sweeps, bends, repair couplings, ground box termination kits, alternative outer ducts, adapters, preassembled split repair kits, lubrication access fittings, tug-plugs, slit-inner duct plugs, hangers, brackets, expansion joints, and accessories to complete the conduit system as incidentals.

3.1.3. **Flexural Modulus.** Do not exceed the ovality of the conduit system by 5%.

3.1.4. **Environmental Requirements.**

For underground construction, provide conduit that will perform in an ambient temperature range of -30°F to 122°F without degradation of material properties in accordance with the NEC.

For above ground conduit construction, provide conduit that performs in an ambient temperature range of -60°F to 200°F without degradation of material properties.

3.1.5. **Corrosion Resistance.** Provide a conduit system that is resistant to most harsh chemicals and protected against degradation due to oxidation or general corrosion.

3.1.6. **Direct Bury.** Provide a conduit system capable of being installed by trenching or boring as shown on the plans.

3.1.7. **Free of Defects.** Provide a conduit system free of visible cracks, holes, or other physical defects that would degrade its performance.

3.1.8. **Uniformity.** Provide conduit that is uniform as practical in respect to overall dimensions, color, density, and thickness.

3.1.9. **Stabilization.** Provide conduit with a UV light stabilizer which will protect it, for a minimum of 12 mo., from degradation due to prolonged exposure to direct sunlight.

3.1.10. **Conduit Identification.** Provide conduit with a durable identification labeling showing the name and trademark of the manufacturer, conduit size, date of manufacture and "TxDOT - Fiber Optic Cable System" identification.
3.1.1. **Grounding.** Provide a bare copper No. 8 AWG system grounding conductor, in accordance with Item 620, “Electrical Conductors”, in 1 inner duct of the conduit duct system if no other cable is to be installed in the conduit system for use as a grounding conductor between ground boxes.

3.2. **Outer Duct.**

3.2.1. **PVC Multi-Duct.** Provide heavy walled Schedule 40 polyvinyl chloride (PVC) or heavy walled Schedule 80 PVC outer duct with a nominal inside diameter (ID) of 4 in. as shown on the plans or as directed for underground construction. Provide minimum 20 ft. sections of conduit.

Incorporate a longer integral bell in place of the standard 3-1/2 in. bell to accommodate the length of the coupling body.

Provide 4 in. Schedule 40 conduit with an average outside diameter (OD) of 4.5 in. and a minimum wall thickness of 0.237 in.

Provide 4 in. Schedule 80 conduit, or equivalent with an average OD of 4.75 in. and a minimum wall thickness of 0.337 in. When providing an equivalent to Schedule 80, provide independent laboratory testing certifications showing the equivalent product meets or exceeds performance and testing requirements to that of Schedule 80.

3.2.2. **Rigid Metal Multi-Duct.** Provide galvanized rigid metal conduit (RMC) outer duct with a nominal ID of 4 in. as shown on the plans or as directed. Provide a minimum 10 ft. section of conduit.

Provide 4 in. RMC with an average OD of 4.5 in. and a minimum wall thickness of 0.225 in.

3.2.3. **Fiberglass Multi-Duct.** Provide, bullet resistant, pure, high grade, reinforced thermosetting resin conduit outer duct with a nominal ID of 4 in. as shown on the plans or as directed. Provide a minimum 10 ft. section of conduit.

Provide 4 in. fiberglass conduit with a minimum OD of 4.25 in. and a minimum wall thickness of 0.250 in.

3.3. **Inner ducts.** Provide inner duct Schedule 40 PVC or High Density Polyethylene (HDPE) conduit with a 1.25 in. nominal diameter. Extrude inner ducts in a controlled OD fashion.

3.3.1. **Spacers.** Hold together the inner ducts with spacers located throughout each section of conduit. Factory install the system of spacers to hold inner ducts in place during transport and maintain alignment within the outer duct. Mold spacers from high impact plastic, and be factory certified to withstand all handling pressures and stresses.

3.3.2. **Longitudinal Ribbing.** For HDPE inner ducts, incorporate longitudinal ribbing and permanent dry lubricant that is extruded to provide friction reduction in cable installation.

3.3.3. **Identification by Color.** Provide inner ducts that are uniquely defined by the extrusion of a different color for each of the inner ducts; colors must be orange, yellow, red, and black.

Provide black inner duct that is placed directly in line with the manufacturer’s identification on the outer duct for ease of identification and installation.

Duct designated for backbone fiber will be black in color; duct designated for distribution fiber will be orange and red in color; and duct designated for drop (field cabinet) fibers cable will be yellow in color.

3.3.4. **Pull Cord.** Provide a flat pull cord in all empty inner ducts. Provide a pull cord with a tensile strength of 1,250 lb. minimum and have foot markings to determine length installed.
3.4. **Fittings.** Provide fittings with the same material to the connecting conduit unless otherwise shown on the plans.

3.5. **Coupling Body.** Provide a factory installed primary coupling body that is manufactured as a hard plastic coupling body incorporating conical shaped target areas to accommodate self-alignment of each inner duct upon field assembly.

Provide a coupling body that incorporates sealing devices to facilitate field assembly and prevent water and foreign material leakage from outside the multi-duct system and to prevent air leakage from inside the inner ducts. Assemble solely by hand without use of special tools such that no lubricant will be required for field assembly of this conduit system.

Provide the coupling body with its sealing members sealing the outer walls of the inner ducts and the inner wall of the outer duct providing an airtight seal from within the inner duct system and a watertight seal from the outside of the outer duct.

Provide the gasket or sealing members that is an anti-reversing design in such that the lengths of conduit stay joined together without the need for solvent cement.

Provide the field connection end of the internal coupling body that incorporates shaped target areas to accommodate self-alignment of the inner ducts with bore openings during field assembly.

Provide the coupling body that has one of the bore openings on the field assembly side uniquely identified to facilitate proper continuous inner duct alignment during field assembly.

The coupling body must seal the inner duct so that after the application of 100 psi to an inner duct, the inner duct must be capable of maintaining a minimum of 15 psi for 24 hr. Employ an approved independent commercial testing laboratory to perform the above test. Submit certified reports of test to Department.

3.6. **Expansion Joints.** Provide expansion joints having a material similar to the connecting conduit unless otherwise shown on the plans.

Use conduit expansion fittings at structure expansion joint crossings.

3.7. **Termination Kits.** Provide end or pass-through termination kits from the same conduit manufacturer for termination in ground boxes and junction boxes.

Ensure a watertight seal of conduit to structure wall when terminating conduit.

3.8. **Multi-Duct Sweeps.** Conduit deflection should not deviate more than 1 in. horizontally or vertically per foot (1:12) of running length of conduit. Long conduit sweeps should be used wherever possible to change conduit direction in order to reduce the pulling tension required during cable installation.

For conduit deflection at obstructions, utilities, or transitions to structures where the 1:12 deflection requirement above or long sweeps are not possible, use complete conduit manufactured minimum 36 in. radius sweeps (11-1/4°, 22-1/2°, 30°, 45°, and 90° angles) complete with bell and spigot. Do not field bend conduit.

3.9. **Fiber Optic Cable Route Markers.** Furnish tubular delineator markers, minimum 6 ft. in length and a minimum 3 in. OD, and constructed of Type III HDPE material. Provide marker assemblies that are orange in color and ultraviolet stabilized to help prevent components from color fading, warping, absorbing water, and deterioration with prolonged exposure to the elements. Refer to the Standard Details for details of the text on the decal that should be affixed to each marker. Ensure that all markers furnished on this project are new and consistent in appearance.
Install markers using a method that firmly and securely anchors the marker a minimum of 1 ft. into the ground to prohibit twisting and easy removal. When located at an ITS ground box, marker may be placed within the concrete riprap apron avoiding rebar reinforcement. Spacing between markers should not exceed 1,000 ft. or as shown on the plans and placed at significant changes in direction such as a 90° turn. Do not place markers in any roadway paved surface.

4. CONSTRUCTION

4.1. Underground Construction. Place conduit in accordance with the lines, grades, details and dimensions shown on the plans or as directed. Maintain constant slope to prevent water from being trapped in the conduit system.

Ream all conduit ends to remove burrs and sharp edges.

Install underground conduit system a minimum of 42 in. from ground surface to the top of the conduit unless otherwise directed or to avoid utility conflicts or field conditions. When conditions require trench depths greater than 5 ft., provide trench protection in accordance with Item 402, "Trench Excavation Protection." Install conduit in accordance with the requirements of the NEC and USDA RUS.

Fasten all external conduit placed on structures with conduit straps or hangers as shown on the plans or as directed. Conduit straps, hanger systems, and junction boxes are incidental to this Item.

Fit the conduit terminations with bushings or bell ends with duct plugs. Seal inner ducts with duct plugs within 24 hr. of conduit placement. This includes but is not limited to intermediate or incomplete sections of conduit system prior to conduit splicing or termination in ground boxes.

Document Global Positioning System (GPS) coordinate points, in NAD83, and provide to the Department for shifts or deviations of the ITS multi-duct alignment from the plans required to avoid obstructions or utilities. GPS coordinate points to be recorded at the point of curvature and point of tangent for horizontal of vertical transitions and include installed depth.

4.1.1. Proofing. Prior to installation of cables or final acceptance, pull a spherical template having a diameter of not less than 75% of the inside diameter of the inner duct through the inner duct to insure that the inner duct is free from obstruction. At the conclusion of proofing, fit ends of all empty inner ducts with duct plugs or caps within 24 hr.

4.2. Trench Construction. Provide minimum Schedule 40 PVC conduit when conduit is installed through trenching method unless otherwise shown on the plans or as directed.

Provide a 2 in. minimum layer of sand at the bottom of the trench to serve as a bedding material for construction.

Provide conduit spacers made of a non-metallic material designed for installation underground and encased in concrete. Spacers should be of the type recommended by the conduit manufacturer and designed with an interlocking device and stackable to relieve the conduit of both horizontal and vertical stress. Provide spacers sized appropriately for the conduit with a minimum height of 2 in. spaced at 5 ft. intervals throughout the trench. Set conduit spacers directly on the sand bedding. Spacers must be anchored to prevent floating of conduit system and maintain constant slope.

Conduit system will be encased in the following materials based on depth of trench:

4.2.1. Greater than 24 in. For trench depths greater than 24 in. from the ground surface to the top of the ITS multi-duct conduit, encase the conduits in flowable fill to an elevation of 6 in. above the top of conduit in accordance with Item 401, "Flowable Backfill," or ClassB concrete, maximum aggregate size 5, in accordance with Item 421, "Hydraulic Cement Concrete." Class B concrete at the discretion of the Engineer and will be shown on the plans. Backfill above encasement as defined in Section 4.2.3.
4.2.2. **Less than 24 in.** When a trench depth less than 24 in. is required, encase the conduits in Class B concrete, maximum aggregate size 5, to an elevation of 6 in. above the top of conduit in accordance with Item 421, “Hydraulic Cement Concrete.” Backfill above encasement as defined in Section 4.2.3.

4.2.3. **Excavation and Backfill.** Trench, excavate, and backfill as shown on the plans and in accordance with Item 400, “Excavation and Backfill for Structures.”

4.2.4. **Marking Tape.** Place a 4 in. wide detectable underground metalized mylar conduit marking tape over the ITS conduit at a minimum depth of 1 ft. below grade when no other electrical marking tape required or 8 in. below electrical marking tape when provisioned under Item 618, “Conduit.”

Imprint the marking tape “Texas DOT Conduit and Fiber Optic Cable System - Call TxDOT Before Proceeding” every 18 in.

4.2.5. **Restoration of Trench Areas.** Where existing surfacing is removed for placing conduit, repair by backfilling with material equal in composition and density to the surrounding areas and by replacing any removed surfacing, such as asphalt pavement or concrete riprap, with like material to equivalent condition in accordance with Item 400, “Excavation and Backfill for Structures.”

4.3. **Boring Construction.** Jacking and boring when required will be in accordance with Item 476, “Jacking, Boring, or Tunneling Pipe or Box.”

When boring under pavement shallower than 48 in. from finish grade to top of conduit, provide Schedule 40 steel casing under pavement to encase the conduit system as shown on the plans unless otherwise directed. Provide steel casing of a size to accommodate all conduits in addition to 20% space capacity for pulling conduits through the steel casing. Steel casing will be furnished in accordance with this Item.

During boring operation, locate bore head every 10 ft. along the bore path and before traversing underground utilities or structures. Use digital walkover locating system to track bore head during boring operation. Ensure locating system is capable of determining pitch, roll, heading, depth, and horizontal position of the bore head and document this information at the intervals specified above for as-built information.

4.4. **Above Ground Construction.** Place conduit in accordance with the lines, grades, details and dimensions shown on the plans or as directed. Maintain constant slope to prevent water from being trapped in the conduit system.

Provide rigid metal conduit or fiberglass conduit for outer duct when system is mounted externally along a bridge or above ground structure. Provide fiberglass or other non-corrosive outer duct for coastal Districts where conduit is exposed to corrosive environments due to salt in the air.

Provide rigid metal conduit outer duct that is hot-dipped galvanized in accordance with Item 445, “Galvanizing.”

Ground rigid metal conduit in accordance with the Department’s Electrical Details and in accordance with the NEC.

Provide fiberglass conduit that is bullet resistant, heavy walled, pure, high grade, reinforced thermosetting resin conduit.

Provide conduit, elbows, and fittings that are manufactured from the same resin, hardener, or glass systems manufactured by the same filament wound system.

4.5. **Testing.** Perform tests in accordance with industry testing requirements identified in Article 2, “Materials.”

4.5.1. **General.** Furnish certified documentation from an independent testing laboratory documenting compliance with all ASTM, NEMA, NEC, UL, and Telcordia Technologies standards as referenced in this Item.
Provide test procedures and blank test forms and conduct performance tests for all materials and equipment not previously tested and approved. If technical data is not considered adequate for approval, samples may be requested for test. The Contract period will not be extended for time lost or delays caused by testing prior to final approval of any items.

Compare the results of each test with the requirements of this Item. Failure to conform to the requirements of any test must be identified as a defect and the materials will be subject to rejection by the Engineer. Offer rejected materials again for retest provided all non-compliances have been corrected and retested by the Contractor with evidence submitted to the Engineer.

4.5.2. **Examination of Product.** Examine each conduit system component prior to installation carefully to verify that the materials, design, construction, markings, and workmanship comply with the requirements of this Item.

4.5.3. **References.** The ITS multi-duct conduit system supplier must submit 3 references, preferably State Departments of Transportation, where this supplier's conduit system has functioned successfully for a period of no less than 1 yr. Include current name and address of organization, and the current name and telephone number of an individual from the organization who can be contacted to verify system installation. Provide this information with documentation submittal. Failure to furnish the above references will be sufficient reason for rejection of the supplier's equipment.

4.6. **Documentation Requirements.** Submit documentation of the conduit system consisting of the following for Engineer approval 30 days prior to installation:

- manufacturer specifications or cut sheets for all components of the conduit duct system,
- laboratory certified material test reports documenting conformance with pertinent standards identified under Article 2, “Materials”,
- GPS coordinates,
- pre-installation test procedures,
- post-installation test procedures, and
- as-built of installed conduit system.

5. **MEASUREMENT**

ITS multi-duct conduit will be measured by the linear foot of the multi-duct conduit system.

Fiber optic cable road marker will be measured by each maker furnished and installed.

6. **PAYMENT**

The work performed and materials furnished in accordance with this Item and measured as provided for under “Measurement” will be paid for at the unit price bid for "ITS Multi-Duct Conduit" of the types and construction method specified. This price is full compensation for furnishing and installing conduit; for jacking, boring, steel encasement, excavating, furnishing, and placing backfill; concrete encasement; replacing pavement structure, sod, riprap, curbs, or other surface; testing of the conduit system; for furnishing and installing all fittings, clamps, sweeps, bends, repair couplings, adapters, ground box or manhole termination kits, pre-assembled split repair kits, lubrication access, fittings, hangers, brackets, junction boxes, expansion joints, concrete, and detectable underground metalized mylar conduit marking tape; pull cords, and for all labor, tools, equipment and incidentals necessary to complete the work.

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Fiber Optic Cable Road Marker.” This price is full compensation for furnishing and installing all cable markers; and for materials, equipment, labor, tools, documentation, warranty, training and incidentals.

Copper grounding conductor will be paid under Item 620, “Electrical Conductors.”
This Item applies only to ITS multi-duct conduit. Any other conduit for communication or electrical use will be in accordance with and paid for under Item 618, "Conduit."
1. DESCRIPTION

Transport, install, and test Department-furnished Dynamic Message Signs (DMS), controller, and equipment cabinets.

2. MATERIALS

Provide all materials not supplied by the Department necessary for the DMS installation. All materials provided by the Contractor must be new. Include a task in the project schedule for delivery of Department furnished materials and provide a minimum of 30 days’ notice to the Department for pick-up of Department-furnished materials. Unless otherwise shown on the plans, DMS will be stored by the Department for pick up at location shown on the plans.

Ensure that all materials and construction methods necessary to complete the installation conform to the requirements of this Item, the plans and the pertinent requirements of the following Items:

- Item 432, “Riprap”
- Item 441, “Steel Structures”
- Item 445, “Galvanizing”
- Item 449, “Anchor Bolts”
- Item 618, “Conduit”
- Item 620, “Electrical Conductors”
- Item 656, “Foundations for Traffic Control Devices”

3. CONSTRUCTION

3.1. Installation. Perform a site survey in advance of the proposed DMS location in order to determine the horizontal and vertical angles of the sign for optimum legibility, based on the manufacturer’s recommendations.

Install DMS on overhead sign structures in accordance with this Item and the lines, grades, details and dimensions as shown on the plans or as directed. Maintain safe construction practices. Ensure the mechanical execution of work complies with NEC, Article 110.12. Equipment shall be installed in a neat and workmanlike manner.

Adjustments or additions of sign attachment hardware, support brackets, and appurtenances, such as walkways, conduit, etc., may be necessary for compatibility with specified sign positioning recommended by the manufacturer, as shown on the plans, or as directed. All adjustments or additional materials will not be paid for directly but will be subsidiary to this Item.

Prevent damage to all sign components. Replace any portion of the sign assembly that is damaged or lost during transportation or installation. Do not use any materials furnished by the Department on any work which is not required by and which does not constitute a part of the contract. Materials not used which were furnished by the Department must be returned undamaged to the location from which the materials were obtained upon completion of the work. Any unused or removed material deemed salvageable by the Engineer shall remain the property of the Department and shall be delivered to a designated site. Accept ownership of unsalvageable materials and dispose of in accordance with federal, state, and local regulations.
Stockpile all materials designated for reuse or to be retained by the Department within the project limits or at a designated location as directed.

Equipment to be installed at each DMS field site shown on the plans may include, but not be limited to, the following:

- Dynamic Message Sign (DMS), controller and cabinet (provided by the Department)
- Cabling and connectors from power source to DMS connection point as specified by the DMS manufacturer (Provided by the Contractor)
- Cabling and connectors from telecommunications source to DMS connection point as specified by the DMS manufacturer when required (Provided by the Contractor)
- Communications as shown on the plans
- Power and communication cabling and connectors from controller to DMS shall follow NEMA TS4, Section 4, “Controller to Sign Interface,” (cables and termination provided by the Contractor)

Make all arrangements for connection to the power supply and telecommunications source including any required permits. Supply and install any required materials not provided by the utility companies (power or communications service provider).

Construct the foundation for DMS Controller cabinets, when required as shown on the plans, in accordance with Item 656, “Foundations for Traffic Control Devices,” unless otherwise directed. Include a 6 ft. × 6 ft. × 5 in. (L × W × D) riprap maintenance pad with foundation, unless otherwise directed. Provide a 5/8-in. diameter by 8 foot copper clad steel ground rod in the foundation of each DMS Controller cabinet.

After the signs have been erected, wash the exterior of the entire sign with a biodegradable cleaning solution, approved by the Engineer, to remove all dirt, grease, oil smears, streaks, finger marks, and other foreign particles.

3.2. Technical Assistance. Ensure that a manufacturer’s representative is available to assist the Contractor’s technical personnel at each sign installation site. The manufacturer’s representative must provide technical assistance in following areas:

- Site survey for horizontal and vertical angles of sign’s mounting orientation
- Sign to structure installation (final responsibility of the Contractor, see 3.3., “Working Drawings.”)
- Sign controller cabinet installation
- Sign to controller cabling
- Testing requirements given in Section 3.4., “Testing.”

Do not execute the initial powering up of the signs without the permission of the manufacturer’s representative.

3.3. Working Drawings. Before fabrication submit for approval 5 prints of the working drawings for attachment of each DMS. Show the details of any additional sign brackets, sign support connections, and methods of attachment of the signs to the sign support. Have a licensed professional engineer sign, seal and date the working drawings.

3.4. Testing. Testing of the sign system is for the purpose of relieving the Contractor of maintenance of the system. The Contractor will be relieved of the responsibility for maintenance of the sign system in accordance with Item 7, “Legal Relations and Responsibilities,” after all testing is successfully completed.

After delivery of the DMS to the storage site, an approved demonstration test will be conducted prior to transporting the sign to the installation site. Have a manufacturer’s representative available to assist with making all necessary connections and preparations for this testing.

After all signs have been installed, the Department and the DMS manufacturer will conduct approved continuity, stand alone, and DMS system tests on the installed field equipment with central, remote, and
laptop equipment. A final acceptance test will be conducted to demonstrate all control, monitor, and communication requirements for 90 days. The Engineer will furnish a Letter acknowledging the final acceptance testing commencement date stating the first day of the final acceptance test. The completion of the final acceptance test occurs when system downtime due to mechanical, electrical, or other malfunctions to equipment furnished or installed does not exceed 72 hr. and any individual points of failure identified during the test period have operated free of defects. Assume responsibility only for test failures directly related to the work in accordance with this Item. Upon completion of successful final acceptance testing, permanently mark acceptance date and project identification information inside the controller cabinet. The Department will pay for electrical energy consumed by the system.

4. MEASUREMENT

This Item will be measured as each DMS system installed and tested.

5. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Installation of Dynamic Message Sign System” of cabinet mounting type specified (pole mounted, foundation mounted or wall mounted). This price is full compensation for transportation and installation of DMS; furnishing and installing any new mounting hardware, and DMS controller cabinet foundation when required; storing the DMS when required; cleaning and testing the DMS; replacement/repair of damaged components; disposal of unsalvageable material and for all manipulations, labor, tools, working drawings, equipment and incidentals. New overhead sign supports or relocation of existing overhead sign supports will be paid for under Item 650, “Overhead Sign Supports.” New drilled shaft foundations will be paid for under Item 416, “Drilled Shaft Foundations.” Sign walkways will be paid for under Item 654, “Sign Walkways.”
Special Specification 6035
Fiber Optic Video Data Transmission Equipment

1. DESCRIPTION

Furnish and install fiber optic video data transmission equipment in designated equipment cabinets in the field and in the Satellite Control Center as shown on the plans, as detailed in the special specifications, and as directed.

1.1. Submittal Components. As a minimum, the submittal for this Item is to completely address the requirements of Table 1.

<table>
<thead>
<tr>
<th>Table 1 Submittal Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitting device</td>
</tr>
<tr>
<td>Operating wavelength</td>
</tr>
<tr>
<td>Power requirements</td>
</tr>
<tr>
<td>Receiver optical sensitivity</td>
</tr>
<tr>
<td>Modulation method</td>
</tr>
<tr>
<td>Tilt</td>
</tr>
<tr>
<td>Differential gain</td>
</tr>
<tr>
<td>Environmental parameters</td>
</tr>
<tr>
<td>Data link signal parameters</td>
</tr>
<tr>
<td>Optical fiber compatibility</td>
</tr>
<tr>
<td>Transmitter optical output power</td>
</tr>
<tr>
<td>Receiver automatic gain control</td>
</tr>
<tr>
<td>a. Optical gain b. Video gain c. Data gain</td>
</tr>
<tr>
<td>Signal to noise ratio</td>
</tr>
<tr>
<td>Differential phase</td>
</tr>
<tr>
<td>Housing</td>
</tr>
<tr>
<td>Data link frequency response</td>
</tr>
<tr>
<td>Optical detector device</td>
</tr>
<tr>
<td>Surge suppression</td>
</tr>
<tr>
<td>Receiver video/data output parameters</td>
</tr>
<tr>
<td>d. Power e. Gold plating</td>
</tr>
<tr>
<td>Linearity</td>
</tr>
<tr>
<td>Modular design</td>
</tr>
<tr>
<td>Baseband frequency response</td>
</tr>
<tr>
<td>Power supply</td>
</tr>
</tbody>
</table>

2. MATERIALS

Ensure the materials furnished, assembled, fabricated, or installed under this Item are new, corrosion resistant, and in strict accordance with the details shown on the plans and in the specifications.

2.1. Functional Requirements. Furnish fiber optic video data transmission equipment (transmitter and receiver system) that transmits video from the field video camera and receives pan, tilt, and zoom (PTZ data communications link) data simultaneously for video camera controls. This unit operates with one single mode fiber and utilizes “:FC” fiber optic connectors.

Furnish a video fiber optic transmitter that generates optical signals modulated by the baseband video signal from the video camera output in the form of pulse frequency modulation.

Furnish a video fiber optic receiver that detects the optical signal and converts it to baseband video signal. The operating optical wavelength is 1,300 nm.

Ensure each fiber optic link meets RS-250B medium haul video requirements.

Furnish both the video fiber optic transmitter and receiver from the same manufacturer.

2.2. Electrical/Optical Requirements.

2.2.1. Transmitter Video Input. Ensure the transmitter video input is 75 Ohms nominal, 1.0 Volt peak to peak RS-170 NTSC standard between sync tip to 100% white level (minus 40 IRE to plus 100 IRE).

2.2.2. Transmitting Device. Ensure the transmitting device is a light emitting diode (LED) or LASER diode which has a MTBF of 100,000 hours at 160°F ambient.
2.2.3. **Transmitter Optical Output.** Ensure the transmitter optical output provides output power to 8/125 single mode glass fiber at a wavelength of 1300 nm sufficient to accommodate a link loss budget of 20 db or more. No optical spacers or optical "doughnuts" are allowed for compensation of optical link operational dynamic range.

2.2.4. **Optical Detector.** Ensure the optical detector of the receiver is an APD diode, a PIN, or a device approved by the Engineer.

2.2.5. **Receiver Optical Sensitivity.** Ensure the receiver input has a minimum sensitivity of 20 db below the transmitter output level and operates within the parameters of this specification. No optical spacers or optical "doughnuts" are allowed for compensation of optical link operation dynamic range.

2.2.6. **Receiver Automatic Gain Control.** Ensure the receiver has automatic gain control (AGC) circuitry to provide the receiver with the required dynamic range from transmitter receiver spacing of 1 to 20 db.

2.2.7. **Receiver Video Output.** Ensure the receiver video output is 75 Ohms nominal, 1.0 Volt peak to peak between sync tip and 100% white level.

2.2.8. **Modulation.** Provide pulse frequency modulation.

2.2.9. **Signal to Noise Ratio.** Ensure the system signal to noise ratio (SNR), measured as peak to peak white to blanking, to rms noise (pwpb/rms) in a 10 KHz to 5 MHz bandwidth, is greater than 60 db.

2.2.10. **Linearity.** Provide linearity greater than 1%.

2.2.11. **Tilt.** Provide tilt less than 2%.

2.2.12. **Differential Phase.** Ensure differential phase is less than 0.5 degrees at 10% to 90% Average Picture Level (APL).

2.2.13. **Differential Gain.** Ensure differential gain is less than 2% at 10% to 90% APL.

2.2.14. **Frequency Response.** Ensure the video signal frequency response is ±0.1 dB, 10 Hz to 0.5 MHz; ±0.2 db, 0.5 MHz to 4.2 MHz. The 3 dB bandwidth is 10 MHz.

2.2.15. **Data Link Frequency Response.** Ensure the data link frequency response is DC-100KHz.

2.2.16. **Data Link Communications Compatibility.** Ensure the data communications link is field programmable by shorting straps or dip switch settings of the video fiber optic transmission equipment. Furnish a data link that is compatible with RS-232, RS-422, RS485, two wire Manchester, Bi-Phase, NRZ, and NRZI digital encoding with greater than ten to the minus ninth Bit Error Rate with more than a 20 db link loss. Furnish a data link compatible with a DB 9, a DB 25 connector, or a terminal block connector.

2.2.17. **Optical Fiber Compatibility.** Ensure optical fiber compatibility to be 8/125 micron single mode glass fiber.

2.2.18. **Power Requirements.** Provide transmitters and receivers that operate on standard 115 VAC electrical service. Operate the equipment over a voltage range of 115 VAC, ±20 VAC at 60 HZ. Supply modular units (standalone) with an internal or low voltage external wall-mounted power supply with a minimum of a 6 ft. power cord terminating in a standard 2- or 3-prong line plug. Ensure maximum power requirements do not exceed 5 W for each transmitter or receiver.

Ensure the equipment operation is not affected by transient voltages, surges, and sags normally experienced on commercial power lines. Assume responsibility to check the local power service to determine if any special design is needed for the equipment. If a special design is required, include the extra cost in the bid of this Item.
2.2.19. **Surge Protection.** Install surge protectors in the equipment cabinet for the coaxial cable connection to the video camera.

2.2.20. **Power Service Transients.** Provide equipment that meets the requirements of Section 2.1.6, "Transients, Power Service," of the NEMA Standard TS-2-2003, latest revision.

2.2.21. **Wiring.** Furnish line wiring that meets the requirements of the National Electric Code. Cut wires to proper length. Provide cable slacks to facilitate removal and replacement of assemblies, panels, and modules. Do not double back wires to take up slack. Neatly lace wires into cable with nylon lacing or plastic straps. Secure cables with clamps.

2.2.22. **Power Service Protection.** Provide equipment containing readily accessible, manually resettable or replaceable circuit protection devices (such as circuit breakers or fuses) for equipment and power source protection.

2.2.23. **Fail Safe Provision.** Design the equipment such that the failure of the equipment does not cause the failure of any other unit of equipment.

2.3. **Mechanical Requirements.**

2.3.1. **Modular Design.** Design modular equipment such that major portions may be readily replaced in the field.

Mechanically key modules of unlike functions to prevent insertion into the wrong socket or connector.

Clearly identify modules and assemblies with name, model number, serial number, and any other pertinent information required to facilitate equipment maintenance.

2.4. **Connectors and Harness.** Make external connections by means of connectors. Key the connectors to preclude improper hookups. Color code and appropriately mark the wires to and from the connectors.

Furnish video input and output connectors of the BNC type.

Plate every conductive contact surface or pin with a minimum of 50 microns of gold.

Use optical input and output connectors of the "FC" type with stainless steel housing and ceramic ferrule.

Provide a connecting harness of appropriate length and terminate it with matching connectors for interconnection with the video cameras, video switcher, video multiplexer, and the fiber optic network.

2.5. **Housing.** Provide receiver and transmitter packages that are suitable for rack mounting, shelf mounting, or standalone packages. Equip card cages for rack mounting of equipment with a power supply capable of supplying power to a fully-loaded card cage. Rack mount the card cage on a standard EIA 19-in. rack.

2.6. **Environmental Design Requirements.** Furnish equipment that meets its specified requirements during and after subjecting to any combination of the following requirements:

- Ambient operational temperature range of -30°F to 165°F
- Relative humidity range of 0% to 95%

3. **CONSTRUCTION**

Use equipment that is designed and constructed to utilize the latest available techniques with a minimum number of parts, subassemblies, circuits, cards, and modules to maximize standardization and commonality.

Design the equipment for ease of maintenance with component parts that are readily accessible for inspection and maintenance. Provide test points for checking essential voltages and waveforms.
3.1. **Electronic Components.** Ensure the electronic components comply with Special Specification Item, "Electronic Components."

3.2. **Mechanical Components.** Use stainless steel external screws, nuts, and locking washers; do not use self-tapping screws unless approved by the Engineer.

Furnish parts that are made of corrosion-resistant material, such as plastic, stainless steel, anodized aluminum, or brass.

Protect the materials used in construction from fungus growth and moisture deterioration.

Separate dissimilar metals by using an inert dielectric material.

3.3. **Testing, Documentation, and Warranty.** Test the fiber optic video data transmission equipment in compliance with Article 2 of the Special Specification, "Testing, Training, Documentation, Final Acceptance, and Warranty."

Provide documentation for the fiber optic video data transmission equipment in compliance with Article 4 of the Special Specification, "Testing, Training, Documentation, Final Acceptance, and Warranty."

Provide a warranty for the fiber optic video data transmission equipment in compliance with Article 6 of the Special Specification, "Testing, Training, Documentation, Final Acceptance, and Warranty."

4. **MEASUREMENT**

This Item is measured as each unit furnished, installed, made fully operational, and tested in accordance with these Special Specifications or as directed.

5. **PAYMENT**

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" are paid for at the unit price bid for "Fiber Optic Video Data Transmitter" or "Fiber Optic Video Data Receiver." This price is full compensation for equipment described under this Item with cables and connectors; for documentation and testing; and for furnishing labor, materials, training, equipment, and incidentals.
Special Specification 6038
Multipolymer Pavement Markings (MPM)

1. DESCRIPTION

Provide MPM on pavement surfaces shown on the plans to meet the performance requirements of this Specification for:
- color,
- durability, and
- retroreflectivity.

2. MATERIALS

2.1. Multipolymer Pavement Marking Materials. Use materials that produce an adherent, retroreflective pavement marking system that meets all of the performance requirements of this Specification. Use materials that do not result in the generation of any hazardous materials/wastes, as defined in Section 1.3.60., "Hazardous Materials or Waste," during application or removal. If requested, provide a laboratory report from a commercial laboratory indicating material used does not result in the generation of any hazardous materials/wastes, as defined in Section 1.3.60., during application or removal.

Use a multipolymer resin material, which is:
- 2-component (a predominantly multipolymer pigmented resin component with a curing agent component);
- 100% solids, producing no toxic fumes when heated to application temperature;
- track-free in less than 40 min. with appropriate ambient temperature as recommended by the manufacturer;
- formulated and tested to perform as a pavement marking material with glass spheres applied to the surface; and
- on the Material Producer List for Pavement Markings (Multipolymer) maintained by CST/M&P for MPM. Inclusion onto the MPL requires documentation of acceptable performance from Department pavement marking field application that have been in place for at least 1 yr. Contact CST/M&P to initiate and document field trials of new materials for MPL consideration.

Before work begins, provide a laboratory report from an independent testing laboratory showing that the initial color of each material selected for use conforms to the color limits set forth in Table 1, measured by 45°/0° geometry CIE, D65 Illuminant, 2° standard observation angle in accordance with ASTM E 1347, E 1348, or E 1349.

2.2. Nonreflectorized Contrast or Shadow Markings. The marking material used for the contrast or shadow marking must conform to the same formulation, material, prequalification, and sampling requirements with the exception of the following items:
- color pigment used;
- documentation of acceptable performance from Department pavement marking field application that have been in place for at least 1 yr.; and
- glass spheres must be replaced with a black, color-fast, anti-skid material.

Before work begins, provide a laboratory report from an independent testing laboratory showing that the initial color of each material selected for use conforms to the color limits set forth in Table 1, measured by
3. EQUIPMENT

Provide equipment as required or directed according to the following:

3.1. Preparation and Application. Use equipment designed for the pavement preparation and application of the type of MPM material selected.

3.2. Colorimeter. Provide a colorimeter using 45°/0° geometry CIE, D65 Illuminant, 2° standard observation angle meeting the requirements of ASTM E 1347, E 1348, or E 1349.

3.3. Retroreflectometer. Unless otherwise shown on the plans, provide a portable or mobile retroreflectometer meeting the following requirements.

3.3.1. Portable Retroreflectometer. Provide a portable retroreflectometer that meets the requirements of ASTM E 1710.

3.3.2. Mobile Retroreflectometer. Provide a mobile retroreflectometer that:

- is approved by the Construction Division (CST) for project evaluation of retroreflectivity, which will include taking a set of readings on stripes designated by CST and comparing them with the readings of a portable retroreflectometer provided by CST that meets the specifications indicated in this Specification;
- is calibrated daily, before measuring retroreflectivity on any pavement stripe, with a portable retroreflectometer meeting the following requirements: ASTM E 1710, entrance angle of 88.76°, observation angle of 1.05°, and an accuracy of ±15%;
- requires no traffic control when retroreflectivity measurements are taken and is capable of taking continuous readings; and
- documents mobile retroreflectometer evaluations, showing average retroreflectivity values for each 0.25-mi. section, or the area of concern if it is less than 0.25 mi., with all deficient sections clearly marked.

4. CONSTRUCTION

4.1. General. Prepare the pavement surface using controlled techniques that minimize pavement damage and hazards to the traveling public. Apply the MPM materials according to the manufacturer’s recommendations using widths, colors, and shapes, and at locations as shown on the plans.

Obtain approval for the sequence of work and estimated daily production. Use traffic control as shown on the plans or as approved. Establish guides to mark the lateral location of pavement markings as shown on the plans or as directed, and have guide locations verified. Use material for guides that will not leave a permanent mark on the roadway. Apply markings in alignment with the guides and without deviating for the alignment more than 1 in. per 200 ft. of roadway or more than 2 in. maximum. Remove all applied markings that are not in alignment or sequence as stated in the plans or as stated in the specifications at the Contractor’s expense and in accordance with Item 677, “Eliminating Existing Pavement Markings and Markers,” except for measurement and payment.

4.2. Initial Performance Requirements. Meet the following initial performance requirements after installation. Perform an initial performance evaluation from 7 to 15 days after MPM are installed to verify that the MPM meet the performance requirements for retroreflectivity. Conduct initial retroreflectivity evaluations of placed pavement markings with either a portable or a mobile retroreflectometer, unless otherwise shown on the plans, according to Section 6038.5.2., “Retroreflectivity.” The Contractor is responsible for traffic control when conducting performance evaluations.
The Engineer will conduct a visual evaluation for color and durability and require testing only if MPM do not appear to meet the performance requirements.

For MPM not meeting performance requirements, repair or replace until re-evaluation shows the MPM meet the performance requirements.

4.2.1. **Color.** Provide MPM consisting of pigments blended to provide color conforming to standard highway colors as shown in Table 1.

<table>
<thead>
<tr>
<th>Federal 595 Color</th>
<th>Chromaticity Coordinates</th>
<th>Brightness (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>White</td>
<td>17855</td>
<td>.290</td>
</tr>
<tr>
<td>Yellow</td>
<td>33538</td>
<td>.470</td>
</tr>
<tr>
<td>Black</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

4.2.2. **Retroreflectivity.** Provide MPM meeting the minimum retroreflectivity values listed in Table 2.

<table>
<thead>
<tr>
<th>Color</th>
<th>Retroreflectivity, mcd/m²/lx, Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>250</td>
</tr>
<tr>
<td>Yellow</td>
<td>175</td>
</tr>
</tbody>
</table>

4.2.3. **Durability.** Provide MPM that do not lose more than 5% of the striping material in a 1,000-ft. section of continuous stripe or broken stripe (25 broken stripes). Pavement markings must remain in the proper alignment and location.

5. **PERFORMANCE EVALUATIONS**

Provide traffic control and conduct evaluations of color, retroreflectivity, and durability as required or directed.

5.1. **Color.** Measure the color using 45°/10° geometry CIE, D65 Illuminant, 2° standard observation angle in accordance with ASTM E 1347, E 1348, or E 1349.

5.2. **Retroreflectivity.** Unless otherwise shown on the plans, conduct retroreflectivity evaluations of pavement markings with either a portable or a mobile retroreflectometer. Make all measurements in the direction of traffic flow, except for broken centerline on 2-way roadways, where measurements will be made in both directions.

If using a portable retroreflectometer, take a minimum of 1 measurement every mile on each series of markings (i.e., edgeline, center skip line, each line of a double line, etc.), at approved locations. If more than 1 measurement is taken, average the measurements. For all markings measured in both directions, take a minimum of 1 measurement in each direction. If the measurement taken on a specific series of markings within each mile segment falls below the minimum retroreflectivity values, take a minimum of 5 more measurements within that mile segment for that series of marking. If the average of these 5 measurements falls below the minimum retroreflectivity requirements, that mile segment of the applied markings does not meet the performance requirement.

If using a mobile retroreflectometer, review the results to determine deficient sections and deficient areas of interest. These areas do not meet the performance requirements.

5.3. **Durability.** Measure the durability in accordance with ASTM D 913 for marking material loss and visual inspection for alignment and location. Conduct evaluations at approved locations.
6. **MEASUREMENT**

This Item will be measured by the foot. Each stripe will be measured separately.

This is a plans quantity measurement Item. The quantity to be paid is the quantity shown in the proposal unless modified by Article 9.2, “Plans Quantity Measurement.” Additional measurements or calculations will be made if adjustments of quantities are required.

7. **PAYMENT**

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Multipolymer Pavement Markings (MPM)” of the type and color specified and the shape, width, and size specified as applicable, at the time of project acceptance. This price is full compensation for materials, application of MPM, equipment, labor, tools, and incidentals.

Surface preparation, when shown on the plans, will be paid for under Item 678, “Pavement Surface Preparation for Markings.”
1. DESCRIPTION

Install a Battery Back-Up System (BBU System) for traffic signals that will provide reliable emergency power in the event of utility power failure or interruption. The system will also function as a power conditioner and/or voltage regulation device.

A BBU System consists of inverter/charger, manual bypass switch, power transfer switch or automatic bypass switch, batteries, battery monitoring device, wiring, external cabinet or stand-alone cabinet, concrete pad, all necessary hardware and software, and all associated equipment required to operate in a field environment.

The BBU System shall be capable of operating an “LED only” signalized intersection (700W load) for 4 hours of full runtime when utility power is disabled and under ambient temperatures of 25°C. The BBU System shall switch the intersection to flash mode of operation when approximately 40% of battery charge is remaining, via relay contact connection points on the front panel of the unit. The BBU system shall operate the intersection in the flash mode of operation (300W load) for an additional 2 hours. BBU system components shall be rated for a minimum 1400W load capacity.

The BBU shall be designed for outdoor applications in accordance with NEMA TS2-2003, Section 2. All components of the BBU system shall be rated to operate under temperature extremes of -34°C to +74°C.

2. DEFINITIONS

2.1. **Automatic Bypass Switch.** A unit connected between the utility power supply and the inverter/charger which can automatically switch power to the controller cabinet service panel from inverter output power to utility line power.

2.2. **Battery Back-Up System (BBU System).** The battery back-up system includes, but is not limited to, a manual bypass switch, automatic bypass switch or power transfer switch, inverter/charger, batteries, battery monitoring device, wiring, external cabinet and all necessary hardware for system operation.

2.3. **Battery Back-Up System Software.** All software associated with operation, programming and functional requirements of the BBU system.

2.4. **Battery Monitoring Device.** The device which monitors battery temperatures and charge rate of the batteries used in the BBU system.

2.5. **Batteries.** Standard 12V batteries wired in series to create a 36VDC to 96VDC voltage storage.

2.6. **Boost.** When enabled, the BBU inverter/charger shall automatically switch into this mode to raise the utility line voltage when it drops below a preset limit. The limit may be user defined or use manufacturer default settings (typically 100V AC).

2.7. **Buck.** When enabled, the unit shall automatically switch into this mode to reduce the utility line voltage when it rises above a preset limit. The limit may be user defined or use manufacturer default settings (typically 135V AC).

2.8. **External or Stand-Alone Cabinet.** The structure which houses the system components and/or batteries for the BBU System.
2.9. **Inverter/Charger.** The unit which converts the DC voltage input into 120 VAC output for the traffic signal cabinet to operate. As a minimum the inverter/charger shall be rated for 1400 watts.

2.10. **Inverter Line Voltage.** The power supplied from the BBU system to the traffic signal cabinet from the BBU System inverter.

2.11. **Manual Bypass.** Manual switch that allows user to bypass BBU power to service system equipment. Manual bypass switch switches utility line power directly to cabinet.

2.12. **Power Transfer Switch.** A unit connected between the utility power supply and the inverter/charger which can automatically switch from utility line power to inverter output power. The power transfer relay may be a separate unit or combined with the manual bypass switch. In the event of battery voltage loss, the power transfer switch will automatically return to utility line power.

2.13. **Signal Operation Mode.** A signalized intersection generating a 700W load when running in normal operation.

2.14. **Signal Flash Mode.** A signalized intersection generating a 300W load when running in the flash mode of operation.

2.15. **Utility Line Voltage.** The 120V AC power supplied to the BBU system.

3. **EQUIPMENT**

Ensure electrical materials and construction methods conform to the current NEC and additional local utility requirements. Furnish battery back-up systems prequalified by the Department. The Traffic Operations Division maintains a Material Producer List (MPL) of prequalified battery back-up systems. Ensure all materials and construction methods conform to the details shown on the plans, the requirements of this Item, and the pertinent requirements of the following Items:

- Item 420, “Concrete Substructures”
- Item 620, “Electrical Conductors”

Provide and install a BBU system that is able to fulfill the following requirements:

3.1. **Method of Operation.** The BBU system shall operate using one or more of the following methods:

3.1.1. **Buck and Boost Method.** When the buck and boost functions are enabled they shall set the upper and lower control limit allowable for the utility line voltage.

If the utility line voltage fluctuates above or below the buck and boost values, the BBU system shall raise or lower the voltage by approximately 10-15% of the utility line voltage in an attempt to bring the voltage back into the upper and lower control limits. Buck and boost shall have preset manufacturer defaults.

If the utility line voltage falls above or below the functional capabilities of buck and boost, then the BBU system will transfer power from the utility line voltage to the inverter line voltage.

3.1.2. **Stand-by Method.** The stand-by method shall set upper and lower control limits for the utility line power. If the utility line voltage falls above or below the upper or lower control limits, then the BBU system will transfer power from the utility line voltage to the inverter line voltage.

3.1.3. **Continuous Operating Mode, Double Conversion Method.** The continuous method supplies the cabinet with inverter line voltage at all times. This method requires the disabling of buck and boost functions.

3.2. **System Capabilities.** The BBU system shall be capable of providing 1400W peak load, with a minimum of 80% inverter efficiency, for at least 10 seconds.
The BBU system shall be capable of providing 700W signal operation load for a minimum of 4 hours, and then switching to and providing 300W signal flash load for an additional 2 hours minimum, when batteries are fully charged.

When the BBU system is running on battery power, the inverter/charger shall be capable of allowing the voltage at which the transition from normal operating load to flash mode occurs (usually 47.5V) to be selected by a user, via relay contacts and connection points on the front panel of the inverter/charger.

The transfer time allowed, from disruption of normal utility line voltage to stabilized inverter line voltage from batteries, shall be less than 65 milliseconds. The same allowable transfer time shall also apply when switching from inverter line voltage to utility line voltage.

The BBU system shall bypass utility line voltage whenever the utility line voltage is outside of the manufacturer’s default, or a user-programmed voltage range, ±2VAC.

When the utility line power has been restored to a normal operating voltage for more than a user defined setting (default 30 seconds), the BBU system shall transfer from inverter line voltage to utility line voltage. The BBU system shall be equipped to prevent a malfunction feedback to the cabinet or from feeding back to the utility service.

The BBU system shall be compatible with TS1, TS2 and Model 170/2070 controllers and cabinet components for full run-time operation.

Unless the plans indicate otherwise, provide a BBU in an external battery cabinet. When indicated by the plans, provide a BBU system that can be shelf-mounted in NEMA TS-1 and TS-2 cabinets, or rack-mounted for Model 170/2070 332 cabinets. Provide a manual bypass that is capable of shelf mounting or that can be attached to the side of the signal cabinet. Provide interconnect cables that are no less than 10 ft. in length.

Relay contact wiring for each set of NO/NC relay contact closure terminals shall be no less than 6 feet long and #18 AWG wire. Use manufacturer recommendations for size of wire for any cables lengths greater than 10 feet.

The BBU system shall have lightning surge protection compliant with IEEE/ANSI C.62.41 latest edition and meeting all current UL1449 standards. Lightning surge protection shall be provided to the utility line voltage coming into the inverter/charger. The surge protection device shall be easily accessible and mounted externally from the inverter/charger.

The BBU system, including batteries and hardware, shall be easily replaceable and shall not require any special tools for installation.

The BBU system shall operate in automatic “fail-safe” mode. Should a breaker trip on the inverter/charger and/or the power transfer switch, the system will automatically operate from utility line power and bypass the BBU system.

As stated above, in addition to the inverter/charger, the BBU shall be provided with both an external manual bypass switch and either an external automatic transfer switch or external automatic bypass switch.

The BBU system shall be capable of logging up to 100 events. Events shall date- and time-stamp faults with utility line voltage and battery voltages. At the minimum, the BBU system shall log an event when:
- the utility line voltage falls above or below the upper or lower control limits,
- the BBU system automatically switches to battery power, and
- when self-monitoring BBU system components fail.

3.3. Displays, Controls, Diagnostics and Maintenance. The BBU system shall include a front panel display. All applicable programmable functions of the operational methods described in this specification shall be viewable from the front panel display.

All events described in Section 3.2, “System Capabilities” shall be viewable from the front panel display.
The BBU system software shall be programmable from the front panel of the inverter/charger by means of a keyboard or momentary buttons allowing user to step through menu driven software.

A 10/100 Ethernet port shall be provided on the front panel of the inverter/charger.

A RS232 port shall be provided on the front panel of the inverter/charger.

The BBU system software shall be provided for the operational needs of the BBU system. The user/operator shall be able to access all system software via the Ethernet and RS232 ports on the front panel of the inverter/charger. The user shall be able to read logged events and change programmable parameters from the keyboard, laptop or local area network via the Ethernet port.

System software shall be upgradeable via the RS232 port on the front panel of the inverter/charger.

3.4. **Inverter/Charger.** The inverter/charger is the unit that provides the voltage regulation; power conditioning of utility line power; convert the DC voltage input into 120 VAC output for the traffic signal cabinet to operate; provides emergency backup power upon loss of utility power and provides for temperature compensated battery charging. As a minimum the inverter/charger shall be rated for 1400 watts. Provide a minimum of 6 sets of normally open (NO) and normally closed (NC) single-pole double-throw dry contact relay closures on the front face of the inverter/charger and labeled so as to identify each contact. The relay closures shall consist a set of NO/NC contact closures that shall be energized whenever the unit switches to battery power (contact shall be labeled or marked as “On Battery” or equivalent) and a second set of NO/NC contact closures shall be energized whenever the battery approaches 40% remaining capacity (contact shall be labeled or marked as “Low battery” or equivalent”), which will determine when the unit will switch from normal operation to flash. A third set of NO/NC contact closures shall be energized after a user settable time after the unit switches to battery power. The contact may be labeled “Timer. The remaining relays shall be user definable.

Operating temperature range for both the inverter/charger and power transfer relay shall be -34°C to +74°C.

When battery power is used, the BBU system output voltage shall be between 110VAC and 125VAC, pure sine wave output, ≤ 3% THD, 60Hz ± 3Hz.

3.5. **Manual Bypass Switch.** The manual bypass switch shall be provided as a separate unit external to the inverter/charger unit. The manual bypass switch shall consist of housing, two position switch, terminal blocks, internal wiring, service outlet, circuit breakers and mounting hardware. All components shall be rated at a minimum of 240VAC / 30 amp. Provide the manual bypass switch with # 8 terminal blocks. The manual bypass switch shall be 2 position and allow the user to switch utility line power directly to the cabinet service panel. The switch positions will provide the following functions. In the “Bypass” position the inverter is bypassed, utility power is removed from the BBU and passed directly to the signal power panel. In the “UPS” position the inverter / switch is powered and the signal circuits are supplied by the output of the inverter. When the manual bypass switch is in the “Bypass” position the user may replace the automatic bypass switch (or transfer switch) and the inverter/charger without interrupting power to the intersection. Provide the manual bypass switch with over current protection (20 Amp circuit breaker).

3.6. **Power Transfer Switch.** These requirements are for BBU systems provided with a power transfer switch. The power transfer switch will operate such that the inverter/charger input and cabinet power panel are supplied with power from the utility line, in the event that the utility line power is lost or requires conditioning (buck or boost) the power transfer switch will automatically connect the inverter/charger output to the cabinet power panel such that the inverter/charger output provides the power. In the event of inverter/charger failure, battery failure, or complete battery discharge, the power transfer shall revert to the NC (de-energized) state, where utility line power is connected to the cabinet service panel.

All wire to the power transfer switch from the manual bypass switch, to and from the inverter/charger and from the manual bypass switch to utility power service shall be sized accordingly with system requirements.

3.7. **Automatic Bypass Switch.** These requirements are for BBU systems provided with an automatic bypass switch. The automatic bypass switch will operate such that the inverter/charger input is supplied with power
from the utility line and the cabinet power panel is supplied with power from the output of the inverter/charger. In the event of inverter/charger failure, battery failure, or complete battery discharge, or other loss of power from the output of the inverter/charger, the automatic bypass switch shall revert to the NC (de-energized) state, where utility line power is connected to the cabinet service panel.

3.8. **Batteries.** Provide batteries from the same manufacturer/vendor of the BBU system.

Individual batteries shall be 12V type, and shall be easily replaceable and commonly available for purchase by common off-the-shelf equivalent.

Batteries shall be sized and rated to operate a 700W load for 4 hours (normal operation) followed by a 300W load for 2 hours (flash operation) for a total of 6 hours.

Battery configuration shall consist of 12V batteries arranged for total voltages of 36V, 48V, 60V, 72V, 84V or 96V.

Batteries shall be deep-discharge, sealed prismatic lead-calcium based, valve-regulated maintenance-free batteries.

Batteries shall operate over a temperature range of -34°C to +74°C.

Batteries shall indicate maximum recharge data and recharging cycles, and manufacturer defaults on the inverter/charger shall not allow the recharging process to exceed the batteries maximum values.

Battery interconnect wiring shall connect to the inverter unit via modular harness with red and black cabling that terminates into a typical power pole style connector. Harness shall be equipped with mating power flag style connectors for batteries and a single insulated plug-in style connection to inverter/charger unit. Harness shall allow batteries to be quickly and easily connected in any order and shall be keyed to ensure proper polarity and circuit configuration. A fusible link or device sized accordingly with system requirements and to protect against currents exceeding each battery current rating shall be provided within 3 inches of the negative and positive leads of each battery. Fusible links shall be insulated stranded wire.

Insulated covers shall be provided at the connection points (post) as to prevent accidental shorting.

Battery cables provided to connect battery to battery harness main cable shall be a minimum of 18 in. or long enough to accommodate the battery covers provided with the battery ground box, whichever is longer. Battery harness shall be sized accordingly with system requirements.

3.9. **Battery Monitoring System.** The BBU system shall use a temperature-compensated battery charging system. The charging system shall compensate over a range of 2.5 – 4.0 mV/°C per cell.

The temperature sensor shall be used to monitor the temperature and regulate the charge rate of the batteries. Unless required otherwise by the plans the temperature sensor wire shall be as follows:

- 8 feet long if external side-mounted cabinet is attached to existing controller cabinet.
- 8 feet long if batteries are housed in traffic signal base used for cabinet foundation and batteries are stored on shelf within base.
- 8 feet long if stand-alone cabinet is used.

Should the temperature sensor fail, the inverter/charger shall not allow the BBU system to overcharge the batteries. The BBU system shall provide an alarm should the temperature sensor fail.

Recharge time for the batteries to obtain 80% or more of full battery charge capacity shall not exceed 20 hours at 21°C (70°F).

Batteries shall not be charged when battery temperature exceeds 50°C.
The BBU system shall monitor battery strings within a system and set a fault indicator if battery voltage falls below normal operating voltage.

3.10. **Battery Housing.** Unless plans require otherwise, project an external battery cabinet or stand-alone BBU/battery cabinet as specified below.

3.10.1. **External Battery Cabinet.** The external cabinet shall be NEMA type 3R all-aluminum with stainless-steel hardware, or approved equivalent. The external cabinet shall be designed to attach on the side of a TS2 size 6 base-mount cabinet. The batteries, inverter, transfer switches, manual bypass and all associated hardware shall be housed in the external cabinet.

The external cabinet shall be equipped with proper ventilation, electric fan, and air filter in accordance with TS2 standards.

External cabinets will be equipped with a door opening to the entire cabinet. The door shall be attached to the cabinet with a full length stainless steel piano hinge or four, two-bolts per leaf, hinges. The door shall be provided with the same latch and lock mechanism as required for standard traffic signal cabinet. In addition, a padlock clasp will be provided.

When using battery ground boxes, an external cabinet is required for the non-battery components.

3.10.2. **Stand-Alone BBU/Battery Cabinet.** When required for installation by the plans a stand-alone cabinet in accordance with the following shall be provided.

The stand-alone cabinet shall conform to all the specifications of the External BBU/Battery Cabinet, except that it will not mount to the controller cabinet. The stand-alone cabinet shall be designed to attach to a concrete pad.

3.11. **Concrete Pad.** Provide a Class B concrete pad as a foundation for stand-alone cabinets of the size shown in the plans. For external cabinets, extend the controller foundation to provide a class B concrete pad under the external cabinet of the size shown in the plans.

3.12. **Documentation.** Operation and maintenance manuals shall be provided. The operation manual shall include a block diagram schematic of all system hardware components. The manual shall include instructions for programming and viewing software features. The manual shall include all uploading/downloading (communications protocol) requirements via RS232 or Ethernet port.

Board level schematics shall be provided when requested.

Battery documentation and replacement information shall be provided.

3.13. **Testing.** The Department reserves the right to do testing on BBU systems to ensure Quality Assurance on unit before installation and random sampling of units being provided to the State. BBU systems that fail will be taken off the Qualified Products List (QPL).

Department QPL testing procedures will check compliance with all the criteria of this specification including the following:

- Event logging for fault/alarm conditions
- Demonstrated use of one or more of the operating methods described in Section 3.1., “Method of Operation.”
- Testing of ability to power a 700W load for 4 hours, transfer to flash mode and power a 300W load for 2 additional hours, at an ambient temperature of +25°C.
- Testing of all components in environmental chamber (temperature ranges from -30°C to +74°C) following NEMA TS2 2003 standards, Section 2.
3.14. **Warranty, Maintenance and Support.** Provide a BBU containing a warranty that requires the manufacturer to replace failed BBUs when non-operable due to defect in material or workmanship within five years of date of purchase from manufacturer. Supply a BBU with no less than 95% of the manufacturer's warranty remaining on the date that the BBU is installed and begins operating. The replacement BBU must meet requirements of this specification. The Contractor will handle all warranty issues until the date of final acceptance.

Batteries shall be warranted for full replacement for 5 years. Batteries shall be defined as bad if they are not able to deliver 80% of battery rating.

4. **MEASUREMENT**

This Item will be measured by each BBU system installed.

5. **PAYMENT**

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "BBU System" of the type (type of BBU cabinet) specified. This price is full compensation for furnishing, installing, and testing the completed installation, BBU system and associated equipment, mounting hardware, class B concrete pad, software, conduit, conductors; and equipment, labor, tools; and incidentals.
Special Specification 6063
Intelligent Transportation System (ITS) Solar Power System

1. DESCRIPTION

Furnish, install, relocate, or remove an integrated Intelligent Transportation System (ITS) solar power system at locations shown on the plans, or as directed.

A solar power system is co-located with and supplies operational power for designated ITS field equipment at locations as shown on the plans. The solar panel power supply system must supply power service for the field equipment. Furnish and install all of the components described in the specification and configure the equipment as indicated on the plans.

2. MATERIALS

Provide materials that comply with the details shown on the plans, the requirements of this Item, and the pertinent requirements of the following Items:

- Item 416, “Drilled Shaft Foundation,”
- Item 421, “Hydraulic Cement Concrete,”
- Item 440, “Reinforcing Steel,”
- Item 442, “Metal for Structures,”
- Item 445, “Galvanizing,”
- Item 449, “Anchor Bolts,”
- Item 618 “Conduit,”
- Item 620, “Electrical Conductors,”
- Item 624 “Ground Boxes,”
- Item 627 “Treated Timber Poles,” and
- Item 687 “Pedestal Pole Assemblies.”

3. EQUIPMENT

Provide labor, equipment and materials to employ solar-generated, battery-backed power for the assigned field equipment specified in the plans, or as directed. Install all equipment, including batteries and charge controller, in a suitably sized enclosure.

Size the enclosure to house the solar chargers, batteries, lightning protection equipment, and all co-located ITS field equipment shown on the plans or as directed.

Furnish a solar power system that supplies the design electrical load for up to 24 hr. per day with 3 or 5 days of battery backup, as described in the plans, and generally consisting of the following:

- Photovoltaic (PV) modules with mounts or racks, and mounting brackets for affixing the modules to a pole as shown on the plans. Ensure mounting and bracket assembly has all galvanized steel or heavy gauge-mill aluminum construction. Provide adjustable tilt mounts that can be repositioned to an appropriate angle to maximize seasonal solar radiation,
- 12 VDC sealed, valve-regulated, absorbed glass mat (AGM), maintenance-free batteries,
- maximum power point tracking (MPPT) photovoltaic charge controllers and monitoring units,
- one toggle-type power switch for emergency shutoff, and
external conduit, wiring cable and conductors (as recommended by the supplier) between the following:
- photovoltaic module to cabinet back panel,
- battery interconnect,
- batteries to cabinet back panel, and
- wiring between components in cabinet.

Pre-set the equipment, optimize photovoltaic module direction, and configure hardware components to allow automatic operation. Furnish and install a fully operational assembly with all cabling and terminations matched to support the selected components. Use the component sizing chart, Table 1 or Table 2, shown below to size the individual components based on the planned electrical load and days autonomy:

Table 1 Solar Power System Component Sizing – 3 Days Autonomy

<table>
<thead>
<tr>
<th>Design Load (Watts)</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Array Size (Watts)</td>
<td>1440</td>
<td>1296</td>
<td>1152</td>
<td>1008</td>
<td>864</td>
<td>720</td>
<td>576</td>
<td>288</td>
</tr>
<tr>
<td>Battery Capacity (AH)</td>
<td>750</td>
<td>675</td>
<td>600</td>
<td>525</td>
<td>450</td>
<td>375</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>Total Controller Capacity (Amps)</td>
<td>120</td>
<td>108</td>
<td>96</td>
<td>84</td>
<td>72</td>
<td>60</td>
<td>48</td>
<td>24</td>
</tr>
</tbody>
</table>

1. Components Sized Based On The Following Performance Requirements:
 - 3 Days of Autonomous Operation
 - Maximum Battery Discharge of 80%
 - Recharge to Capacity in 5 hours of sunlight after 80% battery discharge.
2. Panels to be selected using PVUSA Test Conditions (PTC)

Table 2 Solar Power System Component Sizing – 5 Days Autonomy

<table>
<thead>
<tr>
<th>Design Load (Watts)</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Array Size (Watts)</td>
<td>2400</td>
<td>2160</td>
<td>1920</td>
<td>1680</td>
<td>1440</td>
<td>1200</td>
<td>960</td>
<td>480</td>
</tr>
<tr>
<td>Battery Capacity (AH)</td>
<td>1250</td>
<td>1125</td>
<td>1000</td>
<td>875</td>
<td>750</td>
<td>625</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>Total Controller Capacity (Amps)</td>
<td>200</td>
<td>180</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>40</td>
</tr>
</tbody>
</table>

1. Components Sized Based On The Following Performance Requirements:
 - 5 Days of Autonomous Operation
 - Maximum Battery Discharge of 80%
 - Recharge to Capacity in 5 hours of sunlight after 80% battery discharge.
2. Panels to be selected using PVUSA Test Conditions (PTC)

Size the components of the system considering how many days of autonomous operation are needed and future maintenance costs. Furnish, install, and test the solar panel power supply system, and ensure it meets the following requirements:

3.1. **Solar Generator.** Ensure the system solar generator provides at least the total power output shown for the planned electrical load. Supply and install the appropriate number and size of PV modules needed to meet the minimum power requirements shown in Table 1 or 2 as required by the plans. Use photo voltaic USA (PVUSA) test conditions (PTC) ratings.

Supply industrial grade, mono-crystalline or poly-crystalline type solar modules. Consumer grade modules are not acceptable. Ensure that the PV modules meet the following minimum requirements:

- minimum output voltage of 12 VDC,
- minimum area efficiency rating of 15%,
- at least 2 bypass diodes, installed at the factory,
■ include an ultraviolet (UV) resistant, Ingress Protection (IP) 66 rated junction box providing wire termination for up to No. 6 AWG wiring with the PV module,
■ hail impact resistance up to 1 in. diameter at 50 mi. per hr., and
■ UL 1703 listing.

Ensure PV modules, regardless of wattage size, shares common mounting holes for mounting so that a single mounting structure will accommodate the entire module line.

PV modules may be wired in “strings” of panels wired in series, which are then wired in parallel to other strings. Ensure that the open circuit voltage of any single string of PV modules does not exceed 127 V.

Construct PV modules with a tempered glass surface and an industrial grade anodized aluminum frame that completely surrounds and seals the module laminate. Ensure construction is consistent with the demands of installation near humid salt air environments.

Design and construct the photovoltaic module mounting assembly of galvanized steel (ASTM A-153 Class A) or aluminum. The mounting assembly must be of adequate design and strength to provide a means of securely attaching the PV module frame to a pole. Provide a mounting assembly capable of 360° horizontal orientation with a means of locking the bracket at an inscribed angular position about the pole. Ensure the mounting assembly is designed and installed to prevent module re-positioning during 110 mph wind conditions.

Label all PV modules with open-circuit voltage, operating (maximum power) voltage, maximum permissible voltage, operating (maximum power) current, short-circuit current, and maximum power.

Provide a warning label on all DC junction boxes warning that the active parts inside the boxes are fed by a PV array and may still be energized after isolation.

Provide a DC disconnect toggle switch to the solar array at a readily accessible location. Label with system information including maximum power current, maximum power voltage, maximum system voltage, short-circuit current, and maximum rated output current of charge controller at the DC disconnect. National Electrical Code (NEC) 690.14(C)(1) and 690.31(E).

Mark each PV system disconnect as such. NEC 690.14(C)(2) and 690.14(C)(3).

Provide overcurrent protection for the PV source circuit in conformance with NEC 690.9(A); 240.

3.2. Batteries. Provide maintenance free, spill proof, AGM batteries with the following minimum characteristics:
■ 12 VDC,
■ 80% allowable depth of discharge (DOD),
■ rated for a minimum of 2,000 recharge cycles, and
■ capacity rated at 77°F, 100 hr. discharge rate.

Supply appropriate number of batteries to ensure the minimum total amp-hours meets or exceeds the value in Table 1 or 2, as described in the plans, when wired in parallel. Label, with a UV resistant system, the battery bank with maximum operating voltage, equalization voltage, and polarity.

Arrange the system components so that all battery terminals are guarded and adequate working space is provided per NEC 690.71(B)(2); 480.9.

Install current-limiting fuses on battery output circuits per NEC 690.71(C).

Provide overcurrent protection for the battery circuit conductors in conformance with NEC 690.9(A); 240.
Maximum system voltage is less than 600 V. Circuits over 150 V are to be protected so as to be only accessible to qualified persons, per NEC 690.7(C) and 690.7(D).

Install battery banks of greater than 48 V nominal in non-conductive cases. Conductive racks are permissible if no materials are located within 6 in. of the top of the battery case per NEC 690.71(D).

Provide series disconnects for battery strings over 48 V nominal per NEC 690.71(E).

Provide a maintenance disconnect for the grounded conductor of each string for battery systems over 48 V nominal. Make this disconnect accessible only to qualified persons per NEC 690.71(F).

Use battery interconnections with #2/0 AWG or larger flexible cables that are listed for hard-service use and are moisture resistant.

3.3. Panel Controller/Battery Charger. Furnish and install maximum power point tracking (MPPT) controllers to ensure proper charging on the system battery bank. Provide an appropriate number of adequately sized MPPT controllers to meet or exceed the total charging amps shown in the system sizing tables. Provide MPPT controllers listed for the application, including UL 1741.

Provide MPPT controllers rated for the appropriate input and output voltages and currents needed for a fully functioning solar power system of the size called for in the plans.

Provide MPPT controllers with integrated battery overcharge and over-discharge protection.

Provide MPPT controllers with integrated temperature compensation.

Provide a blocking diode for reverse-current protection of the charging circuit. Reverse voltage rating of the blocking diode should be at least twice the open circuit voltage rating of the PV array to which it is fitted.

Incorporate thermal compensation in the charge control circuit to adjust the battery charge rate to variances in temperature with an adjustable voltage swing above and below the ambient set point as defined by the battery manufacturer. The battery float voltage calibration shall be at a voltage defined by the battery manufacturer at 25ºC ambient temperatures.

Provide light-emitting diodes (LED) or liquid crystal displays (LCD) to indicate solar panel charging and state of charge.

Provide surge protection for lightning and power surge protection.

Provide the controller with a low voltage disconnect (LVD) circuit. This circuit disconnects the battery bank when the battery voltage reaches a voltage that is deemed critical by the manufacturer of the battery. Provide an LED to indicate when the LVD circuit is active.

3.4. Power Inverter. Provide a stand-alone power inverter, with UL 1741 listing, to provide 120 V, 60 Hz, AC power output.

Provide true sine wave power with less than 3% total harmonic distortion.

Size the inverter to handle the largest load the system is expected to serve.

Provide overcurrent protection, disconnects, and ground fault protection.

Protect the inverter output circuit in accordance with NEC Article 240.

Label the inverter with the appropriate markings, including maximum input and output power ratings.
3.5. **Control Cabinet.** Manufacture the control cabinet of unpainted sheet aluminum with a thickness of at least 0.125 in. Size the cabinet to provide adequate space for the control electronics, desired number of batteries, and all co-located ITS field equipment shown on the plans, or as directed. Meet National Electrical Manufacturers Association (NEMA) standards publication 250-2003.

Provide a completely weatherproof cabinet to prevent the entry of water. All exterior seams are to be continuously welded for the cabinet and door. All exterior welds are to be smooth.

Provide the door with a full length stainless steel piano hinge. The hinge will be mounted so that it is not possible to remove it from the door or cabinet without first opening the door. Provide a double flanged cabinet door opening. Provide a closed cell neoprene gasket between the door and the cabinet to act as a permanent dust and weather resistant seal. Provide a minimum of 1/4 in. thick gasket. Tightly secure the door via a latching device which pulls the door snugly against the neoprene affixed gasket forming a weather tight seal. Provide cabinet with a Corbin style #2 lock with a keyhole cover as an integral part of the door and 2 keys. Provide cabinet with provisions to hold the door open at approximately 90° and 120° positions.

Provide louvers on each side of the cabinet to allow adequate cooling of the electronic components and to prevent the accumulation of gases. Provide screen vents that prevent entry of insects.

Provide an aluminum back panel in the lower compartment with a thickness of 0.125 in. Size the back panel to provide adequate space for the control electronics and terminal strip. Provide electronic components that can be easily installed or removed with simple hand tools.

Equip the cabinet with at least two shelves of a minimum thickness of 0.125 in, with a 1 in. x 3 in. cutout in the back of the shelves for cable run. Ensure that the shelves are capable of supporting design battery weight. Provide a rubber mat installed on each shelf that supports the batteries and two 1/8 in. drain holes located in the bottom of the cabinet at opposite corners. Provide a minimum of 2 in. of separation from the top of the battery posts to the bottom of the cabinet.

Equip the cabinet with all necessary mounting equipment and hardware. Configure the cabinet for pole mounting using two aluminum "U" channel mounting brackets with stainless steel reinforcing plates on the inside of the cabinet. Include a 0.25 in. aluminum reinforcing plate mounted in the bottom of the cabinet.

Cabinets meeting the ITS equipment cabinet specification are acceptable as long as they are sized to accommodate the entire system.

3.6. **Connectors and Harnesses.** Ensure all external connections are made by means of connectors. Key the connectors to prevent improper hookups. Color code and appropriately label with an UV resistant material all cables to and from the connectors on both ends.

Provide connecting harnesses of appropriate length and terminate with matching connectors for interconnection with the communications system equipment.

Plate all pins and mating connectors with a minimum of 20 microns of metallic native element gold (Au). Use heat shrink tubing for all solder-type connections to protect the connection from short circuiting.

Label with UV resistant methods to identify all assemblies with name, model number, serial number and any other pertinent information required to facilitate equipment maintenance.

Provide external waterproof connections that conform to International Electrotechnical Commission (IEC) specification 60529 Section 14.2.7, or most current version, for IP 66 or greater rating.

Provide connectors that are polarized, non-interchangeable, guarded, latching or locking, have “first-to-make/last-to-break” contact for the grounded conductor, and are either rated for interrupting current or require a tool to open per NEC 690.33.
Provide wiring connectors that are listed for the intended use and environment. Do not over tighten screws to terminals. Use the appropriate crimping tool for crimp-on terminals per NEC 110.14.

3.7. **Grounding.**

3.7.1. **Ungrounded Systems.** Include disconnects, overcurrent protection, and ground-fault protection. Provide equipment that is listed for use with ungrounded systems per NEC 690.35.

3.7.2. **Module Grounding Connectivity.** Provide module connections such that removal of a module does not interrupt a grounded conductor to another PV source circuit per NEC 620.4(C).

3.7.3. **Ground-Fault Protection.** Provide ground fault protection for grounded arrays per NEC 690.5.

3.7.4. **PV System Grounding.** Provide one grounded DC conductor for two-wire PV systems operating above 50 V per NEC 690.41; 250.4(A).

3.7.5. **Single Point.** Provide DC grounding at a single point on the PV output circuit per NEC 690.42.

3.7.6. **Equipment Grounding.** Ground non-current-carrying metal components, including module frames, mounting structures, equipment, conduit, and boxes per NEC 690.43.

3.7.7. **Equipment Grounding Conductors.** Route equipment conductors with PV circuit conductors per NEC 690.43.

3.7.8. **Equipment Grounding Conductor Size.** If the array has ground fault protection, size the grounding conductor according to NEC 250.122. If not, size the grounding conductor to handle at least twice the derated circuit conductor ampacity per NEC 690.45.

3.7.9. **Grounding Electrode Systems.** Ground the AC system according to NEC 250.50 through 250.60. Ground the DC system according to NEC 250.166 through 250.169, and NEC 690.47.

3.7.10. **Common Grounding.** If the system includes both AC and DC systems, bond the grounding electrodes together. Size the bonding conductor for the larger of the AC and DC requirements per NEC 690.47(C).

3.8. **Disconnects.** Provide disconnects to disconnect equipment (inverters, batteries, charge controllers, etc.) from all ungrounded conductors of all power sources per NEC 690.15.

For fuses that are energized from both directions, provide disconnects to independently disconnect the fuse from all sources of power.

Provide disconnects to open all ungrounded conductors which are readily accessible, externally operated, have ON/OFF indications, and have appropriate interrupt ratings. Manually operated switches and circuit breakers are allowed to fulfill these requirements per NEC 690.17.

3.9. **Mechanical Requirements.** Provide equipment that is modular in design such that it can be easily replaced in the field.

Clearly identify with UV resistant material each unit with name, model number, serial number and any other pertinent information required to facilitate equipment maintenance.

Coat all printed circuit boards with a clear-coat moisture and fungus resistant material (conformal coating).

3.10. **Environmental Requirements.** Ensure that equipment conforms to NEMA TS2-2003 (R2008), IEC 60529, and NEMA 250-2008, or most current version, for the following categories:
3.10.1. **Temperature and Humidity.** Provide equipment that conforms to NEMA TS2 Section 2.1.5.1, or most current version, and meets all the specified requirements during and after being subjected to any combination of the following conditions:
- ambient temperature range of -30 to 165°F,
- temperature shock not exceeding 30°F per hour,
- relative humidity of 0 to 100%,
- moisture condensation on all exterior surfaces caused by temperature changes, and
- Housing assemblies perform to stated specifications over an ambient temperature range of -30 to 165°F in direct sunlight and a humidity range of 0 to 100% condensing. Ensure that the system will operate without sustaining damage over a temperature range of -30 to 165°F.

3.10.2. **Vibration.** Provide equipment that conforms to NEMA TS2 Section 2.1.9 and Section 2.2.3, or most current version, and meets all the specified requirements during and after being subjected to a vibration of 5 Hz to 30 Hz up to 0.5 g applied in each of 3 mutually perpendicular planes for 30 min.

3.10.3. **Shock.** Provide equipment that conforms to NEMA TS2 Section 2.1.10 and Section 2.2.4, or most current version, and does not yield permanent mechanical deformation or any damage that renders the unit inoperable when subjected to a shock of 10 g applied in each of three mutually perpendicular planes for 30 min.

3.10.4. **Environmental Contaminants.** Provide equipment that conforms to IEC 60529 Section 14.2.6, or most current version for IP 66 or greater rating.

3.10.5. **External Icing.** Provide equipment that is tested to conform to NEMA 250-2003 Section 5.6, or most current version.

3.10.6. **Corrosion.** Provide equipment that is tested to conform to NEMA 250-2003 Section 5.10, or most current version, when located in coastal Districts. Coastal Districts are Beaumont (BMT), Corpus Christi (CRP), Houston (HOU), Pharr (PHR), and Yoakum (YKM).

4. **CONSTRUCTION**

Give particular care to the interconnection of all of the components and the cabling.

4.1. **General.** Furnish and install all materials, including support, calibration and test equipment, to ensure an operating and functional solar power system. Install power and data cables, power grounding and lightning suppression systems. Prior to beginning installation, inspect each site to verify suitability of the design for installation, grounding and lightning protection. Provide written documentation to the Engineer for approval prior to installation.

Configure and setup the solar power system to assure connection and electric power delivery to the field equipment as indicated in the plans. Locate and mount all equipment as detailed in the plans and as directed by the Engineer.

4.1.1. **Wiring.** Provide wiring that meets the requirements of the NEC. Provide wires that are cut to proper length before assembly. Provide cable slacks to facilitate removal and replacement of assemblies, panels, and modules. It is not acceptable to “double-back” wire to take up slack. Lace wires neatly with nylon lacing or plastic straps. Secure cables with clamps. Provide service loops at connections.

Size all conductors for a de-rated ampacity of at least 125% of the maximum currents calculated. De-rating factors include high ambient temperatures and number of conductors run together within a conduit or cable, per NEC 690.8(B), 310.15(B) and 310.16. Single-conductor cables in sizes 16 AWG and 18 AWG are permitted for module interconnections if they meet the ampacity requirements.
Protect all conductors operating at more than 30 V and installed in readily accessible locations with conduit, per NEC 690.31(A).

Provide conductors rated for 194°F (90°C) and wet service per NEC 690.31(B).

Run PV source- and output-circuit conductors separately from conductors of other systems per NEC 690.31(B).

Color code all wiring. Mark grounded conductors white or gray. Use green, green/yellow or bare grounding conductors, per NEC 310.12.

Provide strain relief or conduit on all conductors per NEC 300.4.

4.1.2. **Battery Storage.** Store batteries in a cabinet or underground in battery ground box, in accordance with the Department's electrical details.

4.1.3. **Poles.** Mount all PV units and cabinets on poles as shown on the plans in accordance with the ITS solar power system standards. Provide aluminum pedestal poles as shown on the plans for the height specified in accordance with Item 687, “Pedestal Pole Assemblies.” Provide treated timber poles as shown on the plans for the height specified in accordance with Item 627, “Treated Timber Poles.”

4.1.4. **System Optimization.** Optimize equipment alignment and settings at each site to provide a complete and operational system.

4.1.5. **Relocation.** Prior to removal of the existing solar power system, inspect the poles, cabinets, solar panels, batteries, MPPT charge controller, and cables where included, with a representative from the Department, and remove any solar power system equipment, associated mounting hardware, and cabling still attached to the pole or inside the cabinet prior to commencing work. Inspect the existing poles, cabinets, PV modules, batteries, and MPPT charge controllers in place, with a representative from the Department, and document any evidence of damage to the representative prior to removal.

Prior to removal of the existing solar power system, disconnect and isolate cables (power and communication) from the equipment. Remove and coil existing cabling to the nearest ITS ground box or as identified on the plans or as directed. Cover all exposed ends of the disconnected cables with a material, rated for long term use, to prevent dust and moisture contamination.

Carefully remove the solar power system components from the pole structures. Avoid damage or injury to surrounding objects or individuals.

Inspect the existing pole structures, with a representative from the Department, and document any evidence of structural stress cracks or fatigue prior to removal. Remove and deliver to the Department, existing pole structures that fail structural inspection.

Remove the existing pole structures in a manner acceptable to the Engineer. Use a method such that no undue overstress or damage will result to the structures or appurtenances attached.

Use a crane of sufficient capacity to remove the pole. Disconnect and relocate the existing pole structures from and to the foundations as shown on the plans in a manner acceptable to the Engineer.

When the poles are laid down, place them on timber cribbing so that they lie reasonably straight to prevent any damage or deterioration.

Maintain safe construction and operation practices at all times. Handle the poles in such a manner during removal so as to prevent damage to the pole’s exterior finish. The Contractor will be responsible for any damage to poles.
Remove the existing concrete foundations to a depth of at least 2 ft. below finish grade with all steel cut off. Backfill the excavation with material equal in composition and density to the surrounding area, and replace any surfacing, such as asphalt pavement, concrete riprap or brick pavers, with like material to equivalent condition as approved by the Engineer.

Careful erection and aligning of the relocated pole structures shall be considered an essential feature of the installation of the pole structure.

Supply all new anchor bolts required for the installation of pole structures. Provide bolt dimensions and lengths as shown on the plans and as directed and in accordance with all requirements contained in this Item.

Separately package each component with appropriate protection to avoid damage during transit to the new location shown on the plans. Re-install each component and associated cabling to manufacturer specifications and tolerances. Orient and align the PV modules for optimal sun exposure. Install, calibrate, and program the charge controllers to manufacturer specifications. Ensure that the installation is completely operational and optimized at the new location shown on the plans.

Removal

Use established industry and utility safety practices when removing poles and assemblies located near overhead or underground facilities. Coordinate with the appropriate utility company before beginning work.

Inspect the poles, cabinets, solar panels, batteries, MPPT charge controller, and cables where included, with a representative from the Department, and remove any solar power system equipment, associated mounting hardware, and cabling still attached to the pole or inside the cabinet prior to commencing work. Inspect the existing poles, cabinets, solar panels, batteries, and MPPT charge controller in place, with a representative from the Department, and document any evidence of damage to the representative prior to removal.

Prior to removal of the existing solar power system, disconnect and isolate cables (power and communication) from the equipment. Remove and coil existing cabling to the nearest ITS ground box or as identified on the plans or as directed. Cover all exposed ends of the disconnected cables to prevent dust and moisture contamination.

Carefully remove the solar power system components from the pole structure. Avoid damage or injury to surrounding objects or individuals. Separately package each component with appropriate protection to avoid damage during transit. Deliver the equipment to an address to be supplied by the Department.

Carefully remove the pole from the foundation. Avoid damage or injury to surrounding objects or individuals. Separate the pole at the slip-fitted connections, if applicable. If the pole cannot be separated, transport the complete pole or partially separate the pole to make it transportable. Deliver the pole structure to an address to be supplied by the Department.

Remove the existing drill shaft foundations to a depth of 2 ft. below grade with all steel cut off. Backfill the excavation with material equal in composition and density to the surrounding area, and replace any surfacing, such as asphalt pavement, concrete riprap, or brick pavers, with like material to equivalent condition as approved by the Engineer.

Testing

The Engineer reserves the right to inspect and factory test any completed assemblies prior to delivery of the material to the project site. Correct any deviations from these specifications that are identified during testing prior to shipment of the assembly to the project site.

New Installations

Unless otherwise shown on the plans, perform the following tests on equipment supplied through this item.

Test Procedures Documentation

Provide 5 copies of the test procedures and blank data forms 30 days prior to testing for each test required on this project. Include the sequence of the tests in the procedures.
Engineer will approve test procedures prior to submission of equipment for tests. Conduct all tests in accordance with the approved test procedures.

Record test data on the data forms, as well as quantitative results. No bid item measurement or payment will be made until the Engineer has verified the test results meet the minimum requirements of the specification. The data forms for all tests, except design approval tests, must be signed by an authorized representative of the Contractor.

Provide written notice to the Engineer within 48 hours of discovery of any testing discrepancy performed in testing by the contractor. Furnish data forms containing the acceptable range of expected results as well as the measured values.

4.2.1.2. Design Approval Test. Conduct a design approval test on randomly selected units from the prototype design manufacturing run. If only 1 design prototype is manufactured, perform this test on that unit. If supplying multiple types of the equipment, provide and test a sample of each type. Test all equipment and document compliance with IEC standards 61215, 61646, and 61730.

Certification from an independent testing laboratory of a successfully completed design approval test is acceptable. Ensure that the testing by this laboratory is performed in accordance with the requirements of this specification. Failure of independent tests to comply with the requirements of this specification will be grounds for rejection of any certification.

Provide a copy of the certification to the District in which this contract is executed. The data forms for the design approval tests must be signed by an authorized representative (company official) of the equipment manufacturer or by an authorized representative of an independent testing facility.

Notify the Engineer 10 working days before conducting this testing. The Department may witness all the tests. Perform the following tests:

4.2.1.2.1. Temperature and Condensation. Provide equipment which meets the performance requirements, specified in this Item, when subjected to the following conditions in the order specified below:
- stabilize the equipment at -30°F and test as specified in the most current version of the NEMA TS2 Standard - Sections 2.2.7.3, "Low-Temperature Low-Voltage Tests" and 2.2.7.4, "Low-Temperature High-Voltage Tests一世，
- allow the equipment to warm up to room temperature in an atmosphere having relative humidity of at least 40%. Operate the equipment for 2 hrs., while wet, without degradation or failure, and
- stabilize the equipment at 165°F and test as specified in the most current version of the NEMA TS2 Standard - Sections 2.2.7.5, "High-Temperature High Voltage Tests" and 2.2.7.6, "High-Temperature Low-Voltage Tests一世．

4.2.1.2.2. Relative Humidity. Provide equipment measuring the performance requirements, specified in this Item, within 30 min. of being subjected to a temperature of 165°F and a relative humidity of 18% for 48 hr．

4.2.1.2.3. Vibration. Provide equipment that shows no degradation of mechanical structure, soldered components, or plug-in components and operates in accordance with the manufacturer’s equipment specifications after being subjected to the vibration tests as specified in the most current version of the NEMA TS2 Standard - Section 2.2.8, "Vibration Test一世．

4.2.1.2.4. Electrical Insulation Resistance. Test the insulation of each unit as follows:
- apply up to 1000 V maximum system voltage to the panel, and
- measure at least 40 mega-ohms of resistance between the frame and ground for every square meter of panel．

4.2.1.2.5. Wet Leakage Current．
4.2.1.2.6. **Bypass Diode Test.**
- apply a thermocouple to the diode body,
- heat the module to 167°F (75°C), and
- apply a reverse current equal to the short circuit for 1 hr.

4.2.1.2.7. **Maximum Power Degradation.** Test Pmax degradation of each PV module as follows:
- pre-condition each module by exposing them to a total of 0.51 kWh per square foot (5.5 kWh per square meter),
- apply irradiance of 91.8 W per square foot (1,000 W per square meter) at 77°F (25°C) at air mass 1.5,
- check Pmax, and
- ensure that Pmax degraded is at least 95% of the labeled rating.

4.2.1.2.8. **Thermal Cycling (TC200).** Test each PV module for 200 Cycles per IEC 61215
- heat PV modules to 77°F (25°C),
- inject a current within 2% of the current measured at peak power, and
- cycle temperatures per IEC standard 61646.

4.2.1.2.9. **Humidity-Freeze Test.** Conduct this test per IEC 61646.

4.2.1.2.10. **Damp-Heat (DH1000).** Test each PV module for 1000 hr. under the following conditions:
- 185 ± 3.6°F (85 ± 2°C) PV temperature, and
- relative humidity of 85% ± 5%.

4.2.1.2.11. **Mechanical Load Test.** Test the ability of the PV module to withstand wind, snow, static, or ice loads as follows:
- mount the module per manufacturer instructions,
- apply 0.215 psi (equivalent wind load at 110 mph) for 1 hour on each face of the module,
- increase pressure to 0.484 psi for snow and ice,
- no intermittent open circuits permitted during test, and
- visually inspect for defects.

4.2.1.2.12. **Hail Impact Resistance.** Use a 2 in. diameter steel ball weighing 1.18 lb., dropped from a height of 51 in. onto the center of the solar panel face.

4.2.1.3. **Demonstration Test.** Conduct a demonstration test on all major components at an approved Contractor facility. The Contractor may submit procedures and results from previous contracts in the same District as this contract, provided the materials and equipment are identical. Provide previous procedures and results that are, at most, 5 years old. Notify the Engineer 10 working days before conducting this testing. The Department may witness all the tests. Perform the following tests:

4.2.1.3.1. **Examination of Product.** Examine each unit carefully to verify that the materials, design, construction, markings and workmanship comply with the requirements of this Item.

4.2.1.3.2. **Continuity Tests.** Check the electrical continuity of the wiring to verify conformance with the applicable requirements in this Item.
4.2.1.3.3. **Operational Test.** Operate each unit for at least 15 min. to permit equipment temperature stabilization and an adequate number of performance characteristics to ensure compliance with the requirements of this Item. At a minimum, test the following measured values against design assumptions:

- charging voltage at charge controller,
- output current at charge controller,
- output voltage at solar array,
- output voltage at battery bank, and
- solar array disconnect switch functionality.

With a fully charged battery bank, use the toggle switch to disconnect the solar panel array. Allow the system to run without solar power for 5 days. Measure the battery bank depth of discharge at the end of the 5 day test. Ensure that no more than 80% of full capacity has been discharged.

With the battery bank discharged to an 80% depth of discharge, connect the solar array on a sunny day. A sunny day is defined as daylight full sun for a period of at least 5 hrs. At the end of the day, test battery bank charge. Ensure that the battery bank is at full charge at the end of the day.

4.2.1.4. **Field Acceptance Test.** Following completion of equipment installation and operational optimization, submit an acceptance test plan to District for review and approval. During the official acceptance testing, provide the technical staff to conduct the measurements and adjustments called for in the testing. District will participate in the testing as the official test witness. Each page of the acceptance test document will provide for data recording of the test results, and the name of Contractor's representative conducting the test as well as a suitable field for the test date and signature of District test witness. Upon District approval of the test plan and the test schedule, the acceptance testing may begin.

Conduct a field acceptance test for each unit after installation as required by the Engineer in order to demonstrate compliance with the functional requirements with this Item. Exercise all stand-alone (non-network) functional operations. Provide a factory-certified representative for installation and testing of the equipment. Notify the Engineer 5 working days before conducting this test. The field acceptance test will at least consist of the following:

4.2.1.4.1. **Visual Inspection.** Conduct a visual inspection of all PV modules to ensure that none of the following are present:

- broken, cracked, or torn external surfaces, including superstrates, substrates, frames and junction boxes, or
- bent or misaligned external surfaces, including superstrates, substrates, frames, and junction boxes to the extent that the installation or operation of the module would be impaired, or
- a crack in a cell the propagation of which could remove more than 10% of that cell's area from the electrical circuit of the module, or
- bubbles or delaminations forming a continuous path between any part of the electrical circuit and the edge of the module, or
- loss of mechanical integrity, to the extent that the installation or operation of the module would be impaired, or
- module markings (label) are no longer attached, or the information is unreadable.

Conduct a visual inspection of the overall installation to ensure the following:

- equipment is installed and used in accordance with the plans and manufacturer's instructions,
- site drawings include descriptions and locations of major components,
- electrical diagram includes component interconnects, conductor types and sizes, conduit types and sizes, disconnects, and point of interconnection,
- appropriate conductors and wiring methods are used,
- all PV conductors are routed through their own conduits, independent of conductors for other systems, and
junction boxes are of appropriate type and size and allow the conductors within to be accessible.

4.2.1.4.2. **Physical Construction.** Verify physical construction is completed in accordance with the plans and specification.

4.2.1.4.3. **Electrical Connections.** Verify that all connectors for grounding, surge suppression, and electrical distribution are tightened correctly and are quality connectors. Verify the following:
- all power supplies and circuits are operating under the proper voltages,
- all power and communications cables are terminated correctly, secured inside the cabinet, and fitted with appropriate connectors,
- connectors are polarized, non-interchangeable, guarded, latching or locking, and have “first-to-make/last-to-break” contact for grounded conductor,
- wiring connectors are listed for the intended use and environment. Screw terminals are tightened to recommended torque. Crimp-on terminals are installed with appropriate crimping tool,
- grounded conductors are marked white or gray and grounding conductors are green, green/yellow, or bare,
- battery interconnections are made with #2/0 AWG or larger flexible cables that are listed for hard-service use and are moisture resistant, and
- current-limiting fuses are installed on battery output circuits.

4.2.1.4.4. **Grounding.** Field test equipment grounding for all ITS solar power system equipment installed in the field and provide written documentation to the engineer. Where earth ground resistance values exceed 5 ohms, develop mitigation measures for consideration. Once mitigation measures are installed, re-test earth ground and update the documentation. Ensure that grounded conductors are marked white or gray and grounding conductors are green, green/yellow, or bare.

4.2.1.5. **Final Acceptance Test.** Following completion of the demonstration test and field acceptance Test for all subsystems, provide completed data forms containing all of the data recorded, including quantitative results for all tests, a set of “as built” working drawings, and a written request to begin a data communication and final acceptance test. Provide “as built” working drawings indicating the actual material, equipment, connections, and construction of the various subsystem components. In addition, indicate the actual location that the components were installed, providing either GPS coordinates or dimensions to other fixed objects on the plans. For pole mounted solar arrays, provide an elevation view showing pole height, location of the panels on the pole, mounting details, and orientation or azimuth of the panels.

The project will not be accepted, notwithstanding other provisions in the Contract, until the system, inclusive of all subsystems, has operated satisfactorily for a period of 90 days and in full compliance with the plans and specifications after approval of all submitted test results and reports.

4.2.1.6. **Consequences of Test Failure.** If a unit fails a test, submit a report describing the root cause of the failure and the actions taken to remedy the situation prior to modification or replacement of the unit. If a unit requires modification, correct the fault and then repeat the test until successfully completed. Correct minor discrepancies within 30 days of written notice to the Engineer. If a unit requires replacement, provide a new unit and then repeat the test until successfully completed. Malfunctions that will substantially delay receipt and acceptance of the unit will be sufficient cause for rejection of the unit.

Failure to satisfy the requirements of any test is considered a defect and the equipment is subject to rejection by the Engineer. The rejected equipment may be offered again for retest provided all noncompliance has been corrected. Multiple failures are sufficient reason for complete rejection.

If a failure pattern develops in similar units within the system, implement corrective measures, including modification or replacement of units, to all similar units within the system as directed. Perform the corrective measures without additional cost or extension of the contract period.
4.2.1.6.1. **Consequences of Design Approval Test Failure.** If the equipment fails the design approval test, correct the fault within 30 days and repeat the design approval test until successfully completed.

4.2.1.6.2. **Consequences of Demonstration Test Failure.** If the equipment fails the demonstration test, correct the fault within 30 days and repeat the field acceptance test until successfully completed.

4.2.1.6.3. **Consequences of Field Acceptance Test Failure.** If the equipment fails the field acceptance test, correct the fault within 30 days and repeat the field acceptance test until successfully completed.

4.2.1.6.4. **Consequences of Final Acceptance Test Failure.** If a defect within the system is detected during the final acceptance test, document and correct the source of failure within 30 days. Once corrective measures are taken, monitor the point of failure until a 30 consecutive day period free of defects is achieved.

If after completion of the initial test period, the system downtime exceeds 72 hr. or individual points of failure have not operated for 30 consecutive days free of defects, extend the test period by an amount of time equal to the greater of the downtime in excess of 72 hr. or the number of days required to complete the performance requirement of the individual point of failure.

4.2.2. **Relocation and Removal.**

4.2.2.1. **Pre-Test.** The Contractor will prepare a pre-test report for approval by the Engineer. Conduct performance testing prior to removal of solar power system. Test all functional operations of the equipment in the presence of representatives of the Contractor and the Department. Ensure that both representatives sign the test report indicating that the equipment has passed or failed each function. Once removed, the equipment becomes the responsibility of the Contractor until accepted by the Department. Compare test data prior to removal and test data after installation. The performance test results after relocation must be equal to or better than the test results prior to removal. Repair or replace those components within the system which failed after relocation but which passed prior to removal, at no cost to the Department.

4.2.2.2. **Post Test.** Testing of solar power system is for the purpose of relieving the Contractor of maintenance of the system. The Contractor will be relieved of the responsibility for maintenance of the system in accordance with Item 7, “Legal Relations and Responsibilities”, after all tests conducted in the pre-test have passed.

4.3. **Documentation.** Submit a system report detailing the PV array, battery bank, charge controllers, and shop drawings prior to the installation of the solar power system to the Engineer for review and approval. Shop drawings to include, but not be limited to:

- details of the complete installation of the system and all components to be supplied,
- details of all connections between the solar panel power supply system components,
- cabinet layout diagrams depicting the arrangement of all equipment inside the cabinets,
- instruction sheets and wiring diagrams for the equipment to be installed, and
- the manufacturer specifications and catalog cuts and parts lists.

Provide technical operators manuals for all equipment, including the PV modules, charging controller, and batteries.

Submit shop drawings, signed, sealed, and dated by a registered professional engineer in Texas showing the fabrication and erection details for each support, including the cabinet and mounting details in accordance with Item 5, “Control of the Work.”

Provide at least 2 complete sets of operation and maintenance manuals in hard copy format and on a CD/DVD or removable flash drive that include the following:

- complete and accurate schematic diagrams,
- complete installation procedures,
- complete performance specifications (functional, electrical, mechanical and environmental) on the unit,
- complete parts list including names of vendors for parts not identified by universal part number such as JEDEC, RETMA, or EIA,
- pictorial of component layout,
- complete maintenance and trouble-shooting procedures,
- complete stage-by-stage explanation of circuit operation,
- recovery procedures for malfunction, and
- instructions for gathering maintenance assistance from manufacturer.

Provide the Department with certification documentation verifying conformance with environmental and testing requirements contained in the special specification. Certifications may be provided by the manufacturer or through independent labs.

4.4. Warranty. Warrant the equipment against defects and failure in design, materials, and workmanship for at least 3 years or in accordance with the manufacturer’s standard warranty if that warranty period is greater. The start date of the manufacturer’s standard warranty will begin after the equipment has successfully passed all tests contained in the final acceptance test plan. Any equipment with less than 90% of its warranty remaining at the completion of the final acceptance test will not be accepted by the Department. Guarantee that equipment furnished and installed for this project performs according to the manufacturer’s published specifications. Assign to the Department, all manufacturer’s normal warranties or guarantees on all electronic, electrical, and mechanical equipment, materials, technical data, and products furnished for and installed on the project.

Repair or replace any malfunctioning equipment at the Contractor’s expense prior to beginning the final acceptance test plan.

Repair or replace defective equipment during the warranty period at no cost to the Department. Any replaced units will inherit the remainder of the failed unit’s warranty period.

Return all items sent to a factory authorized repair depot (in the United States) within 2 weeks of the date of receipt at the facility. Under the warranty, provide shipping free of charge both to and from the repair site.

For each component from the designated depot repair site, issue a warranty certificate indicating the start and end dates of the warranty. Supply the certificate at the conclusion of the Solar Panel Power System Acceptance Test or the end of the construction of the project, whichever comes last and set the end date for at least 2 years after that point. Name the District as the recipient of the service. Ensure that District has the right to transfer this service to other private parties who may be contracted to perform overall maintenance of the facility.

Furnish replacement parts and all equipment, with transportation prepaid, within 10 days of notification of failure by the Department.

During the warranty period, provide free technical support from the supplier. This support is to be free of charge, offered within 4 hours of request, and provided by factory certified personnel or factory certified installers of the equipment.

Provide ongoing software and firmware updates during the warranty period, free of charge. Any updates must be tested and approved by the Department prior to installation.

Maintain an inventory of parts to support maintenance and repair of all equipment.

5. MEASUREMENT

This Item will be measured by each ITS solar power system furnished, installed, relocated, or removed.
6. PAYMENT

6.1. **Furnish and Install.** The work performed and materials furnished in accordance with this Item and measured as provided for under "Measurement" will be paid for at the unit price bid for "SPS-INS" of the total system load (in Watts), the total solar panel (in Watts), the total battery (in amp hr) capacity, number of charge controllers with amperage capacity (Amps), and cabinet installation type. This price is full compensation for making fully operational a solar power system; all cabinets, treated timber poles, connectors and mounting assemblies, hardware, cables and connectors; and all testing, training, software, equipment, labor, materials, tools, and incidentals. Where the cabinet type is an ITS pole mounted cabinet, the cabinet will be paid for separately in accordance with 'ITS Pole with Cabinet.'

New drilled shaft foundations will be paid for in accordance with Item 416, "Drilled Shaft Foundations."

New conduit will be paid for in accordance with Item 618, "Conduit."

Type Battery ground boxes will be paid for in accordance with Item 624, "Ground Boxes."

Treated timber poles will be paid for in accordance with Item 627, "Treated Timber Poles."

New pedestal poles will be paid for in accordance with Item 687 "Pedestal Pole Assemblies."

New ITS poles with cabinets will be paid for in accordance with "ITS Pole with Cabinet."

6.2. **Relocate.** The work performed and materials furnished in accordance with this Item and measured as provided for under "Measurement" will be paid for at the unit price bid for “SPS-REL” of the total system load (in Watts), the total solar panel (in Watts), the total battery (in amp hr) capacity, number of charge controllers with amperage capacity (Amps), and cabinet installation type. This price is full compensation for relocating and making fully operational an existing solar power system; and all testing, training, software, equipment, labor, materials, tools, and incidentals. Removal of existing foundations will be paid for under this item.

New drilled shaft foundations will be paid for in accordance with Item 416, "Drilled Shaft Foundations."

New conduit will be paid for in accordance with Item 618, "Conduit."

Type Battery ground boxes will be paid for in accordance with Item 624, "Ground Boxes."

Treated timber poles will be paid for in accordance with Item 627, "Treated Timber Poles."

New pedestal poles will be paid for in accordance with Item 687 "Pedestal Pole Assemblies."

New ITS poles with cabinets will be paid for in accordance with "ITS Pole with Cabinet."

6.3. **Remove.** The work performed and materials furnished in accordance with this Item and measured as provided for under "Measurement" will be paid for at the unit price bid for “SPS-REM” of the total system load (in Watts), the total solar panel (in Watts), the total battery (in amp hr) capacity, number of charge controllers with amperage capacity (Amps), and cabinet installation type. This price is full compensation for removing an existing solar power system; and all testing, training, software, equipment, labor, materials, tools, and incidentals. Removal of existing foundations will be paid for under this item.
Special Specification 6064
Intelligent Transportation System (ITS) Pole with Cabinet

1. DESCRIPTION

Furnish, install, relocate, or remove Intelligent Transportation System (ITS) pole structures and pole mounted cabinets of the various types and sizes at locations shown on the plans, or as directed.

1.1. ITS Equipment Application. At a minimum, the ITS pole structure serves as the structural support for the following ITS equipment applications:

- closed circuit television (CCTV),
- fixed video,
- microwave vehicle detector (MVD) or radar vehicle sensing device (RVSD),
- bluetooth equipment,
- wireless radio equipment,
- environmental sensor station (ESS),
- solar power system, and
- pole mounted cabinets.

Ensure the equipment, design, and construction use the latest available techniques with a minimum number of different parts, subassemblies, circuits, cards, and modules to maximize standardization and commonality.

Design the equipment for ease of maintenance. All component parts must be readily accessible for inspection and maintenance. The only tools and test instruments required for maintenance by maintenance personnel must be simple hand held tools, basic meters and oscilloscopes.

2. MATERIALS

Provide materials that comply with the details shown on the plans or as directed, the requirements of this Item, and the pertinent requirements of the following Items:

- Item 416, “Drilled Shaft Foundations,“
- Item 421, “Hydraulic Cement Concrete,“
- Item 440, “Reinforcement for Concrete,”
- Item 441, “Steel Structures,“
- Item 442, “Metal for Structures,“
- Item 445, “Galvanizing,“
- Item 449, “Anchor Bolts,”
- Item 496, “Removing Structures,”
- Item 618, “Conduit,”
- Item 620, “Electrical Conductors,” and
- Item 740, “Graffiti Removal and Anti-Graffiti Coating.”

2.1. Anchor Bolts. Provide anchor bolts, nuts, and washers that conform with the details shown on the plans, the requirements of this Item, and in accordance with Item 449, “Anchor Bolts.”
Furnish “medium strength, mild steel” anchor bolts for anchor bolts 1 in. or less in diameter, unless otherwise shown on the plans. Furnish “alloy steel” anchor bolts for anchor bolts greater than 1 in. diameter, unless otherwise shown on the plans.

2.2. **ITS Poles.** Provide material for pole shafts that conforms to the requirements on the plans and the requirements of ASTM A1011 SS Grade 50, A572 Grade 50, A1011 HSLAS Grade 50, or A595 Grade A. Material thicknesses in excess of those stipulated under A1011 will be acceptable providing it meets all other ASTM A1011 requirements and the requirements of this specification. A595 Grade A material must have a minimum of 50 ksi yield strength adjacent to base welds after fabrication.

Fabrication plants that produce steel ITS poles must be approved in accordance with DMS-7380, “Steel Non-Bridge Member Fabrication Plant Qualification.” The Department maintains an MPL of approved ITS pole fabrication plants.

2.3. **ITS Pole Mounted Cabinet.** Provide ITS pole mounted cabinets to house ITS field equipment as shown on the plans or as directed. ITS equipment applications inside the cabinet may include, but is not limited to:

- CCTV field equipment,
- fixed video,
- radar vehicle sensing device (RVSD),
- dynamic message sign (DMS) or lane control signal (LCS) controller,
- bluetooth equipment,
- highway advisory radio (HAR),
- media conversion equipment,
- hardened ethernet switch,
- wireless radio equipment,
- environmental sensor station (ESS),
- roadway weather information system (RWIS), and
- solar power system.

Provide the cabinet with fully wired back panels, with all the necessary terminal boards, wiring, harnesses, connectors and attachment hardware for each cabinet location. Place all terminals and panel facilities on the lower portion of the cabinet walls below all shelves.

Typically, an ITS pole mounted cabinet may contain, but is not limited to, the following:

- 19-in. EIA rack,
- adjustable shelves,
- fan and thermostat,
- cabinet light,
- back panel,
- surge protection,
- terminal strips,
- interconnect harnesses with connectors,
- “Door Open” connection to back panel,
- ITS equipment hardware (as listed in Article 2.3), and
- all necessary installation and mounting hardware.

Ensure all cabinets are identical in size, shape and quality for each type as provisioned on the plans or as directed. Equip and configure the cabinet set-up as defined in this specification and as detailed in the ITS pole with cabinet standards.

Submit details of the cabinet design and equipment layout for each cabinet to the Engineer for review and approval before fabrication.
2.4. **Electrical Requirements.**

2.4.1. **Primary Input Power Interruption.** Use material that meets all the requirements in Section 2.1.4., “Power Interruption” of the National Electrical Manufacturers Association (NEMA) Standard TS2 for traffic control system, or most current version.

2.4.2. **Power Service Transients.** Use material that meets all the requirements in Section 2.1.6., “Transients” of the NEMA Standard TS2 for traffic control system, or most current version.

2.4.3. **Power Service Protection.** Ensure that equipment contains readily accessible, manually resettable or replaceable circuit protection devices (such as circuit breakers or fuses) for equipment and power source protection. Provide circuit breakers or fuses sized such that no wire, component, connector, PC board or assembly is subjected to sustained current in excess of their respective design limits upon failure of any single circuit element or wiring.

2.4.4. **Power Distribution Panel.** Provide cabinets with a 120 VAC +/- 5 VAC power distribution panel. Provide the following components on the panel:

2.4.4.1. **Duplex Receptacles.** Provide two 120 VAC NEMA Type 5-15R duplex receptacles, or as shown on the plans, protected by a circuit breaker. Permanently label duplex receptacles “For Internal ITS Equipment Only.” Install duplex receptacles in an isolated location and provide a clear 1/8 in. thick removable cover made from transparent thermoplastic material to cover the duplex receptacles. Ensure this cover is installed as not to interfere with the functional operation within the cabinet and allows enough space to plug in AC adapters and any necessary equipment. Submit alternative cover material for approval as part of the documentation submittal requirement.

2.4.4.2. **Ground Fault Circuit Interrupter (GFCI) Duplex Receptacles.** Provide at least one 120 VAC NEMA Type 5-15R GFCI duplex receptacle, or as shown on the plans, protected by a circuit breaker. This GFCI duplex receptacle is intended for maintenance personnel and is not to be used to serve equipment inside the cabinet. Permanently label GFCI duplex receptacles “For Personnel Use.” Install GFCI duplex receptacles in a readily accessible location.

Provide a 120 VAC, rack mountable outlet strip with 6 NEMA Type 5-15R receptacles with surge suppression. Plug outlet strip into GFCI duplex receptacle and label for personnel use.

Circuit Breakers. Determine the ampere rating, quantity, and configuration for main, accessory, spare, and equipment circuit breakers to support ITS equipment loads as shown on the plans. Provide Underwriters Laboratories (UL) 489 listed circuit breakers capable of operating in accordance with Section 2, “Environmental Standards and Test Procedures” of NEMA TS2-2003, or most current version. Provide circuit breakers with an interrupt capacity of 5,000 A and insulation resistance of 100 megohms at 500 VDC. Provide minimum ampere rating for the following circuit types:

2.4.4.2.1. **Main Breaker.** Size the main circuit breaker such that the load of all branch circuits is less than the main circuit breaker ampere rating in accordance with the most current version of the National Electrical Code (NEC).

2.4.4.2.2. **Accessory Breaker.** Minimum 15 A. Size accessory circuit breaker to protect lighting, door switches, fans, and GFCI duplex receptacle in accordance with the most current version of the NEC.

2.4.4.2.3. **Equipment Breakers.** Minimum 15 A. Size equipment circuit breaker to protect ITS equipment and duplex receptacles in accordance with the most current version of the NEC.

2.4.4.2.4. **Spare Equipment Breaker.** Minimum 20 A. Provide one spare equipment breaker for future use.

Furnish breakers, which are in addition to any auxiliary fuses, with the electronic equipment to protect component parts. Provide 3-terminal lightning arrester to protect the load side of all circuit breakers. Connect
the arrestor into the circuit with size 8 AWG or larger stranded copper conductors. Connect arrestor to the line filter as recommended by the manufacturer.

2.4.4.3. **Power Line Surge Protection.** Provide and install power line surge protection devices that meet the requirements of Article 2.6.

2.4.4.4. **Power Cable Input Junction Terminals.** Provide power distribution blocks suitable for use as a power feed and junction points for 2 and 3 wire circuits. Accommodate up to No. 4 AWG conductors on the line side of each circuit. Provide appropriate sized lugs at the junction terminals for conductors larger than a No. 4 AWG when shown on the plans.

Electrically isolate the AC neutral and equipment ground wiring from the line wiring by an insulation resistance of at least 10 megalohms when measured at the AC neutral. Color code the AC neutral and equipment grounding wiring white and green respectively in accordance with the most current version of the NEC.

Utilize the back panel to distribute and properly interconnect all cabinet wiring related to the specific complement of equipment called out on the plans. Each item of equipment including any furnished by the Department must have the cable harness properly terminated at terminal boards on the back panel. Ensure all functions available at the equipment connector are carried in the connector cable harness to the terminal blocks from the power distribution panel mounted on the left side panel of the cabinet.

2.4.5. **Alternative Power Option.** When shown on the plans, accommodate renewable electrical power source for the design load specified in accordance with “ITS Solar Power System” Specification. Renewable electrical power source may, or may not, be integrated with public utility electrical services, as shown on the plans or as directed. Accommodate solar system components including batteries and solar charge controller when shown on the plans.

2.4.6. **Wiring.** Ensure all cabinet wiring identified by the use of insulated pre-printed sleeving slipped over the wire before attachment of the lug or making the connection. Supply enough text on wire markers in plain words or abbreviations with sufficient level of detail so that a translating sheet will not be required to identify the type and size of wire.

Cut all wires to the proper length before assembly. Ensure no wires are doubled back to take up slack. Ensure harnesses to connectors are covered with braided cable sleeves. Secure cables with nylon cable clamps.

Provide service loops to facilitate removal and replacement of assemblies, panels and modules. Use insulated parts and wire rated for at least 600 V. Color-code harnesses and wiring.

Route and bundle all wiring containing line voltage AC separately and shield from all low voltage, i.e., control circuits. Cover all conductors and live terminals or parts, which could be hazardous to maintenance personnel, with suitable insulating material.

Provide AC internal cabinet wiring identified in accordance with the most current version of the NEC. Provide white insulated conductors for AC neutral. Provide green insulated conductors for equipment ground. Provide any color different from the foregoing on other conductors in accordance with the most current version of the NEC. For equipment that requires grounding, provide grounding conductors and do not use conduit for grounding. Provide No. 22 AWG or larger stranded conductors for internal cabinet wiring. Provide conductors that are UL-listed THHN in accordance with the most current version of the NEC. Ensure the insulation has at least a thickness of 10 mm. Ensure all wiring containing line voltage is at least size No. 14 AWG. No strands of any conductor may be trimmed to “fit” the wiring into the breaker or terminal block.

2.4.7. **Terminal Strips.** Provide terminal strips located on the back panel that are accessible to the extent that it is not necessary to remove the electronic equipment from the cabinet to make an inspection or connection.

Ensure terminal blocks are 2 position, multiple pole barrier type.
Provide shorting bars in each of the positions provided along with an integral marking strip.

Arrange terminal blocks such that they will not upset the entrance, training and connection of incoming field conductors.

Identify all terminals with legends permanently affixed and attached to the terminal blocks.

Ensure not more than 3 conductors are brought to any 1 terminal screw.

Ensure no electrically energized components or connectors extend beyond the protection afforded by the barriers.

Locate all terminal blocks below the shelves.

Ensure terminals used for field connections are secure conductors by means of a No. 10-32 nickel or cadmium plated brass binder head screw.

Ensure terminals used for interwiring connections, but not for field connections, are secure conductors by means of a No. 5-32 nickel plated brass binder head screw.

Terminate all connections to and from the electronic equipment to an interwiring type block. These blocks will act as intermediate connection points for all electronic equipment input and output.

Provide termination panels that are used to distribute and properly interconnect all cabinet wiring related to the specific complement of equipment as shown on the plans. Provide properly terminated cable harnesses for each item including any furnished by the Department. Provide all functions available at the equipment terminals that are carried in the connector cable harness.

2.4.8. **Cabinet Internal Grounding.** The cabinet internal ground consists of at least 1 ground bus-bar permanently affixed to the cabinet and connected to the grounding electrode.

Use bare stranded No. 4 AWG copper wire between bus-bars and between the bus-bar and grounding electrode when providing multiple bus-bars.

Ensure each copper ground bus-bar has a minimum of 12 connection points, each capable of securing bare conductor ranging in size from No 4 AWG to No 14 AWG.

Return AC neutral and equipment ground wiring to these bus-bars.

2.4.9. **Door Switch.** Provide door switch meeting the following requirements:

- momentary, pin-type door switch,
- installed in the cabinet or on the door, and
- connected to a terminal so that the equipment installed in the cabinet can confirm input is connected to logic ground when the cabinet door is open.

Provide 2 momentary, pin type door switches for each door provided with the cabinet. Wire 1 switch to turn on the cabinet lights when the door is open and off when the door is closed. Wire the other in parallel to a terminal block to detect a cabinet intrusion condition.

2.5. **Mechanical Requirements.**

2.5.1. **Size and Construction.** Provide ITS pole mounted cabinets meeting the configuration types detailed in the Statewide ITS pole with cabinet standards.
Determine the suitability of the listed cabinet configuration types for the equipment at each field location identified on the plans or as desired.

2.5.2. **Ventilation.** Provide the cabinet with vent openings to allow cooling of electronic components.

Locate louvered air intake vent openings on the lower portion of the cabinet doors and covered fully on the inside with a commercially available disposable 3 layer graded pleated type filter of minimum size 6 in. (high) x 12 in. (wide) for Type 1 cabinet and 12 in. (high) x 16 in. (wide) for Type 2 and 3 cabinets. Size the louvered intake area and filter to allow maximum filtered air flow and cooling, securely mounted so that any air entering the cabinet must pass through the filter. Ensure the cabinet opening for intake of air is large enough to accommodate filter size. Screen the exhaust to prevent entry of insects. Provide the screen openings no larger than 0.0125 sq. in.

Provide a minimum of 2, thermostatically controlled fans that are adjustable with an adjustment range of 70 to 110°F. Provide a press-to-test switch to test the operation of the fan. Provide a fan with a capacity of at least 110 cfm each.

There is no opening on the roof of the cabinet.

2.5.3. **Lighting.** Provide minimum 15 W fluorescent fixtures above each door inside the cabinet, each with clear shatter proof lens. NEMA TS2 rated light-emitting diode (LED) fixtures are acceptable instead of fluorescent light fixtures. Determine the appropriate number of fixtures to achieve at least 1000 lumens to illuminate the equipment. Position the fixtures to provide illumination to the face of the equipment in the cabinet and not into a technician’s eyes.

2.5.4. **Exterior Finish.** Provide cabinets with a smooth aluminum finish and the exterior in its unpainted natural color.

When shown on the plans or as directed, provide cabinets with an anti-graffiti coating in accordance with Item 740 “Graffiti Removal and Anti-Graffiti Coating.”

2.5.5. **Serial Number.** Provide the cabinets with a serial number unique to the manufacturer, preceded by an assigned 2 letter manufacturer's code. Provide at least a 0.2 in. letter height. Stamp the entire identification code and number on a metal plate which is riveted to the cabinet, stamp directly on the cabinet wall, or engrave on a metalized mylar plate that is epoxied on the upper right hand cabinet side wall.

2.5.6. **Modular Design.** Provide cabinets that have a modular design and allows ITS equipment to be installed in a variety of mounting configurations as detailed on the plans or as directed.

Provide Type 1 and Type 2 cabinets with 2 unistrut or DIN rail channels on each side wall of the cabinet for mounting power panel and auxiliary ITS equipment. Provide a 19 in. EIA rack assembly only when noted on the plans or in the general notes.

Provide Type 3 cabinets with an EIA 19 in. rack assembly, sized appropriately based on cabinet type inside height dimension and is accessible from either door. Provide a rack with a minimum of one 1RU (RU = rack unit).

Table 1
Minimum Cabinet Internal Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Depth (in.)</th>
<th>Width (in.)</th>
<th>Height (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>12</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Type 2</td>
<td>18</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>Type 3</td>
<td>20</td>
<td>24</td>
<td>41</td>
</tr>
</tbody>
</table>

1. Minimum dimension for cabinet provided without EIA 19 in. rack assembly.

Provide 18 in. minimum depth when providing EIA 19 in. rack assembly.
unit) horizontal power strip. Provide 2 unistrut or DIN rail channels on each side wall of the cabinet for mounting power panel and auxiliary ITS equipment.

2.5.7. **Shelves.** Provide adjustable shelves in each cabinet as required to support the equipment as specified on the plans. Ensure shelf adjustment at 1 RU intervals in the vertical position. Provide shelves that can be mounted to an EIA 19 in. rack cage or unistrut channel as detailed in the standards.

Provide shelves that are removable and capable of supporting the electronic equipment. Provide a minimum of 2 in. between the back and front edge of the shelf to back inside wall and door of the cabinet respectively to allow room for the equipment cables and connectors.

Provide each cabinet type with at least 1 slide out drawer with telescoping drawer guides to allow full extension from the rack frame. Provide at least 1.75 in. (high) x 16 in. (wide), drawer sized appropriately for the cabinet with a hinged lid to allow access to storage space.

2.5.8. **Mounting Hardware.** Provide cabinets with the appropriate “U” channel mounting brackets, stiffening plates, anchor bolts, and any other necessary hardware to mount the cabinet on the ITS pole structure. Provide mounting brackets made of 0.250 in. thick steel.

Weld cabinet mounting plates to the pole. This may be done in the field for transport reasons. Do not band the cabinet or mounting plates to the pole. Design the cabinet for pole mounting and reinforce at the points of attachment to the pole.

2.6. **Surge Protective Devices (SPD).** Provide SPDs to protect electronics from lightning, transient voltage surges, and induced current. Install SPDs on all power, data, video, and any other conductive circuit.

2.6.1. **120 V or 120/240 V SPD at Service and ITS Cabinet Power Distribution Panel.** Install an SPD at the closest termination or disconnection point where the supply circuit enters the cabinet. Locate the SPD on the load side of the cabinet power distribution panel breakers and ahead of any and all electronic devices. Keep leads as short as possible with all conductor bends formed to the maximum possible radius. Connect the SPD ground lead directly to the ground bus. Use of wire nuts is prohibited. Install in accordance with manufacturers recommendations.

Provide UL Listed Type 1 or Type 2 SPD and labeled to UL1449 Third Edition, posted at UL.com, under Certifications UL Category Code VZCA, and have a 20 kA l-nominal rating. Provide SPD rated as NEMA 4. SPD with integral EMI/RFI line filtering may be required if shown on the plans.

Do not exceed 700 V on the Voltage Protection Rating (VPR) on any mode (L-N, L-G, and N-G).

Do not exceed 150 V on the Maximum Continuous Operating Voltage (MCOV).

Equal or exceed 40 kA the SPD surge current rating per mode (L-N), (L-G), (N-G).

Equal or exceed 50 kA or the available short circuit current, whichever is higher for the SPD Short Circuit Current Rating (SCCR).

Provide SPD with directly connected Metal Oxide Varistors (MOV) exceeding 32 mm in diameter with thermal safety disconnectors. Gas tube and spark gap SPD are not be permitted. Ensure each MOV’s operational status can be monitored via visual indicator, including N-G mode.

Provide SPD with one set of Normally Open (NO), Normally Closed (NC) Form C contacts for remote monitoring.

Ensure the SPD utilized for AC power does not dissipate any energy and does not provide any series impedance during standby operation. Return the unit to its non-shunting mode after the passage of any surge and do not allow the shunting of AC power.
2.6.2. **Parallel SPD for 120 V Equipment.** Install an SPD inside of the cabinet on the power distribution to the equipment. Keep leads as short as possible with all conductor bends formed to the maximum possible radius. Connect the SPD ground lead directly to the ground bus. Use of wire nuts is prohibited. Install in accordance with manufacturers recommendations.

Provide UL Listed Type 1 or Type 2 SPD labeled to UL1449 Third Edition, posted at UL.com, under Certifications UL Category Code VZCA, and have a 20 kA I-nominal rating. Provide SPD rated as NEMA 4.

Do not exceed 700 V on the Voltage Protection Rating (VPR) on any mode (L-N and N-G).

Do not exceed 150 V on the Maximum Continuous Operating Voltage (MCOV).

Equal or exceed 40 kA the SPD surge current rating per mode (L-N) and (N-G).

Equal or exceed 50 kA or the available short circuit current, whichever is higher for the SPD Short Circuit Current Rating (SCCR).

Provide SPD with directly connected Metal Oxide Varistors (MOV) exceeding 32 mm in diameter with thermal safety disconnectors. Gas tube and spark gap SPD are not be permitted. Ensure each MOV’s operational status can be monitored via visual indicator, including N-G mode.

Provide SPD with one set of Normally Open (NO), Normally Closed (NC) Form C contacts for remote monitoring.

2.6.3. **Low-Voltage Power, Control, Data and Signal Systems SPD.** Install a specialized SPD on all conductive circuits including, but not limited to, data communication cables, coaxial video cables, and low-voltage power cables. Ensure that these devices comply with the functional requirements shown in Table 2 for all available modes (i.e., power L-N, N-G; data and signal center pin-to-shield, L-L, L-G, and shield-G where appropriate).

These specialized SPD must have an operating voltage matching the characteristics of the circuit. Ensure that these specialized SPD are UL 497B or UL 497C Listed, as applicable.

Provide the SPD with 3 stages of surge suppression in a Pi (π) configuration. The first stage (primary side) consists of parallel-connected Gas Discharge Tubes (GDTs). The second stage consists of a series connected resistor or inductor. The third stage (secondary side) consists of parallel-connected transorbs or silicone avalanche diodes (SADs).

Ground the SPD to the DIN rail and a wire terminal connection point. (Grounding solely through the DIN rail connection is not adequate and does not meet the performance or intent of this specification.)

Install coaxial SPDs in a manner that prevents ground loops and resulting signal deterioration. This is usually caused where the cable has different references to ground at either end and connecting SPDs at both ends that have only Pin to Shield protection completes a ground loop circuit through the Shield. SPDs having Pin to Shield protection, and separate Shield to Ground protection are acceptable to eliminate ground loops.
<table>
<thead>
<tr>
<th>Circuit Description</th>
<th>Maximum Continuous Operating Voltage (MCOV)</th>
<th>Frequency/ Bandwidth/ Data Rate</th>
<th>Surge Capacity</th>
<th>Maximum Let- Through Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 VDC</td>
<td>15-20 V</td>
<td>N/A</td>
<td>5 kA per mode (8x20 µs)</td>
<td><150 Vpk</td>
</tr>
<tr>
<td>24 VAC</td>
<td>30-55 V</td>
<td>N/A</td>
<td>5kA per mode (8x20 µs)</td>
<td><175 Vpk</td>
</tr>
<tr>
<td>48 VDC</td>
<td>60-85 V</td>
<td>N/A</td>
<td>5 kA per mode (8x20 µs)</td>
<td><200 Vpk</td>
</tr>
<tr>
<td>Coaxial Composite Video</td>
<td>4-8 V</td>
<td>Up to 1.5 GHz</td>
<td>10 kA per mode (8x20 µs)</td>
<td><100 Vpk</td>
</tr>
<tr>
<td>RS422/RS485</td>
<td>8-15 V</td>
<td>Up to 10 Mbps</td>
<td>10 kA per mode (8x20 µs)</td>
<td><30 Vpk</td>
</tr>
<tr>
<td>T1</td>
<td>13-30 V</td>
<td>Up to 10 Mbps</td>
<td>10 kA per mode (8x20 µs)</td>
<td><30 Vpk</td>
</tr>
<tr>
<td>Ethernet Data</td>
<td>7-12 V</td>
<td>Up to 100 Mbps</td>
<td>3kA per mode (10x1000 µs)</td>
<td><30 Vpk</td>
</tr>
</tbody>
</table>

2.7. **Environmental Design Requirements.** Provide cabinets that meet the functional requirements of this Item during and after subjection to any combination of the following requirements:
- ambient temperature range of -30 to 165°F,
- temperature shock not to exceed 30°F per hour, during which the relative humidity does not exceed 95%,
- relative humidity range not to exceed 95% over the temperature range of 40 to 110°F, and
- moisture condensation on all surfaces caused by temperature changes.

2.8. **Vibration.** Material used must show no degradation of mechanical structure, soldered components, plug in components or satisfactory operation in accordance with the manufacturer's equipment specifications after being subjected to the vibration test as described in the NEMA standard TS2, Section 2.2.8, "Vibration Test", or the latest revision.

3. **FABRICATION**

3.1. **Anchor Bolts.** Fabricate anchor bolts, nuts, and washers in accordance with the details shown on the plans and Item 449, "Anchor Bolts." Galvanize these items in accordance with Item 445, "Galvanization."

Provide 2 circular steel templates as shown on the plans conforming to ASTM A36 for each assembly. Tack weld the lower anchorage nuts to the lower template in the shop. Perform this welding with an appropriate jig to ensure that the anchor bolt is perpendicular to the template. Shipping of the anchor bolt cage in its assembled condition is not required.
3.2. **ITS Poles.** Fabricate ITS poles in accordance with the details shown on the plans, this Item, and Item 441, "Steel Structures." Alternate designs are not acceptable unless approved by the Department.

Provide properly fitting components. Provide round, octagonal (8-sided), or dodecagonal (12-sided) pole shafts tapered to the heights shown on the plans.

Permanently mark, at a visible location when erected, ITS pole base plates with the design wind speed. Locate the handholes, as shown on the plans, opposite of the direction of traffic flow.

Permanently mark, at a visible location when erected, ITS pole base plates with the fabrication plant’s insignia or trademark. Place the mark on the pole base plate adjacent to the handhole access compartment.

Provide circumferential welds only at the ends of the shaft. Provide no more than 2 longitudinal seam welds in shaft sections. Grind or smooth the exterior of longitudinal seam welds to the same appearance as other shaft surfaces. Ensure 100% penetration within 6 in. of circumferential base welds and 60% minimum penetration at other locations along the longitudinal seam welds. Use a welding technique that minimizes acid entrapment during later galvanizing. Hot-dip galvanize all fabricated parts in accordance with Item 445, "Galvanizing."

Fabricate air terminal and bracket assembly to serve as a lightning arrester in accordance with ITS pole air terminal details and IEEE standards for lightning protection. Bond air terminal with air terminal bracket via clad weld or other approved bolted connection.

3.3. **Cabinet.** Continuously weld all exterior seams for cabinet and doors. Fill edges to a radius of 0.03125 in. minimum. Smooth exterior welds.

Welding on aluminum cabinets are done by the gas metal arc (MIG) or gas tungsten arc (TIG) process using bare aluminum welding electrodes. Ensure electrodes conform to the requirements of the American Welding Society (AWS) A5.10 for ER5356 aluminum alloy bare welding electrodes.

Procedures, welding machines and welding machine operators for welding on aluminum must be qualified and conform with the requirements of AWS B3.0, "Welding Procedures and Performance Qualification", and to the practices recommended in AWS C5.6.

Construct all cabinets of welded sheet aluminum with a thickness of at least 0.125 in. meeting NEMA 3R standards. Do not allow wood, wood fiber product, or flammable products in the cabinet. Seal cabinet structure to prevent the entry of rain, dust, and dirt.

Provide a sunshield on the exterior top of the cabinet to reflect solar rays and mitigate temperature build-up inside the cabinet. Construct sunshield out of 0.125 in. thick aluminum and provide a minimum of 1.25 in. clearance above the top of cabinet secured in four locations.

Attach aluminum lifting eyes or ears to the top of the cabinet to permit lifting the cabinet with a sling. Lifting eyes may be permanently fabricated to the cabinet frame as long as they do not interfere with the construction and operation of the sunshield. Manufacturer may provide removable lifting eyes that can be removed after installation. Seal any penetrations to the cabinet exterior or sunshield after removal of lifting eyes.

Ensure cabinets conform to the requirements of ASTM designation: B209 for 5052-H32 aluminum sheet.

3.3.1. **Door.** Provide sturdy and torsionally rigid cabinet doors that substantially cover the full area of the cabinet access opening. Attach cabinet doors by a minimum of 2 heavy duty hinges or full length hinge. Provide stainless steel hinge pins.
Fabricate the doors and hinges to withstand a 100 lb. per vertical ft. force applied to the outer edge of the door when open without permanent deformation or impairment of the door or cabinet body when the load is removed.

Fit the cabinet doors with Number 2 Corbin locks and aluminum or chrome plated handles with a minimum 3/8 in. drive pin and a 3 point latch. Design the lock and latch so that the handles cannot be released until the lock is released. Provide a locking ring for a padlock along with a padlock. Provide 2 keys for the door and 2 keys for the padlock with each cabinet. Locate the lock clear of the arc of the handle. Keys must be removable in the locked position only. Mount locks with 2 stainless steel machine screws. Provide cabinet doors with a catch mechanism to hold the door open at 2 positions: 90° and 120°.

Fabricate the door and door stop mechanism to withstand a simulated wind load of 5 lb. per sq. ft. applied to both inside and outside surfaces without failure, permanent deformation, or compromising of door position.

Provide cabinets without auxiliary police doors.

Provide a gasket to act as a permanent and weather resistant seal at the cabinet door facing. The gasket material must be of a non-absorbent material and maintain its resiliency after long term exposure to the outdoor environment.

Provide a gasket with a minimum thickness of 0.25 in. Locate the gasket in a channel provided for this purpose either on the cabinet or on the door. An “L” bracket is acceptable instead of this channel if the gasket is fitted snugly against the bracket to insure a uniformly dust and weather resistant seal around the entire door facing.

3.3.2. **Mechanical Components.** Ensure all external screws, nuts, and locking washers are stainless steel. Do not use self-tapping screws unless specifically approved by the Engineer.

Ensure all parts are made of corrosion resistant material, such as plastic, stainless steel, aluminum or brass.

Ensure all materials used in construction are resistant to fungus growth and moisture deterioration.

Separate dissimilar metals by an inert dielectric material.

4. **CONSTRUCTION**

4.1. **Installation.** Locate ITS poles as shown on the plans unless otherwise directed to secure a more desirable location or to avoid conflict with utilities. Stake the ITS pole locations for verification by the Engineer.

Use established industry and utility safety practices when working near underground or overhead utilities. Consult with the appropriate utility company before beginning such work.

Construct foundations for new ITS poles in accordance with Item 416, “Drilled Shaft Foundations,” and the details shown on the plans.” Orient anchor bolts as shown on the plans. Install conduit per Item 618, Conduit.”

Identify all items of a shipment with a weatherproof tag. This tag minimally must identify manufacturer, contract number, and date and destination of shipment.

Erect poles after foundation concrete has attained its design strength as required on the plans and Item 421, “Hydraulic Cement Concrete.” Coat anchor bolt threads and tighten anchor bolts in accordance with Item 449, “Anchor Bolts.” Do not grout between the base plate and the foundation.

Mount the pole mounted cabinet to the backside of the ITS pole, with door either parallel or perpendicular to the roadway, away from the direction of traffic flow, as shown on the plans. Mount cabinet plumb in all directions.
For ITS pole sites located on slopes greater than 4H:1V, mount the pole mounted cabinet to the backside of
the ITS pole, from the perspective parallel to the roadway with the door facing the direction of traffic flow as
shown on the plans.

Install grounding conductor from cabinet and ITS pole air terminal inside a minimum 1 in. PVC conduit within
the foundation. Bond grounding conductors to the primary ground rod as part of the grounding ring in
accordance with the ITS grounding details.

Construct reinforced maintenance pad, when required, with Class A concrete in accordance with Item 421,
“Hydraulic Cement Concrete.” Provide reinforcing steel in accordance with Item 440, “Reinforcing Steel.”

4.2. Relocation. Before removal of the existing pole structure or cabinet, disconnect and isolate the power cables
from the electric power supply and disconnect all cables (power and communication) from the equipment and
remove any ITS equipment, associated mounting brackets, pole mounted cabinet, and cabling from the pole
structure. Remove existing pole structure as shown on the plans only at such time as authorized by the
Engineer.

Inspect the existing pole structure, with a representative from the Department, and document any evidence
of structural stress cracks or fatigue before removal. Remove and deliver to the Department, existing pole
structures that fail structural inspection to an address to be supplied by the Department.

Remove the existing pole structure in a manner acceptable to the Engineer using a method that does not
cause undue overstress or damage to the structure or appurtenances attached.

Use a crane of sufficient capacity to remove the pole. Disconnect and relocate the existing pole structure
from and to the foundation as shown on the plans in a manner acceptable to the Engineer.

When the poles are laid down, place the poles on timber cribbing so that the poles lie reasonably straight to
prevent any damage or deterioration.

Maintain safe construction and operation practices at all times. Handle the poles in such a manner during
removal so as to prevent damage to the pole’s exterior finish. The Contractor will be responsible for any
damage to poles.

Unless otherwise shown on the plans, remove abandoned concrete foundations, including steel, to a depth of
at least 2 ft. below final grade in accordance with Item 496, “Removing Structures.” Backfill the excavation
with materials equal in composition and density to the surrounding area. Replace any surfacing material with
similar material to an equivalent condition.

Supply all new anchor bolts required for the installation of the ITS pole structure. Match bolt dimensions and
lengths previously used or as shown on the plans and as directed. Provide anchor bolts in accordance with
Item 449, “Anchor Bolts.”

Move existing poles to the locations shown on the plans or as directed. Construct new foundations for
relocated ITS poles in accordance with Item 416, “Drilled Shaft Foundations,” and the details shown on the
plans. Install conduit per Item 618, “Conduit.” Install existing poles on new foundations in accordance with
Section 4.1, “Installation.” Do not grout between the base plate and foundation.

4.3. Removal. Use established industry and utility safety practices when removing poles and assemblies located
near overhead or underground facilities. Consult with the appropriate utility company before beginning work.

Inspect the pole and cabinet, where included, with a representative from the Department, and remove any
ITS equipment, associated mounting hardware, and cabling still attached to the pole or inside the cabinet
before commencing work. Inspect the existing pole and cabinet in place, with a representative from the
Department, and document any evidence of damage to the representative before removal.
Before removal of the existing pole structure or cabinet, disconnect and isolate the power cables from the electric power supply and disconnect all cables (power and communication) from the equipment. Remove and coil existing cabling to the nearest ITS ground box or as identified on the plans.

Carefully remove the cabinet from the pole structure. Avoid damage or injury to surrounding objects or individuals. Deliver the cabinet to an address to be supplied by the Department.

Carefully remove the pole from the foundation in accordance with Item 496, “Removing Structures.” Avoid damage or injury to surrounding objects or individuals. Separate the pole at the slip-fitted connections, if applicable. If the pole cannot be separated, transport the complete pole or partially separate the pole to make it transportable. Deliver the pole structure to an address to be supplied by the Department.

Unless otherwise shown on the plans, remove abandoned concrete foundations, including steel, to a depth of 2 ft. below final grade in accordance with Item 496, “Removing Structures.” Backfill the excavation with materials equal in composition and density to the surrounding area. Replace surfacing material with similar material to an equivalent condition.

4.4. Testing.

4.4.1. Installation. Unless otherwise shown on the plans, perform the following tests on cabinets supplied through this Item.

4.4.1.1. Test Procedures Documentation. Provide 5 copies of the test procedures to include tests identified in Article 4.4.2 through Article 4.4.4 inclusive and blank data forms to the Engineer for review and comment at least 45 days before testing for each test required on this project. Include the sequence of the tests in the procedures. The Engineer will comment, approve, or reject test procedures within 30 days after Contractor submittal of equipment for tests. Contractor to resubmit if necessary rejected test procedures for final approval within 10 days before testing. Review time is calendar days. Conduct all tests in accordance with the approved test procedures. The Department may witness all tests.

Record test data on the data forms and quantitative results. No bid item measurement or payment will be made until the Engineer has verified the test results meet the requirements of the specification. The data forms for all tests, except design approval tests, must be signed by an authorized representative of the Contractor.

Provide written notice to the Engineer within 48 hr. of discovery of any testing discrepancy performed in testing by the contractor. Furnish data forms containing the acceptable range of expected results and measured values.

4.4.1.2. Design Approval Test. Conduct a design approval test on 10% of the total number of cabinets supplied as part of the project, with at least one of each type of cabinet used on the project.

Certification from an independent testing laboratory of a successfully completed design approval test is acceptable. Ensure that the testing by this laboratory is performed in accordance with the requirements of this specification. Failure of independent tests to comply with the requirements of this specification will be grounds for rejection of any certification.

Provide a copy of the certification to the Engineer. The data forms for the design approval tests must be signed by an authorized representative (company official) of the equipment manufacturer or by an authorized representative of an independent testing facility.

Notify the Engineer 10 working days before conducting this testing. The Department may witness all the tests. Perform the following tests:
4.4.1.2.1. **Power Service Transients.** Provide equipment that meets the performance requirements, specified in this Item, when subjected to the power service transients as specified in NEMA TS2, Section 2.2.7.2, "Transient Tests (Power Service)", or most current version.

4.4.1.2.2. **Temperature and Condensation.** Provide equipment that meets the performance requirements, specified in this Item, when subjected to the following conditions in the order specified below:

- Stabilize the equipment at -30°F and test as specified in NEMA TS2, Sections 2.2.7.3, "Low-Temperature Low-Voltage Tests" and 2.2.7.4, "Low-Temperature High-Voltage Tests", or most current version.
- Allow the equipment to warm up to room temperature in an atmosphere with relative humidity of at least 40%. Operate the equipment for 2 hr., while wet, without degradation or failure.
- Stabilize the equipment at 165°F and test as specified in NEMA TS2, Sections 2.2.7.5, "High-Temperature High Voltage Tests" and 2.2.7.6, "High-Temperature Low-Voltage Tests", or most current version.

4.4.1.2.3. **Relative Humidity.** Provide equipment that meets the performance requirements, specified in this Item, within 30 min. of being subjected to a temperature of 165°F and a relative humidity of 18% for 48 hr.

4.4.1.2.4. **Vibration.** Provide equipment that shows no degradation of mechanical structure, soldered components, or plug-in components and will operate in accordance with the manufacturer's equipment specifications after being subjected to the vibration tests as described in NEMA TS2, Section 2.2.8, "Vibration Test", or most current version.

4.4.1.2.5. **Power Interruption.** Provide equipment that meets the performance requirements, specified in this Item, when subjected to nominal input voltage variations as specified in NEMA TS2, Section 2.2.10, "Power Interruption Test", or most current version.

4.4.1.3. **Stand-Alone Tests.** Conduct a Stand-Alone Test for each cabinet after installation. Exercise all stand-alone (non-network) functional operations consisting of the following, at a minimum:

- 19-inch EIA rack,
- adjustable shelves,
- locking mechanism,
- fan and thermostat,
- cabinet light,
- back panel,
- circuit breakers,
- surge protection,
- grounding system,
- terminal strips,
- interconnect harnesses with connectors,
- cabinet attachment to pole,
- weatherproofing, and
- "Door Open" connection to back panel.

Notify the Engineer 5 working days before conducting this test. The Engineer may witness all the tests.

4.4.1.4. **Consequences of Test Failure.** If a unit fails a test, submit a report describing the nature of the failure and the actions taken to remedy the situation before modification or replacement of the unit. If a unit requires modification, correct the fault and then repeat the test until successfully completed. Correct minor discrepancies within 30 days of written notice to the Engineer. If a unit requires replacement, provide a new unit and then repeat the test until successfully completed. Major discrepancies that will substantially delay receipt and acceptance of the unit will be sufficient cause for rejection of the unit.
Failure to satisfy the requirements of any test is considered a defect and the equipment is subject to rejection by the Engineer. The rejected equipment may be offered again for retest provided all noncompliance has been corrected.

If a failure pattern develops in similar units within the system, implement corrective measures, including modification or replacement of units, to all similar units within the system as directed. Perform the corrective measures within 30 calendar days without additional cost or extension of the contract period.

4.4.1.4.1. **Consequences of Design Approval Test Failure.** If the equipment fails the design approval test, correct the fault within 30 days and then repeat the design approval test until successfully completed.

4.4.1.4.2. **Consequences of Stand-Alone Test Failure.** If the equipment fails the stand-alone test, correct the fault within 30 days and then repeat the stand-alone test until successfully completed.

4.4.2. **Relocation.**

4.4.2.1. **Pre-Test.** Conduct performance testing before removal of ITS pole mounted cabinet. Test the following components or equipment, at a minimum, and document functional operations in the presence of representatives of the Contractor and the Department.

- locking mechanism,
- fan and thermostat,
- cabinet light,
- back panel,
- circuit breakers,
- surge protection system,
- grounding system, and
- “Door Open” connection to back panel.

Ensure that both representatives sign the test report indicating that the equipment has passed or failed each function. Once removed, the equipment becomes the responsibility of the Contractor until accepted by the State. Compare test data before removal and test data after installation.

4.4.2.2. **Post Test.** Testing of the ITS pole mounted cabinet is for the purpose of relieving the Contractor of maintenance of the system. The Contractor will be relieved of the responsibility for maintenance of the system in accordance with Item 7, “Legal Relations and Responsibilities”, after a successful test period. The Contractor will not be required to pay for electrical energy consumed by the system.

After all existing ITS equipment has been installed, perform the same functional operation test described under Article 4.4.2.1. Furnish test data forms containing the sequence of tests including all of the data taken and quantitative results for all tests. Submit the test data forms to the Engineer at least 30 days before the day the tests are to begin. Obtain Engineer's approval of test procedures before submission of equipment for tests. Send at least 1 copy of the data forms to the Engineer.

The performance test results after relocation must be equal to or better than the test results before removal. Repair or replace those components within the system which failed after relocation but which passed before removal.

The Department will conduct approved ITS equipment system tests on the field equipment hardware with the central equipment. The tests will, as a minimum, exercise all remote control functions and display the return status codes from the controller.

If any unit fails to pass a test, prepare a report and deliver it to the Engineer. Describe in the report the nature of the failure and the corrective action needed. If the failure is the result of improper installation or damage during reinstallation, reinstall or replace the unit and repeat the test until the unit passes successfully, at no additional cost to the Department or extension of the contract period.
4.5. **Documentation.** Submit documentation for this Item consisting of the following:

4.5.1. **ITS Pole.** Shop drawings should clearly detail the following for the ITS poles submitted for the project:

- physical pole drawings,
- anchor bolts,
- material list,
- lightning suppression,
- weatherheads,
- cabinet Mounting attachments (when cabinet required), and
- grounding system.

4.5.2. **Pole Mounted Cabinet.** Shop drawings should clearly detail the following for ITS pole mounted cabinets when required as shown on the plans:

- dimensions,
- shelves,
- door,
- gasket,
- door look,
- materials list,
- exterior finish,
- ventilation,
- terminal strips,
- harnesses,
- power distribution panel,
- surge suppression,
- back panel,
- outlets,
- circuit breakers,
- power cable terminals,
- wiring diagrams,
- cabinet grounding,
- environmental parameters, and
- connectors.

Submit shop drawings, signed, sealed, and dated by a registered professional Engineer in Texas showing the fabrication and erection details for each ITS pole including the ITS cabinet and mounting details in accordance with Item 5, “Control of the Work”.

Provide at least 2 complete sets of operation and maintenance manuals in hard copy format in addition to a CD/DVD or removable flash drive that include the following:

- complete and accurate schematic diagrams,
- complete installation procedures,
- complete performance specifications (functional, electrical, mechanical and environmental) on the unit,
- complete parts list including names of vendors for parts not identified by universal part number such as JEDEC, RETMA, or EIA,
- pictorial of component layout on circuit board,
- complete maintenance and trouble-shooting procedures,
- complete stage-by-stage explanation of circuit theory and operation,
- recovery procedures for malfunction, and
- instructions for gathering maintenance assistance from manufacturer.

Identify material which is copyrighted or proprietary in nature as part of the documentation submittal. The Department will take proper provisions to secure such material and not distribute without written approval.

Provide Department with certification documentation verifying conformance with environmental and testing requirements contained in the special specification. Certifications may be provided by the manufacturer or through independent labs.

4.6. **Warranty.** The start date of the manufacturer’s standard warranty will begin when the stand-alone test plan has been approved. Any equipment with less than 95% of its warranty remaining at the beginning of the stand-alone test will not be accepted by the Department. Guarantee that equipment furnished and installed
for this project performs according to the manufacturer’s published specifications. Warrant the equipment against defects or failure in design, materials, and workmanship for a minimum of 5 years or in accordance with the manufacturer’s standard warranty if warranty period is greater. Assign, to the Department, all manufacturer’s normal warranties or guarantees on all electronic, electrical, and mechanical equipment, materials, technical data, and products furnished for and installed on the project. Repair or replace, at the manufacturer’s option, defective equipment during the warranty period at no cost to the Department.

Repair or replace equipment at the Contractor’s expense before beginning testing in the event of a malfunction or failure. Furnish replacement parts for all equipment within 30 days of notification of failure by the Department.

5. MEASUREMENT

This Item will be measured as each unit furnished, installed, relocated, or removed as shown on the plans, excluding new foundations and conduit.

6. PAYMENT

6.1. Furnish and Install. The work performed and materials furnished in accordance with this Item and measured as provided for under "Measurement" will be paid for at the unit price bid for “ITS Pole” of the type and height specified, including COSS/OSB extension, and “ITS Pole Mount Cabinet” of the type and configuration specified. This price is full compensation for furnishing, fabricating, and erecting ITS pole structures as shown on the plans; for furnishing, fabricating, and installing ITS pole mounted cabinets as shown on the plans; for furnishing and placing anchor bolts, nuts, washers, and templates; conducting cabinet testing; and equipment, materials, labor, tools, and incidentals necessary to provide an ITS pole structure or pole mounted cabinet complete in place and ready for the attachment of ITS equipment.

New drill shaft foundations will be paid for under Item 416, “Drilled Shaft Foundations.” New conduit will be paid for under Item 618, “Conduit.”

6.2. Install Only. The work performed and materials furnished in accordance with this Item and measured as provided for under "Measurement" will be paid for at the unit price bid for “ITS Pole (Install Only)” of the type and height specified, including COSS/OSB extension, and “ITS Pole Mount Cabinet (Install Only)” of the type and configuration specified. This price is full compensation for erecting ITS pole structures and installing ITS pole mounted cabinets furnished by the Department as shown on the plans; for installing and placing anchor bolts, nuts, washers, and templates; conducting cabinet testing; and equipment, materials, labor, tools, and incidentals necessary to provide an ITS pole structure or pole mounted cabinet, complete in place, and ready for the attachment of ITS equipment.

New drill shaft foundations will be paid for under Item 416, “Drilled Shaft Foundations.” New conduit will be paid for under Item 618, “Conduit.”

6.3. Relocate. The work performed and materials furnished in accordance with this Item and measured as provided for under "Measurement" will be paid for at the unit price bid for “ITS Pole (Relocate)” of the type and height specified, including COSS/OSB extension, and “ITS Pole Mount Cabinet (Relocate)” of the type and configuration specified. This price is full compensation for removing existing ITS pole structures or pole mounted cabinets as shown on the plans; removing existing foundations; backfilling and surface placement; hauling and erecting ITS pole structures; hauling and installing ITS pole mounted cabinets; furnishing and placing anchor bolts, nuts, washers, and templates; conducting cabinet testing; and equipment, materials, labor, tools, and incidentals necessary to relocate existing ITS pole structures or pole mounted cabinets, complete in place, and ready for the attachment of ITS equipment.

New drill shaft foundations will be paid for under Item 416, “Drilled Shaft Foundations.” New conduit will be paid for under Item 618, “Conduit.”
6.4. **Remove.** The work performed and materials furnished in accordance with this Item and measured as provided for under “Measurement” will be paid for at the unit price bid for “ITS Pole (Remove)” of the type and height specified, including COSS/OSB extension, and “ITS Pole Mount Cabinet (Remove)” of the type and configuration specified. This price is full compensation for removing existing ITS pole structures and pole mounted cabinets as shown on the plans; removing existing foundations; backfilling and surface placement; loading and hauling; and equipment; materials, labor, tools, and incidentals necessary to complete the removal of existing ITS pole structures and pole mounted cabinets.
Special Specification 6185
Truck Mounted Attenuator (TMA) and Trailer Attenuator (TA)

1. DESCRIPTION
Furnish, operate, maintain and remove upon completion of work, Truck Mounted Attenuator (TMA) or Trailer Attenuator (TA).

2. MATERIALS
Furnish, operate and maintain new or used TMAs or TAs. Assure used attenuators are in good working condition and are approved for use. A list of approved TMA/TA units can be found in the Department’s Compliant Work Zone Traffic Control Devices List. The host vehicle for the TMA and TA must weigh a minimum of 19,000 lbs. Host vehicles may be ballasted to achieve the required weight. Any weight added to the host vehicle must be properly attached or contained within it so that it does not present a hazard and that proper energy dissipation occurs if the attenuator is impacted from behind by a large truck. The weight of a TA will not be considered in the weight of the host vehicle but the weight of a TMA may be included in the weight of the host vehicle. Upon request, provide either a manufacturer’s curb weight or a certified scales weight ticket to the Engineer.

3. CONSTRUCTION
Place or relocate TMA/TAs as shown on the plans or as directed. The plans will show the number of TMA/TAs needed, for how many days or hours, and for which construction phases.

Maintain the TMA/TAs in good working condition. Replace damaged TMA/TAs as soon as possible.

4. MEASUREMENT
4.1. Truck Mounted Attenuator/Trailer Attenuator (Stationary). This Item will be measured by the each or by the day. TMA/TAs must be set up in a work area and operational before a calendar day can be considered measurable. When measurement by the day is specified, a day will be measured for each TMA/TA set up and operational on the worksite.

4.2. Truck Mounted Attenuator/Trailer Attenuator (Mobile Operation). This Item will be measured by the hour. The time begins once the TMA/TA is ready for operation at the predetermined site and stops when notified by the Engineer. A minimum of 4 hr. will be paid each day for each operating TMA/TA used in a mobile operation.

5. PAYMENT
The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for “Truck Mounted Attenuators/Trailer Attenuators (Stationary),” or “Truck Mounted Attenuators/Trailer Attenuators (Mobile Operation).” This price is full compensation for furnishing TMA/TA: set up; relocating; removing; operating; fuel; and equipment, materials, tools, labor, and incidentals.
Special Specification 6186
Intelligent Transportation System (ITS) Ground Box

1. DESCRIPTION

Construct, furnish, install or remove Intelligent Transportation System (ITS) ground boxes for fiber optic communication infrastructure complete with lids.

2. MATERIALS

Provide new materials that comply with the details shown on the plans, the requirements of this Item, and the requirements of the following items:

- Item 420, “Concrete Substructures,”
- Item 421, “Hydraulic Cement Concrete,”
- Item 432, “Riprap,”
- Item 440, “Reinforcement for Concrete,”
- Item 471, “Frames, Grates, Rings, and Covers,”
- Item 618, “Conduit,” and
- Item 620, “Electrical Conductors.”

Provide new ITS ground boxes constructed of precast concrete or polymer concrete in accordance with the National Electrical Code (NEC) and National Electrical Manufacturers Association (NEMA) standards, most current version. Faulty fabrication or poor workmanship in materials, equipment, or installation will be justification for rejection. Provide manufacturer’s warranties or guarantees when offered as a customary trade practice.

2.1. Precast Concrete. Provide precast concrete ground boxes and aprons that comply with the details shown on the plans, the requirements of this Item, and in accordance with the following:

- construct ground boxes with Class A concrete in accordance with Item 421, “Hydraulic Cement Concrete,” unless otherwise directed,
- provide American Society for Testing and Materials (ASTM) A 615 Grade 60 reinforcement steel in accordance with Item 440, “Reinforcing Steel,” and
- provide steel for the frames and covers in accordance with Item 471, “Frames, Grates, Rings, and Covers,” unless otherwise approved by the Engineer.

2.2. Polymer Concrete. Manufacture ground box and ground box cover from polymer concrete reinforced with 2 continuous layers of fiberglass fabric. Provide fabricated precast polymer concrete ground boxes and aprons that comply with the details shown on the plans, the requirements of this Item, and in accordance with American Standards Institute (ANSI)/Society of Cable Telecommunications Engineers (SCTE) - ANSI/SCTE 77, most current version.

- Polymer Concrete. Construct polymer concrete from catalyzed polyester resin, sand, and aggregate. Polymer concrete containing chopped fiberglass or fiberglass-reinforced plastic is prohibited. Ensure a minimum compressive strength of 11,000 psi.
Fiberglass Fabric. The base glass on the fiberglass fabric must be alumina-limeborosilicate type “E” glass. The reinforcing fabric must line the entire inner and outer surfaces. Obtain approval for the fabric prior to production.

2.2.1. Loading Requirements. All polymer concrete boxes and covers must meet all test provisions of the ANSI/SCTE 77 Tier 22 requirements. All polymer concrete boxes and covers will be UL Listed or manufacture must provide a certification from an NRTL or factory-testing documentation witnessed and certified by professional engineer licensed in Texas.

Ensure ground box withstands 800 lb. per sq. ft. of force applied over the entire sidewall with less than 1/4 in. deflection per foot length of box. Ensure ground box and ground box cover withstand a test load of 33,750 lb. over a 10 in. x 20 in. area centered on the cover with less than 1/2 in. deflection at the design load of 22,500 lb.

3. EQUIPMENT

3.1. Size. Provide ITS ground boxes meeting the configuration types detailed in Table 1.

<table>
<thead>
<tr>
<th>Type</th>
<th>Width (Inches)</th>
<th>Length (Inches)</th>
<th>Depth (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 (Precast)</td>
<td>24</td>
<td>36</td>
<td>36, 48, or 60</td>
</tr>
<tr>
<td>Type 2 (Precast)</td>
<td>36</td>
<td>60</td>
<td>36, 48, or 60</td>
</tr>
<tr>
<td>Type 1 (Polymer)</td>
<td>24</td>
<td>36</td>
<td>24, 36, or 48</td>
</tr>
<tr>
<td>Type 2 (Polymer)</td>
<td>36</td>
<td>60</td>
<td>24, 36, or 48</td>
</tr>
</tbody>
</table>

3.2. Shape. Provide ITS ground boxes rectangular in shape.

3.3. Aprons. Provide concrete aprons for ground boxes installed in native ground as shown on the plans. Aprons will be omitted when the ground boxes are located in riprap, sidewalk, or landscape pavers.

3.4. Bolts. Provide stainless steel penta bolts or special keyed bolts, as required by Department, with associated hardware as shown on plans. Provide self-draining bolt holes. Washers must be provided with all bolts.

3.5. Accessories. Include all necessary provisions for knockouts, cable racking, adapters and terminators for proper conduit and cable installation.

3.5.1. Knockouts. Provide knockouts at the factory to accommodate the appropriate number and size of conduits entering the ground box as shown in the plans. Within the factory, score or provide indentation on each outside wall identifying additional conduit entry points for future expansion that does not impact the rebar structure. Place a bell fitting on the end of each conduit to ensure a flush fit inside the ground box. Place concrete grout in the knockout (inside and out), around the conduit and bell fitting to ensure a neat and watertight fit. Ensure that the grout does not enter the inside of the conduit.

3.5.2. Cable Racking. Provide steel (ASTM A-153), non-metallic glass reinforced nylon, or equivalent cable rack assemblies with the dimensions shown on the plans.

3.5.3. Terminators. Terminators must be appropriately sized for the conduits indicated on plans and must be an airtight and watertight connection.
Terminators for the PVC conduits should be placed symmetrically about the centerline of the box at the depth shown on plans.

Terminators that do not have conduits attached must be capped and sealed as shown on the plans.

Install the quantity, size, and location of terminators as shown on plans.

3.6. **Cover Requirements.**

3.6.1. **Type of Cover.** Provide the following types of covers based on the type of ground box:

- Precast concrete ground box: Provide a 1-piece or 2-piece galvanized steel or cast iron cover depending on the ground box type. Provide a torsion assisted cover for Type 2 ground box with lids that can open freely a minimum 90° each and lock in place with locking latches or a pin-lock inserted in the hinge. Covers must be grounded in accordance with the requirements of the most current version of the NEC. Provide the cover with drop handles.

- Polymer concrete ground box: Provide a 1-piece or 2-piece cover depending on the ground box type, bolted to the ground box. Cover must have a minimum of 2 lifting eyes.

3.7. **Label.** Permanently mark all ground boxes and covers with the manufacturer’s name or logo and model number. Legibly imprint each cover with a permanently marked logo in letters at least 1 in. high as follows: ‘DANGER—HIGH VOLTAGE TRAFFIC MANAGEMENT’, unless otherwise directed. Glue in logos are prohibited.

3.8. **Security.** Equip all ground box covers with a stainless steel penta head or keyed bolting system that will securely hold the cover in place. Provide an appropriate means to secure or lock the cover in place as required by the plans.

3.9. **Skid Resistance.** All ground box covers must be skid resistant and should have a minimum coefficient of friction of 0.50 on the top surface of the cover. Provide certification minimum coefficient of friction value is met as part of material documentation.

3.10. **Strength Requirements.** The following ground box strengths are required based on the following 2 applications.

3.10.1. **Deliberate Roadway Traffic.** Precast concrete ground boxes with steel covers must be used in locations that may experience deliberate, continuous vehicular traffic, such as near the shoulder or an auxiliary lane, or immediately adjacent to the unprotected edge of pavement. Do not place ground boxes in the paved travel lanes or shoulder of highways, frontage roads, streets, bridges, or driveways.

Ground boxes and covers located in these areas must be rated for heavy-duty traffic loading and meet an AASHTO H-20 design loading.

Precast concrete ground boxes and covers located in non-deliberate heavy vehicular traffic must still meet AASHTO H-20 design loading.

3.10.2. **Non-Deliberate Heavy Vehicular Traffic.** Polymer concrete ground boxes and covers may be used in off roadway applications subject to occasional non-deliberate heavy vehicular traffic, such as driveways, along sidewalks, parking lots and behind non-mountable curb. Polymer ground boxes and covers located in these areas must meet ANSI/SCTE Tier 22 loading requirements.

4. **CONSTRUCTION**

Perform work in accordance with the details shown on the plans and the requirements of this Item.
Use established industry and utility safety practices when installing or removing ground boxes located near underground utilities. Consult with the appropriate utility company before beginning work.

4.1. **Installation.** Install ground boxes as shown on the plans. Maintain spacing as shown on the plans.

Ground box locations may be revised to fit existing field conditions or to better facilitate the installation of the conduit system with approval by the Engineer.

Field-locate ground boxes to avoid steep slopes and low-lying locations with poor drainage.

Construct ground box cover to fit properly on ground box.

When installing ground boxes in surfaced areas, make the tops of the ground boxes flush with the finished surface.

4.1.1. **Gravel at Base of Ground Box.** Install all ground boxes on a bed of crushed rock at the base of the excavation as shown on the plans. Place 12 in. of washed, crushed stone (1.5 in. nominal) which extends 6 in. in all directions from the perimeter of the box. Lightly tamp the gravel immediately prior to the placement of the ground box to reduce settlement. Crushed gravel will not be paid directly, but be considered subsidiary to this Item.

4.1.2. **Cable Racking Installation.** Provide and locate cable rack assemblies designed to support up to 25 ft. of slack for each fiber optic cable inside each Type 1 ground box, 100 ft. of slack for each fiber optic cable inside each Type 2 ground box, slack associated with other communication cabling, and any splice enclosure as shown on the plans or as directed. Cable racks may be installed at the factory or in the field. Place the racks in a manner so as not to impede access in and out of the ground box.

Ground metallic cable rack assemblies to grounding system inside ground box in accordance with the most current version of the NEC.

Use fasteners with an ultimate pull out strength of at least 2500 lb. and ultimate shear strength of at least 3000 lb. When securing cable racks to side walls of ground box in the field, seal all penetrations to the side wall to prevent moisture and contaminant penetration. Sufficient cable supports must be provided for the particular of conductors or cables coiled or passing through the ground as shown on the plans or directed by the Engineer.

4.1.3. **Buried Installation.** When shown in the plans or identified in the General Notes, bury ground boxes for security measures. When burying ground boxes, provide polymer concrete ground boxes meeting ANSI/SCTE Tier 22 loading requirements.

Provide 12 in. cover between ground surface and top of ground box lid. Prior to backfilling, provide a 30 lb. felt paper over the entire ground box extending a minimum of 2 in. from either side to prevent backfill materials from entering ground box.

4.2. **Excavation and Backfill.** Ensure excavation and backfill for ground boxes meets the requirements as set forth by Item 400, “Excavation and Backfill for Structures.” For buried ground boxes, compact backfill material in order to prevent depressions in ground surface from occurring over the ground box.

4.3. **Testing.** Ground box and cover must be tested by a laboratory independent of the manufacturer to meet loading requirements. Certificate of such tests must be submitted to the Engineer for approval.

4.4. **Documentation Requirements.** Submit documentation for this Item consisting of the following for Engineer approval prior to installation:

- record Global Positioning System (GPS) coordinates using NAD83 datum for all ground boxes prior to backfill. Identify location to obtain coordinates on drawing detail,
- shop drawings,
6.1. **Furnish and Install.** This price is full compensation for excavating and backfilling; constructing, furnishing and installing the ITS ground boxes and concrete aprons when required; and all labor, tools, equipment, materials, transportation, accessories, documentation, testing and incidentals.

Conduit will be paid for under Item 618, “Conduit” and Special Specification 6016, “ITS Multi-Duct Conduit.”

Electrical conductors will be paid for under Item 620, “Electrical Conductors.”

6.2. **Remove.** This price is full compensation for removing and disassembling ground boxes and concrete aprons; excavation, backfilling, and surface placement; removing old conductors; disposal of unsalvageable materials; and materials, equipment, labor, tools, and incidentals. Cleaning of conduit is subsidiary to this Item. Conduit replaced within 5 ft. of the ground box will be subsidiary to this Item.
Special Specification 6291
Mobile Retroreflectivity Data Collection for Pavement Markings

1. DESCRIPTION

Furnish mobile retroreflectivity data collection (MRDC) for pavement markings on roadways as shown in the plans or as designated by the Engineer. Conduct MRDC on dry pavement only.

2. EQUIPMENT AND PERSONNEL

2.2. Portable Retroreflectometer. Provide a portable retroreflectometer that uses 30-meter geometry meeting the requirements described in ASTM E 1710. Maintain, service, and calibrate all portable retroreflectometers according to the manufacturer’s instructions.

2.3. Operating Personnel for Mobile Retroreflectometer. Provide all personnel required to operate the mobile retroreflectometer and portable retroreflectometer. Ensure MRDC system operator has a current certification from the TTI Mobile Retroreflectometer Certification Program to conduct MRDC with the certified mobile retroreflectometer provided.

2.4. Additional Personnel. Provide any other personnel necessary to compile, evaluate, and submit MRDC.

2.5. Safety Equipment. Supply and operate all required safety equipment to perform this service.

3. MRDC DOCUMENTATION

Document all MRDC by county and roadway or as directed by the Engineer. Submit all data to the Department and to the TTI Mobile Retroreflectometer Certification Program no later than 3 working days after the day the data is collected. Submit all raw data collected in addition to all other data submitted. Provide data files in Microsoft Excel format or a format approved by the Engineer. Provide a high-quality DVD showing the markings as they are measured. The data file and video must contain the following information.

3.1. Preliminary Documentation Sample. Submit a sample data file, video, and map of MRDC data in the required format 10 working days prior to beginning any work. The format must meet specification and be approved by the Engineer before any work may begin.

3.2. Initial Documentation Review and Approval. The Department will review documentation submitted for the first day of MRDC, and if it does not meet specification requirements, will not allow further MRDC until deficiencies are corrected. The Department will inform the Contractor no later than 3 working days after submittal if the first day of MRDC does not meet specification requirements. Time charges will continue unless otherwise directed by the Engineer.

3.3. Data File. Provide data files with the following:

- date;
- district number;
- county;
3.4. Map. Provide a map in an electronic format approved by the Engineer with each MRDC submission that includes the following information:

- date;
- district number;
- county;
- color-coded 1-mi. intervals (or interval length designated by the Engineer) for passing and failing retroreflectivity values or retroreflectivity threshold values provided by the Engineer; and
- percentage of passing and failing intervals, if required by the Engineer.

3.5. Video. Provide a high-quality DVD with the following information:

- date and corresponding data file name on label;
- district number;
- county;
- route number with reference markers or other designated reference information to indicate the location of beginning and end collection points on that roadway; and
- retroreflectivity values presented on the same screen with the following information:
 - date;
 - location;
 - starting and ending mileage;
 - total miles;
 - retroreflectivity readings; and
 - upper validation thresholds (may be included separately with the raw data but must be clearly identified with the data collected using that threshold).

3.6. Field Comparison Checks with a Portable Retroreflectometer. Take a set of field comparison readings with the portable retroreflectometer at least once every 4 hours while conducting MRDC or at the frequency designated by the Engineer. Take a minimum of 20 readings, spread out over the interval measured. List the average portable retroreflectometer reading next to the mobile average reading for that interval with the reported MRDC data. Request approval from the Engineer to take field comparison readings on a separate roadway, when measuring a roadway where portable retroreflectometer readings are difficult to take.
the off-location field comparison readings at no additional cost. Submit the portable retroreflectometer printout of all the readings taken for the field comparison check with the corresponding MRDC data submitted. The mobile average reading must be within ±15% of the portable average reading. The Engineer may require new MRDC for some or all of the pavement markings measured in a 4-hour interval prior to a field comparison check not meeting the ±15% range. Provide the new MRDC at no extra cost to the Department. The Engineer may take readings with a Department portable retroreflectometer to ensure accuracy at any time. The Department’s Construction Division (CST) will take comparison readings and serve as the referee if there is a significant difference between the Engineer’s portable readings and the Contractor's mobile and handheld readings. For best results, take field comparison readings on a fairly flat and straight roadway when possible.

3.7. **Periodic Field Checks at Pre-Measured Locations.** When requested by the Engineer, measure with the mobile unit and report to the Engineer immediately after measurement the average retroreflectivity values for a designated pre-measured test location. The Engineer will have taken measurements at the test location within 10 days of the test. The test location will not include pavement markings less than 30 days old. If the measured averages do not fall within ±15% of the pre-measured averages, further calibration and comparison measurements may be required before any further MRDC. Submit the results of the field check with the MRDC report for that day.

3.8. **Measurement Notification.** Provide notification via email to Mobileretro@tamu.edu a minimum of 24 hours prior to mobile retroreflectivity data collection to allow for scheduling verification testing when needed.

3.9. **Verification Testing.** The Engineer or a third party may perform retroreflectivity verification testing within 7 days of the Contractor’s retroreflectivity readings. The Contractor-submitted retroreflectivity data will be compared to the verification test data to determine acceptability of the Contractor’s mobile retroreflectometer data. Comparison of the data will result in one of the two scenarios below:

- **Contractor’s Data is Validated** – If the difference between contractor’s and Engineer/third party data is 20% or less, then the contractor’s data is validated. The contractor’s data will be used for acceptance.

- **Contractor’s Data is not Validated** – If the difference between contractor’s and Engineer/third party data is more than 20%, then the contractor’s data is not validated. The Engineer/third party data will be used for acceptance and the contractor will be required to take corrective action prior to additional contractor data collection and may require re-certification of the mobile retroreflectometer. If the Engineer determines that the contractor’s data might be correct then, Referee Testing may be requested by the Engineer.

3.10. **Referee Testing.** CST will perform referee testing using portable retroreflectometers to determine if the markings need to be restriped to meet the required retroreflectivity level. The referee test results will be final. Referee testing will be conducted on the verification test section(s) using the method for portable retroreflectometers specified in Item 666, “Reflectorized Pavement Markings.”

4. **FINAL REPORT**

Submit a final report in the format specified by the Engineer to the Department’s Traffic Engineering representative within 1 calendar week after the service is complete. The final report must contain a list of all problems encountered (pre-approved event codes) and the locations where problems occurred during MRDC.

5. **MEASUREMENT**

When mobile retroreflectivity data collection for pavement markings is specified on the plans to be a pay item, measurement will be by the mile driven while measuring pavement markings.
6. **PAYMENT**

Unless otherwise specified on the plans, the work performed, materials furnished, equipment, labor, tools, and incidentals will not be paid for directly, but will be considered subsidiary to bid items of the Contract. When mobile retroreflectivity data collection for pavement markings is specified on the plans to be a pay item, the work performed in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit price bid for “Mobile Retroreflectivity Data Collection.” This price is full compensation for providing summaries of readings to the Engineer, equipment calibration and prequalification, equipment, labor, tools, and incidentals.
Special Specification 6304
Intelligent Transportation System (ITS) Radar Vehicle Sensing Device

1. DESCRIPTION

Furnish, install, relocate, or remove Intelligent Transportation System (ITS) radar vehicle sensing device (RVSD) system at locations shown on the plans, or as directed.

2. MATERIALS

2.1. General. Except as allowed for relocation of RVSD equipment, ensure all equipment and component parts are new and in an operable condition at time of delivery and installation. Ensure all RVSD within the project are from the same manufacturer. RVSD are further classified by the type of functions they can perform. The primary classifications are RVSD (Data Collection Only) and RVSD (Data Collection and Wrong-way alarm).

Provide RVSD field equipment that is compatible with existing infrastructure and software located in the Department's Traffic Management Centers (TMCS) across the state or as directed.

RVSD system equipment must include the following:

- Radar vehicle sensing devices
- Mounting assembly and hardware
- All cabling and connector assemblies
- Associated devices required to integrate into communication system

RVSD must be a roadside sensor, or group of sensors, that accurately provides volume, speed, occupancy, and classification data for the roadway segment where they are installed.

Ensure sensor is designed and constructed with subassemblies, circuits, cards, and modules to maximize standardization and commonality. Ensure all external parts and surfaces are designed to protect against corrosion, fungus and moisture deterioration.

Design the equipment for ease of maintenance. Provide component parts that are readily accessible for inspection and maintenance. Provide test points for checking essential voltages and waveforms.

RVSD must self-recover from power failure once power is restored.

Sensor must be provided with a mounting bracket designed to mount directly to a pole, mast-arm, or other structure. Ensure bracket is designed such that the sensor can be tilted both vertically and horizontally for alignment and then locked into place after proper alignment is achieved. All hardware must be designed to support the load of the RVSD sensor and mounting bracket.

2.2. Configuration. Each RVSD system consists of roadside sensors as shown on the plans. Ensure the RVSD system detects a minimum of eight lanes. Ensure lane width, medians, and geometry are configurable. Traffic barriers must not interfere with detection.

Ensure RVSD does not require tuning or recalibration to maintain performance once initial calibration and configuration is complete. RVSD must not require cleaning or adjustment to maintain performance.
Ensure RVSD can detect vehicles within a range of 10 to 200 feet from the sensor and can simultaneously detect vehicles in all lanes within the detection range of the radar.

2.3. **Automatic Detection.** Once installed and aligned, ensure the sensor automatically detects vehicle volume, speed, and occupancy. Ensure only minor operator input is required for setup, such as verification of lane configuration and distance from sensor. Ensure the sensor tunes out stationary objects to omit false readings.

2.4. **Data Collection.** The RVSD must automatically calibrate vehicle speed, detection level, and sensitivity. Ensure RVSD provides accurate, real-time volume, average speed, and occupancy for each lane detected.

RVSD must provide user configurable settings for collection and polling intervals. Interval configurations must include options ranging from twenty seconds to 15 minutes or more.

RVSD must be able to correctly categorize detected vehicles into a minimum of three user definable length-based classification bins.

Ensure RVSD sensor performance is not affected by environmental conditions such as shadows, glare, wind, rain, heat, or snow. Ensure speed detection is accurate without requiring vehicle length for calculations.

Ensure RVSD system includes remote connection capabilities allowing an operator to update configuration and firmware as well as download interval data. In the event of communication loss, ensure RVSD stores and transfers data upon communication restoration and subsequent request for data.

Ensure RVSD sensor provides non-volatile memory for configuration settings and for local storage. The sensor must store a minimum of 3 hours of data for all data collected over eight travel lanes at twenty-second intervals. Ensure local storage data is overwritten in a first-in first-out manner.

Ensure RVSD supports the Department’s Transportation Sensor System Protocol Document (TSS-Protocol) as detailed in the TSS Tools link on the Department’s website (http://www.txdot.gov/business/resources/engineering-software.html).

2.5. **Accuracy.** Ensure RVSD accuracy meets or exceeds the following requirements during nominal conditions:

- Sensor volume data accuracy is within 5 percent of actual per direction of travel.
- Sensor average speed data is accurate within 5 mph per direction of travel.
- Individual lane speed accuracy is within 10 mph of actual.
- Individual vehicle speed accuracy is within 5 mph for 90% of measurements.
- Vehicle classification data is accurate for 90% of detected vehicles.

2.6. **Functional Requirements for RVSD with Wrong-way Alarms.** RVSD with wrong-way alarms must be capable of detecting and reporting direction of travel for each vehicle detected as well as include all features and functions required for Data Collection RVSD.

The RVSD sensor must automatically determine if a vehicle is traveling in the opposite direction for which the lane is configured.

Ensure the RVSD can detect real-time vehicle direction of travel.

2.7. **Cabling.** Supply the RVSD with all cabling of the appropriate length for each installation site.

2.8. **Communication.** RVSD must be remote accessible and provide communication options including RS-232, RS-485 and TCP/IP.

RVSD communication through RS-232 or RS-485 must include an internal RS-232, RS-485 communication port. Each serial communication port must support the following baud rates: 9600, 19200, 38400, 57600 and
Additionally, the RS-232 port must be full-duplex and must support true Request to Send / Clear to Send (RTS/CTS) hardware handshaking for interfacing to various communication devices.

RVSD system must produce interval data packets containing all available criteria as detailed in TSS-Protocol.

2.9. Software. Ensure the RVSD manufacturer includes all software required to configure and monitor operation of RVSD field equipment locally and remotely. RVSD software must be a stable production release.

Software must allow the user to configure, operate, exercise, diagnose, and read current status of all RVSD features and functions using a laptop computer.

RVSD system computer software must be able to communicate with RVSD field devices using TCP/IP and serial connections, including cellular modem connections. The software must provide for local and remote configuration and monitoring, including a graphical user interface (GUI) that displays all configured lanes and provides visual representation of all detected vehicles.

System software must provide the user complete control over the configuration and setup process for RVSD devices and allow the user to load new firmware into non-volatile memory of RVSD field devices locally and over any supported communication channel including TCP/IP networks.

Software must include the ability to save a local copy of RVSD field device configurations, and load saved configurations to RVSD field devices.

Ensure the software allows the operator to change the baud rate via a drop-down list, add response delays for the communication ports to allow for communication stabilization, switch between data pushing and data polling, and change the RVSD’s settings for Flow Control between none and RTS/CTS. Ensure the software automatically selects the correct baud rate and serial communication port from up to 15 serial communication ports.

The software must include the ability to retrieve and store data collected by RVSD field devices.

Ensure all licenses required for operation and use of software are included at no additional cost.

Software updates must be provided at no additional cost during the warranty period.

2.10. Mechanical. Ensure that all parts are fabricated from corrosion resistant materials, such as plastic, stainless steel, aluminum, or brass.

Ensure that all screws, nuts, and locking washers are stainless steel. Do not use self-tapping screws.

Ensure equipment is clearly and permanently marked with manufacturer name or trademark and part number as well as date of manufacture or serial number.

Ensure RVSD system is modular in design for ease of field replacement and maintenance. Ensure cable connector design prohibits improper connections. Cable connector pins are plated to improve conductivity and resist corrosion. RVSD sensor dimensions must not exceed 14 in. by 11 in. by 7 in.

Ensure the RVSD housing is a weather resistant, ultraviolet (UV) resistant material. RVSD sensor must meet NEMA 250 4X requirements. Ensure all gasket and sealant materials are UV resistant and intended to be used in outdoor environment with exposure to the sun.

All printed circuit boards (PCB) must have conformal coating.

2.11. Electrical. Ensure the RVSD system operates on nominal 120 VAC. Provide a transformer with any system device that requires a nominal operating voltage other than 120 VAC. Ensure RVSD sensor operates between
12 Vdc and 28 Vdc utilizing ten watts or less. Ensure equipment is designed to protect personnel from exposure to high voltage during installation, operation, and maintenance.

2.12. **Environmental.** All RVSD system components must operate properly during and after being subjected to the environmental testing procedures described in NEMA TS2, Section 2. RVSD sensor must be able to withstand the maximum wind load defined in the Department's basic wind velocity zone map standard without any damage or loosening from structure.

2.13. **Connectors and Harnesses.** External connections exposed to the outdoor environment must be made with weatherproof connectors. Connectors must be keyed to ensure correct alignment and mating.

Ensure all conductors are properly color coded and identified. Ensure that every conductive contact surface or pin is gold-plated or made of a noncorrosive, nonrusting, conductive metal.

Ensure power and data cable connectors exposed to the elements are IP 67 compliant. Ensure all conductors that interface with the connector are encased in one jacket.

RS-485 and RS-232 communication cables must:
- be shielded, twisted pair cable with a drain wire,
- have a nominal capacitance conductor to conductor @ 1Khz ≥ 26pF/ ft.,
- have nominal conductor DC resistance @ 68°F ≤ 15 ohms/1000 ft.,
- be one continuous run with no splices, and
- be terminated only on the two farthest ends of the cable.

2.14. **Documentation.** Provide hardcopy operation and maintenance manuals, along with a copy of all product documentation on electronic media. Include the following documentation for all system devices and software:
- operator manuals,
- installation manuals with installation procedures,
- maintenance and troubleshooting procedures, and
- manufacturer’s specifications (functional, electrical, mechanical, and environmental).

Provide certification from an independent laboratory demonstrating compliance with NEMA TS2 environmental requirements for temperature, humidity, transients, vibration, and shock.

RVSD system must transmit in the 10.50 – 10.55 GHz or 24.00 – 24.25 GHz frequency band and meets the power transmission and frequency requirements of CFR 47. Ensure FCC certification is displayed on each device according to FCC rules. Provide third party test results for CFR 47, Part 15 (Section 15.245 or 15.249).

The RVSD enclosure must conform to criteria set forth in the NEMA 250 Standard for Type 4X enclosures. Provide third party enclosure test results demonstrating the sensor enclosure meets Type 4X criteria.

Ensure the RVSD system manufacturer has a quality assurance program for manufacturing RVSD as described in this specification. Manufacturer of the RVSD must be ISO 9001 certified, or provide a copy of the company quality manual for review.

The RVSD must pass testing to ensure functionality and reliability prior to delivery. These include functional tests for internal subassemblies, a 24 hr. minimum unit level burn-in test, and a unit functionality test. Test results and supporting documentation, including serial number tested, must be submitted for each RVSD. If requested, manufacturing data per serial number must be provided for each RVSD.

2.15. **Warranty.** Warrant the equipment against defects or failure in design, materials, and workmanship for a minimum of 5 yr. or in accordance with the manufacturer’s standard warranty if that warranty period is greater. The start date of the manufacturer's standard warranty will begin after the equipment has successfully passed all tests contained in the final acceptance test plan. Any equipment with less than 90%
of its warranty remaining after the final acceptance test is completed will not be accepted by the Department. Guarantee that equipment furnished and installed for this project performs according to the manufacturer’s published specifications. Assign, to the Department, all manufacturer’s normal warranties or guarantees on all electronic, electrical, and mechanical equipment, materials, technical data, and products furnished for and installed on the project.

Malfunctioning equipment must be repaired or replaced at the Contractor’s expense prior to completion of the final acceptance test plan. Furnish replacement parts for all equipment within 10 days of notification of failure by the Department.

During the warranty period, technical support must be available via telephone within 4 hr. of the time a call is made by a user, and this support must be available from factory certified personnel.

2.16. **Training.** Conduct a training class for a minimum of 8 hr., unless otherwise directed, for up to 10 representatives designated by the Department on installation, configuration, operation, testing, maintenance, troubleshooting, and repair. Submit a training session agenda, a complete set of training material, the names and qualifications of proposed instructors, and proposed training location for approval at least 30 days before the training. Conduct training within the local area unless otherwise directed. Provide 1 copy of course material for each attendee. Ensure that training includes:

- “Hands-on” operation of system software and equipment;
- explanation of all system commands, their function and usage; and
- system “troubleshooting,” operation, and maintenance.

3. **CONSTRUCTION**

3.1. **System Installation.** Install RVSD system devices according to the manufacturer’s recommendations to achieve the specified accuracy and reliability. Completion of the work must present a neat, workmanlike, and finished appearance.

If the RVSD is to be mounted near large planar surfaces (sound barrier, building, parked vehicles, etc.), verify the final placement meets manufacturer recommendations for installation and clearance.

Ensure installation and configuration of software on Department computers is included with the RVSD system.

3.2. **Mechanical Components.** Ensure that all fasteners, including bolts, nuts, and washers with a diameter less than 5/8 in. are Type 316 or 304 stainless steel and meet the requirements of ASTM F593 and ASTM F594 for corrosion resistance. Ensure that all bolts and nuts 5/8 in. and over in diameter are galvanized and meet the requirements of ASTM A307. Separate dissimilar metals with an inert dielectric material.

3.3. **Wiring.** All wiring and electrical work supplying the equipment must meet the requirements of the most current version of the National Electrical Code (NEC). Supply and install all wiring necessary to interconnect RVSD sensors to the field cabinet and incidentals necessary to complete the work. If additional cables are required, the Contractor must furnish and install them at no additional cost to the Department. Provide conductors at least the minimum size indicated on the plans and insulated for 600 V.

Cables must be cut to proper length prior to assembly. Provide cable slack for ease of removal and replacement. All cable slack must be neatly laced with lacing or straps in the bottom of the cabinet. Ensure cables are secured with clamps and include service loops.

3.4. **Electrical Service.** The Contractor is responsible for checking the local electrical service to determine if a modification is needed for the equipment.
3.5. **Grounding.** Ensure all RVSD system devices, cabinets, and supports are grounded in accordance with the NEC and manufacturer recommendations.

3.6. **Relocation of RVSD Field Equipment.** Perform the relocation in strict conformance with the requirements herein and as shown on the plans. Completion of the work must present a neat, workmanlike, and finished appearance. Maintain safe construction practices during relocation.

Inspect the existing RVSD field equipment with a representative from the Department and document any evidence of damage prior to removal. Conduct testing in accordance with 4.9. Remove and deliver equipment that fails inspection to the Department.

Prior to removal of existing RVSD field equipment, disconnect and isolate the power cables from the electric power supply and disconnect all communication cabling from the equipment located inside the cabinet. Coil and store power and communication cabling inside the cabinet until such time that it can be relocated. Remove existing RVSD field equipment as shown on the plans only at such time as authorized by the Engineer.

Use care to prevent damage to any support structures. Any equipment or structure damaged or lost must be replaced by the Contractor (with items approved by the Engineer) at no cost to the Department.

Make all arrangements for connection to power and communications including any permits required for the work to be done under the Contract. Provide wire for the power connection at least the minimum size indicated on the plans and insulated for 600 V.

3.7. **Removal of RVSD Field Equipment.** Perform the removal in strict conformance with the requirements herein and as shown on the plans. Completion of the work must present a neat, workmanlike, and finished appearance. Maintain safe construction practices during removal.

Inspect the existing RVSD field equipment with a representative from the Department and document any evidence of damage prior to removal. Conduct testing in accordance with 4.9.

Disconnect and isolate any existing electrical power supply prior to removal of existing field equipment.

Use care to prevent damage to any support structures. Any equipment or structure damaged or lost must be replaced by the Contractor (with items approved by the Engineer) at no cost to the Department.

All materials not designated for reuse or retention by the Department will become the property of the Contractor and be removed from the project site at the Contractor’s expense. Deliver items to be retained by the Department to a location shown on the plans or general notes. The Contractor is fully responsible for any removed equipment until released by the Engineer.

3.8. **Contractor Experience Requirements.** Contractor or designated subcontractor must meet the following experience requirements:

3.8.1. **Minimum Experience.** Three years of continuous existence offering services in the installation of RVSD systems. Experience must include freeway and arterial management, forward fire and side fire applications, single zone and dual beam detection, and equipment setup, testing, and troubleshooting.

3.8.2. **Completed Projects.** Three completed projects where personnel installed, tested and integrated RVSD field equipment. The completed installations must have been in continuous satisfactory operation for a minimum of 1 yr.

3.8.3. **Equipment Experience.** One project (may be 1 of the 3 projects in the preceding paragraph) in which the personnel worked in cooperation with technical representatives of the equipment supplier to perform installation, integration, or acceptance testing of the work. The Contractor will not be required to furnish equipment on this project from the same supplier who was referenced in the qualification documentation.
Submit the names, addresses and telephone numbers of the references that can be contacted to verify the experience requirements given above.

4. TESTING

Ensure that the following tests are performed on equipment and systems unless otherwise shown on the plans. The Department may witness all the tests.

4.1. Test Procedures Documentation. Provide an electronic copy of the test procedures and blank data forms 60 days prior to testing for each test required on this project. Include the sequence of the tests in the procedures. The Engineer will approve test procedures prior to submission of equipment for tests. Conduct all tests in accordance with the approved test procedures.

Record test data on the data forms, as well as quantitative results. Ensure the data forms are signed by an authorized representative (company official) of the equipment manufacturer.

4.2. Design Approval Test. Ensure that the RVSD has successfully completed a Design Approval Test that confirms compliance with the environmental requirements of this specification.

Provide a certification and test report from an independent testing laboratory as evidence of a successfully completed Design Approval Test. Ensure that the testing by this laboratory is performed in accordance with the requirements of this specification.

4.3. Demonstration Test. Conduct a Demonstration Test on applicable equipment at an approved Contractor facility. Notify the Engineer 10 working days before conducting this testing. Perform the following tests:

4.3.1. Examination of Product. Examine each unit carefully to verify that the materials, design, construction, markings and workmanship comply with the requirements of this specification.

4.3.2. Continuity Tests. Check the wiring to determine conformance with the requirements of this specification.

4.3.3. Operational Test. Operate each unit for at least 15 min. to permit equipment temperature stabilization and observation of a sufficient number of performance characteristics to ensure compliance with this specification.

4.4. Stand-Alone Test. Conduct a Stand-Alone Test for each unit after installation. The test must exercise all stand-alone (non-network) functional operations. Notify the Engineer 5 working days before conducting this test.

4.4.1. Performance Test. Ensure the RVSD meets functional performance requirements of Section 2.5 by using the following test methods:

Verify volume and classification accuracy by performing a manual count on each lane of detection. Volume and classification data reported by the sensor must meet the volume and classification data accuracy requirements in Section 2.5 when compared with data collected manually.

Verify speed accuracy by comparing sensor speed data to speeds data collected with a laser speed gun, radar speed gun, or by video speed trap using frame rate as a time reference. Vehicle speeds must be collected and averaged over a minimum of 10 vehicles. Speed data must meet the speed data accuracy requirements in Section 2.5 when compared to average speeds collected using laser, radar, or video.

Verify wrong-way detection accuracy by reversing the configured direction of travel for at least one travel lane. Verify vehicles detected in a reversed lane are classified as wrong-way vehicles and properly counted. Volume reported for vehicles classified as wrong-way must meet the volume data accuracy requirement in Section 2.5.
4.5. **System Integration Test.** Conduct a System Integration Test on the complete functional system. Demonstrate all control and monitor functions for each system component for 72 hr. Supply 2 copies of the System Operations manual before the System Integration Test. Notify the Engineer 10 working days before conducting this testing.

4.6. **Consequences of Test Failure.** If a unit fails a test, submit a report describing the nature of the failure and the actions taken to remedy the situation prior to modification or replacement of the unit. If a unit requires modification, correct the fault and then repeat the test until successfully completed. Correct minor discrepancies within 30 days of written notice to the Engineer. If a unit requires replacement, provide a new unit and then repeat the test until successfully completed. Major discrepancies that will substantially delay receipt and acceptance of the unit will be sufficient cause for rejection of the unit.

If a failure pattern develops in similar units within the system, implement corrective measures, including modification or replacement of units, to all similar units within the system as directed. Perform the corrective measures without additional cost or extension of the Contract period.

4.7. **Final Acceptance Test.** Conduct a Final Acceptance Test on the complete functional system. Demonstrate all control, monitoring, and communication requirements and operate the system for 90 days. The Engineer will furnish a Letter of Approval stating the first day of the Final Acceptance Test. The completion of the Final Acceptance Test occurs when system downtime due to mechanical, electrical, or other malfunctions to equipment furnished or installed does not exceed 72 hr. and any individual points of failure identified during the test period have operated free of defects.

4.8. **Consequences of Final Acceptance Test Failure.** If a defect within the system is detected during the Final Acceptance Test, document and correct the source of failure. Once corrective measures are taken, monitor the point of failure until a consecutive 30 day period free of defects is achieved.

If after completion of the initial test period, the system downtime exceeds 72 hr. or individual points of failure have not operated for 30 consecutive days free of defects, extend the test period by an amount of time equal to the greater of the downtime in excess of 72 hr. or the number of days required to complete the performance requirement of the individual point of failure.

4.9. **Relocation and Removal**

4.9.1. **Pre-Test.** Tests may include, but are not limited to, physical inspection of the unit and cable assemblies. Include the sequence of the tests in the procedures along with acceptance thresholds. Contractor to resubmit, if necessary, rejected test procedures for final approval within 10 days. Review time is calendar days. Conduct all tests in accordance with the approved test procedures.

Conduct basic functionality testing prior to removal of RVSD field equipment. Test all functional operations of the equipment in the presence of representatives of the Contractor and the Department. Ensure that both representatives sign the test report indicating that the equipment has passed or failed each function. Once removed, the equipment becomes the responsibility of the Contractor until accepted by the Department. Compare test data prior to removal and after installation. The performance test results after relocation must be equal to or better than the test results prior to removal. Repair or replace those components within the system that failed after relocation but passed prior to removal.

4.9.2. **Post-Test.** Testing of the RVSD field equipment is to relieve the Contractor of system maintenance. The Contractor will be relieved of the responsibility for system maintenance in accordance with Item 7, “Legal Relations and Responsibilities” after a successful test period. The Contractor will not be required to pay for electrical energy consumed by the system.

After all existing RVSD field equipment has been installed, conduct approved continuity, stand alone, and performance tests. Furnish test data forms containing the sequence of tests including all the data taken as well as quantitative results for all tests. Submit the test data forms to the Engineer at least 30 days prior to the day the tests are to begin. Obtain Engineer's approval of test procedures prior to submission of equipment for tests. Send at least 1 copy of the data forms to the Engineer.
Conduct an approved stand-alone test of the equipment installation at the field sites. At a minimum, exercise all stand-alone (non-network) functional operations of the field equipment installed per the plans as directed by the Engineer. Complete the approved data forms with test results and turn over to the Engineer for review and either acceptance or rejection of equipment. Give at least 30 working days notice prior to all tests to permit the Engineer or his representative to observe each test.

The Department will conduct approved RVSD field equipment system tests on the field equipment with the central equipment. The tests will, as a minimum, exercise remote control functions and confirm communication with field equipment.

If any unit fails to pass a test, prepare and deliver a report to the Engineer. Describe the nature of the failure and the corrective action needed. If the failure is the result of improper installation or damage during reinstallation, reinstall or replace the unit and repeat the test until the unit passes successfully, at no additional cost to the Department or extension of the Contract period.

5. MEASUREMENT

RVSD for data collection only will be measured by each unit furnished and installed, installed, relocated or removed. RVSD for data collection and wrong-way alarm will be measured by each system furnished and installed, installed, relocated or removed.

6. PAYMENT

6.1. Furnish and Install. The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit bid price for “ITS RVSD (Data Collection Only) System” and “ITS RVSD (Data Collection and Wrong-way alarm) System.” This price is full compensation for furnishing, installing, configuring, integrating, and testing the completed installation including RVSD equipment, voltage converters or injectors, cables, connectors, associated equipment, and mounting hardware; and for all labor, tools, equipment, any required equipment modifications for electrical service, documentation, testing, training, software, warranty and incidentals necessary to complete the work.

6.2. Install Only. The work performed and materials furnished in accordance with this Item will be paid for at the unit bid price for “ITS RVSD (Data Collection Only) (Install Only)” and “ITS RVSD (Data Collection and Wrong-way alarm) (Install Only).” This price is full compensation for installing, configuring, integrating, and testing the completed installation including RVSD equipment, voltage converters or injectors, cables, connectors, associated equipment, and mounting hardware; and for all labor, tools, equipment, any required equipment modifications for electrical service, documentation, testing, training, software, and incidentals necessary to complete the work.

6.3. Relocate. The work performed and materials furnished in accordance with this Item will be paid for at the unit bid price for “ITS RVSD (Data Collection Only) (Relocate)” and “ITS RVSD (Data Collection and Wrong-way alarm) (Relocate).” This price is full compensation for relocating and making fully operational existing RVSD field equipment; furnishing and installing additional cables or connectors; for testing, delivery and storage of components designated for salvage or reuse; and all testing, training, software, equipment, any required equipment modifications for electrical service, labor, materials, tools, and incidentals necessary to complete the work.

6.4. Remove. The work performed and materials furnished in accordance with this Item will be paid for at the unit bid price for “ITS RVSD (Data Collection Only) (Remove)” and “ITS RVSD (Data Collection and Wrong-way alarm) (Remove).” This price is full compensation for removing existing RVSD equipment; removal of cables and connectors; for testing, delivery and storage of components designated for salvage; and all testing, training, software, equipment, labor, materials, tools, and incidentals necessary to complete the work.
Special Specification 7017
Sanitary Sewers

1. DESCRIPTION

Furnish labor, materials, and equipment necessary to provide a complete sanitary sewer system in accordance and compliance with ANSI, AWWA, ASTM, ASA, SSPC, ACI, and NSF standards, the plans and specifications, and in compliance with the Department’s Utility Accommodation Policy (Title 43. T.A.C., Sections 21.31-21.55).

The abbreviations ANSI, AWWA, ASTM, ASA, SSPC, ACI, and NSF in this specification refer to the following organizations:

- **ANSI** American National Standards Institute
- **AWWA** American Water Works Association
- **ASTM** American Society for Testing and Materials
- **ASA** American Standards Association
- **SSPC** Steel Structures Painting Council
- **ACI** American Concrete Institute
- **NSF** National Sanitation Foundation

When referring to the specifications of the above organizations, it means the latest standard or tentative standard in effect on the date of the proposal.

The size and location of utility lines shown on the plans were obtained from field surveys and from the various utility companies. The Department does not assume responsibility for the accuracy of the information presented, nor does it warrant that every utility line is shown.

2. MATERIALS

Furnish new and unused materials for this project unless otherwise specified on the plans. Provide a manufacturer’s certificate of compliance for quality control of materials unless otherwise shown on the plans, except for the inspection requirements of Item 464, “Reinforced Concrete Pipe.”

2.1 Circular Concrete Pipe. Provide circular concrete pipe 36 in. in diameter and greater conforming to the class specified on the plans and in accordance with Item 464, “Reinforced Concrete Pipe.” Circular concrete pipe less than 36 in. in diameter is not allowed. Furnish polyvinyl chloride (PVC)-lined concrete pipe interiors for corrosion protection. See Section 2.9., “Plastic Liner for Concrete Pipes,” of this specification.

Upon delivery to the trenches, the pipe and specials will be inspected for transportation and handling damages incurred after acceptance at the source of manufacture. Repair the pipe if necessary. If, in the opinion of the Engineer, the repairs are sound, properly finished and cured, and the repaired pipe conforms to the requirements of these specifications, it will be acceptable.

Unless otherwise specified on the plans, for concrete pipe, use corrosion-resistant rubber gasket joints of the “push on” type, and that meet the requirements of ASTM C443.

2.2. Polyvinyl Chloride (PVC) Pipe and Fittings.
For PVC pipe, use steel casing meeting the requirements of Section 2.8, “Steel Casing Pipe,” of this specification.

Use lubricant for assembly that has no detrimental effects to the gasket or pipe and is of the type recommended by the pipe manufacturer.

Furnish a manufacturer’s certification that the pipe and fittings being furnished on the project meet the requirements of this specification. Ensure written approval from the Engineer in charge accompanies this certification to the project site, before installing the pipe and fittings.

Provide pipe and fittings that are free from defects which, in the judgment of the Engineer, would hinder their ability to function as planned.

2.2.1 Gravity Sewer. Provide plastic pipe and fittings meeting the requirements of ASTM D3034 SDR35, D2241 or D3034 SDR26, F679 SDR35, or F794.4 steel Carrier Pipe.

2.2.2 Force Mains. Provide PVC pipe for force mains meeting or exceeding the requirements of AWWA C-900/905. Use ductile-iron (Class 52) fittings for force main pipes.

2.2.3 Water Main Crossings. If constructing gravity or force main sewers in the vicinity of water mains, meet the requirements of the “Rules and Regulations for Public Water Systems” adopted in 1992 by the Texas Water Commission (now the Texas Commission on Environmental Quality).

2.3 Ductile-Iron Pipe and Fittings. Provide ductile-iron pipe that meets the requirements of ANSI A21.51 (AWWA C151) Class 53. Unless otherwise specified on the plans, determine the pipe thickness based on the depth of cover and an internal pressure of 150 psi. Furnish pipe in nominal 18 ft. or 20 ft. lengths.

Provide fittings for use with ductile-iron pipe that meet the requirements of ANSI Standard A21.10 (AWWA C110). Design the fittings for a minimum working pressure of 150 psi.

Provide joints for ductile-iron pipe of the type in accordance with the requirements of ANSI Standard A21.11 (AWWA C151) for push on or ANSI A21.15 for flanged end.

2.5 Sanitary Sewer and Force Main Interiors

2.5.1 Preparation. Provide commercial blast cleaning conforming to SSPC-SP6.

2.5.2 Liner Thickness. Provide a nominal liner thickness of 40 mils for the pipe barrel interior and a minimum of 6 to 10 mils at the gasket groove and outside spigot end to 6 in. back from the end.

2.5.3 Testing. Perform testing in accordance with ASTM G 62, Method B for voids and holidays. Provide written certification.

2.5.4 Acceptable Lining Materials. Provide approved virgin polyethylene conforming to ASTM D 1248, with inert fillers and carbon black to resist ultraviolet degradation during storage, heat bonded to the interior surface of pipe and fittings.

2.5.4.1 Ceramic Epoxy Protection. For the exterior of sanitary sewers, furnish a prime coat and outside asphaltic coating conforming to ANSI A21.10, ANSI A21.15, or ANSI A21.51 for pipe and fittings in open cut excavation and in casings.
2.6 **Gaskets.** Furnish, when no contaminant is identified, plain rubber (SBR) gasket material in accordance with ANSI A21.11 or ASTM F 477 (one bolt only). For flanged joints, furnish a 1/8-in.-thick gasket in accordance with ANSI A 21.15.

2.7 **Fiberglass Pipe and Fittings.** Provide centrifugally cast fiberglass pipe in accordance with the requirements of ASTM D3262 and ASTM D3681. Ensure the actual outside diameter of the pipe is in accordance with Table 3 of ASTM D3754. The standard pipe length is approximately 20 ft. A maximum of 10% of the lengths, excluding special order pipes, may be supplied in random lengths.

Ensure the manufacturer uses only polyester resin systems with a proven history of performance in this particular application. Use only the historical data collected from applications of a composite material of similar construction and composition as the proposed product.

For the reinforcing glass fibers used to manufacture the components, use the highest quality commercial grade glass filaments with binder and sizing compatible with impregnating resins.

Silica sand or other suitable materials may be used for fillers.

If resin additives, such as pigments, dyes, and other coloring agents are used, ensure they are not detrimental to the performance of the pipe and they do not impair visual inspection of the finished product.

Provide gaskets supplied by approved gasket manufacturers, in accordance with ASTM 477, and that are suitable for the service intended.

Provide flanges, elbows, reducers, tees, and other fittings capable of withstanding operating conditions when installed. They may be contact-molded or manufactured from metered sections of pipe joined by glass fiber reinforced overlays.

Use a stiffness class of centrifugally cast fiberglass pipe that satisfies design requirements under ASTM D3262, but that is not less than 46 psi when used in direct-bury operation or 36 psi when installed in a tunnel liner.

Provide centrifugally cast fiberglass pipe with an internal liner resin suitable for service as sewer pipe and that is highly resistant to exposure to sulfuric acid in accordance with ASTM D3681.

Supply pipe manufactured by the centrifugal casting process. An acceptable manufacturer is Hobas Pipe, USA, Inc. or approved equal.

Provide a manufacturer’s certification that the pipe and fittings furnished on the project meet the requirements of this specification. Written approval from the Engineer in charge must accompany this certification to the project site, before installing the pipe and fittings.

Furnish pipe and fittings that are free from defects which, in the judgment of the Engineer, would hinder their ability to function as planned.

2.8 **Steel Casing Pipe.** Provide minimum wall thicknesses in accordance with those shown in Table 1 for HS-20 live loads and depths of bury of up to 16 ft.

Supply the pipe in double random lengths, of at least 16 ft. and at most 40 ft., unless otherwise shown on the plans. Bevel the ends of the pipe for field butt welding. Provide welder qualification in accordance with AWWA C206.
Table 1
Casing Pipe

<table>
<thead>
<tr>
<th>Casing Pipe Size (in.)</th>
<th>Outside Diameter (in.)</th>
<th>Min. Wall Thickness (in.)</th>
<th>Approx. Weight Uncoated (lb./ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6.625</td>
<td>0.219</td>
<td>14.97</td>
</tr>
<tr>
<td>8</td>
<td>8.625</td>
<td>0.219</td>
<td>19.64</td>
</tr>
<tr>
<td>10</td>
<td>10.750</td>
<td>0.219</td>
<td>24.60</td>
</tr>
<tr>
<td>12</td>
<td>12.750</td>
<td>0.219</td>
<td>29.28</td>
</tr>
<tr>
<td>14</td>
<td>14.000</td>
<td>0.219</td>
<td>32.00</td>
</tr>
<tr>
<td>16</td>
<td>16.000</td>
<td>0.219</td>
<td>36.86</td>
</tr>
<tr>
<td>20</td>
<td>20.000</td>
<td>0.250</td>
<td>52.73</td>
</tr>
<tr>
<td>24</td>
<td>24.000</td>
<td>0.250</td>
<td>63.41</td>
</tr>
<tr>
<td>30</td>
<td>30.000</td>
<td>0.250</td>
<td>79.43</td>
</tr>
<tr>
<td>36</td>
<td>36.000</td>
<td>0.250</td>
<td>95.45</td>
</tr>
<tr>
<td>42</td>
<td>42.000</td>
<td>0.250</td>
<td>111.50</td>
</tr>
</tbody>
</table>

Note: It is the design Engineer’s responsibility to review the design for conditions more extreme than those indicated by this specification and to design accordingly. Do not use a thickness of the pipe wall less than that defined in Table 1.

Furnish steel casing pipe coated with coal-tar enamel externally and with polyamide epoxy internally.

2.9 Plastic Liner for Concrete Pipes. Furnish plastic liner sheets, joint, corner, and weld strips, manufactured from a high molecular weight thermoplastic polymer compounded to make a permanently flexible material suitable for use as a protective liner in pipe or other structures. Ensure polyvinyl chloride resin constitutes a minimum of 99% by weight of the resin used in the formulation. Co-polymer resins are not permitted.

Any time during the manufacture or before the final acceptance of the work, the Engineer may sample specimens taken from sheets, strips, or welded joints for testing.

Changes in formulation will be permitted only after notifying the Engineer and after the manufacturer demonstrates that the new plastic liner meets or exceeds requirements for chemical resistance and physical properties.

Furnish the plastic liner as manufactured by Ameron T-Lok, Poly-Tee, Inc., or approved equal.

Provide plastic liner sheets including locking extensions, joints, corners, and welding strips, which are free of cracks, cleavages, or other defects adversely affecting the protective characteristics of the material.

Except at shop welds, ensure plastic liner sheets, joint, corner, and weld strips have the properties shown in Table 2 when tested at 77°F ± 5°F.

Table 2
Chemical Resistance Test

<table>
<thead>
<tr>
<th>Property</th>
<th>Initial Result</th>
<th>After Exposure for 112 Days in Chemical Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength, Min.</td>
<td>2200 psi</td>
<td>2100 psi</td>
</tr>
<tr>
<td>Elongation at Break, Min.</td>
<td>200%</td>
<td>200%</td>
</tr>
<tr>
<td>Shore Diameter, Type D</td>
<td>Within 1 sec. 50-60</td>
<td>±5 (With respect to initial test result)</td>
</tr>
<tr>
<td></td>
<td>10 sec. 35-50</td>
<td>±5</td>
</tr>
<tr>
<td>Weight Change</td>
<td>--</td>
<td>±1.5%</td>
</tr>
</tbody>
</table>

2.10 Liner for Ductile-Iron Pipe. Furnish pipe internally lined with ceramic epoxy Protecto 401 or virgin polyethylene in accordance with the requirements of ASTM D1248, compounded with inert fillers and carbon black to resist ultraviolet light degradation during storage.

Heat-bond the liner to the interior of the pipe and fittings over a blast cleaned surface as recommended by the manufacturer or SSPC-SP6.
Provide a nominal liner thickness of 40 to 50 mils with a minimum thickness of 35 mils and covering surfaces exposed to sanitary sewage.

Test for voids and holidays in accordance with ASTM G62, Method B and provide a manufacturer’s certification.

Furnish Polyline liner pipe manufactured by U.S. Pipe and Foundry Company, Polybond by American Cast Iron Pipe Company, or an approved equal.

Apply a polyamide epoxy prime coat to the exterior and ensure the outside asphaltic coating is in accordance with ANSI A21.10, ANSI A21.15, ANSI A21.51, or AWWA C-218 for pipe and fittings in open cut excavation and in casings.

Use a polyurethane coating for the exterior conforming to the requirements of the approved manufacturer, CORROPIPE II – TX, Madison Chemical Industries, Inc., for polyurethane coatings on steel or ductile-iron pipe.

2.11 Polyethylene Film Wrap.

2.11.1 General. Except where noted on the plans, use polyethylene film or tape as a wrap to protect ductile-iron pipe and fittings only in open ditch placements. Use polyethylene film conforming to the requirements of this specification.

2.11.2 Film. For polyethylene film, use virgin polyethylene in accordance with ASTM D1248 and AWWA C105, Type I, Class C, Category 5, Grade E-5, 2.5 to 3.0% carbon black content. Unless otherwise specified on the plans, use film 8 mils thick and with a tensile strength of 1200 to 2500 psi with elongation up to 600%. Also, ensure the dielectric strength is 800 volts per mil of thickness. Furnish the film in either in tubular form or in sheet form. Furnish film supplied in tubular form in the minimum widths shown in Table 3.

<table>
<thead>
<tr>
<th>Nominal Pipe Size (in.)</th>
<th>Push-On Joint Flat Tube Width (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>24</td>
<td>54</td>
</tr>
</tbody>
</table>

Furnish film supplied in sheet form in a width equal to twice that shown for tube widths.

2.11.3 Polyethylene Tape. For the tape used to tape film edges and overlaps, use a 3-in. wide plastic backed adhesive tape. Use Paleocene No. 900, Scotch Wrap No. 50, or approved equal.

2.12 Concrete. Unless otherwise shown on the plans, for concrete other than materials for pipe, use Class “A” concrete in accordance with the materials requirements of Item 420, “Concrete Substructures,” and Item 421, “Hydraulic Cement Concrete.”

2.13 Cement Stabilized Sand. Use cement stabilized sand backfill containing a minimum of 7% cement, per cubic yard of material, based on the dry weight of the aggregate in accordance with Test Method TEX-120-E, of material as placed. The materials consist of aggregate, hydraulic cement, and water. Use cement and water in accordance with the materials requirements of Item 421, “Hydraulic Cement Concrete.”
sand, free from deleterious matter, with a maximum Plasticity Index of 6 when tested by Test Method TEX-106-E.

2.14 **Backfill and Bedding Materials.** Unless otherwise specified on the plans, furnish sand for bedding of the sanitary sewer that is free from clay lumps, organic material, and other deleterious substances. Use sand that, when tested in accordance with Test Method TEX-106-E, has a maximum Plasticity Index of 7, a maximum Liquid Limit of 25, and for which a maximum of 40% passes the No. 200 sieve.

Use earth or native soil backfill consisting of soil containing no deleterious material such as trash, wood fragments, organics, or other objectionable material. Furnish the material from either the material removed from the excavation or offsite sources. The material may consist of soil classified by the Unified Soil Classification System (USCS) as CH, CL, SC, SP, SM, SW, or GC. Use earth backfill meeting the compaction requirements of this specification and which does not cause any settlement.

2.15 **Manholes.** Use materials for manholes in accordance with the materials requirements of Item 465, “Junction Boxes, Manholes and Inlets” and as shown on the plans, except that brick is not allowed. Use fiberglass manholes if shown on the plans.

If specified, furnish prefabricated fiberglass manholes conforming to the shape, size, dimension, and details shown on the plans. Unless otherwise shown on the plans, use manhole sections in accordance with ASTM D3753. Acceptable manufacturers: fiberglass manholes manufactured by Containment Solutions Inc., L.F. Manufacturing, Inc., or an approved equal.

Stencil the date of manufacture and name or trademark of the manufacturer in 1-in. high letters on the inside of the barrel.

Unless a larger size is specified, use a 48-in. diameter barrel for fiberglass manholes. Construct wall sections of the appropriate thickness for the depth of manhole as specified in ASTM D3753, but not less than 0.48 in. thick.

Provide a fabricated reducer, bonded at the factory to form a single continuous unit at the top of the manhole barrel to accept concrete grade rings and cast-iron frame and cover. For the reducer, use an acceptable design with enough strength to safely support HS-20 loading.

For the manhole base, use a minimum 12-in. (under the invert) precast concrete base. For precast manhole bases, use an approved steel reinforced design with enough strength to withstand the imposed loads. Include an acceptable joint in the base to receive a fiberglass pipe section forming the barrel of the manhole. Coat precast concrete base sections with Thane Coat TC300 or approved equal, as recommended by the manufacturer.

2.16 **Rings and Covers.** Use materials for rings and covers in accordance with the material requirements of Item 471, “Frames, Grates, Rings, and Covers.” Use covers and rings conforming to the shapes and dimensions shown on the plans and marked with the wording and logos shown on the plans.

2.17 **Reinforcing Steel.** Furnish and place reinforcing steel in accordance with the material requirements of Item 440, “Reinforcement for Concrete.”

2.18 **Mortar.** Furnish mortar composed of one part cement, two parts finely graded clean sand, and enough water to make the mixture plastic. When required by the Engineer, add a latex adhesive to the mortar. Use latex adhesive in accordance with the requirements of Departmental Material Specifications DMS-8110. Hydrated lime ASTM C207, Type S or lime putty may be added to the mix up to a maximum of 10% by weight of the total dry mix.

2.19 **Adjusting Manholes.** Furnish materials for adjusting manholes in accordance with the materials requirements of Item 479, “Adjusting Manholes and Inlets,” and as shown on the plans.
2.20 **Nonmetallic Pipe Detection.** If installing nonmetallic pipe longitudinally underground, a method of detecting the location of the nonmetallic pipe is required. The specific method used is shown on the plans or as approved. This system may involve installing some components in the trench around the pipe which are detectable by a metal detector. Alternatively, the system may involve some locating equipment capable of creating a non-destructive pressure wave which can be detected above ground using a portable detection device with both audible and visual indicators. Ensure either system of detection is capable of accurately locating to a maximum depth of 3 ft. over the areas shown on the plans.

Ensure the selected system is capable of locating lines under earth, concrete, and asphalt surfaces. Use equipment, materials, and installation as specified by the manufacturer.

2.21 **Air Release and Vacuum Relief Valves.** Provide combination air valves designed to fulfill the functions of air release, permitting escape of air accumulated in the line at high points of elevation while the line is under pressure and vacuum relief. Paint the valve exterior with an epoxy shop-applied primer.

2.21.1 **Air Release Valves.** Provide air release valves in combination with inlet, outlet connections, and orifice as specified on the plans. For valve materials, use: ASTM 48, Class 30, cast iron; float and leverage mechanism with body and cover, ASTM A 240 or ASTM A 276 stainless steel; orifice and seat, stainless steel against Buna-N or Viton mechanically retained with hex head nut and bolt. For other valve internals, use stainless steel or bronze.

2.21.2 **Air Release and Vacuum Valves.** Provide single-body standard combination or duplex-body custom combination valves as shown on the plans.

2.21.2.1 **2-in. and 3-in. Single-Body Valves.** Provide inlet and outlet sizes as shown on the plans and an orifice sized for a 100 psi working pressure. Valve materials: for the body, cover, and baffle, use ASTM A48, Class 35, or ASTM A126, Grade B cast iron; for the plug or poppet, use ASTM A276 stainless steel; for the float, use ASTM A240 stainless steel; for the seat, use Buna-N; and for other valve internals, use stainless steel.

2.21.2.2 **3-in. and Larger Duplex-Body Valves.** Provide air release valves as shown on the plans. Valve materials: for the body and cover, use ASTM A48, Class 35, cast iron; for the float, use ASTM A240 stainless steel; for the seat, use Type-304, stainless steel and Buna-N; and for other valve internals, use stainless steel or bronze. Construct air release valves as specified in Section 2.21.1, “Air Release Valves.”

2.21.3 **Vacuum Release Valves.** Provide air inlet vacuum relief valves with flanged inlets and outlet connections as shown on the plans. Valve materials: for the valve body, use ASTM B 584 bronze, copper alloy 836; for the spring, use ASTM A 313, Type 304, stainless steel; for the bushing, use ASTM B 584 bronze, copper alloy 932; for the retaining screw, use ASTM A 276, Type 304, stainless steel. Set the valves to open under a pressure differential of 0.25 psi (maximum).

3. **CONSTRUCTION**

3.1 **Excavating and Backfilling.** Excavate and backfill as required to complete the work as outlined in this specification, in accordance with construction requirements of Item 400, “Excavation and Backfill for Structures,” and as shown on the plans.

Construct sewer lines in open cut trenches with vertical sides, except in those locations where the pipe is to be jacked, bored, tunneled, or augered. Construct the trench in accordance with the dimensions shown in the Excavation and Backfill Diagram.

Sheath and brace trenches to the extent necessary to maintain the sides of the trench in a vertical position throughout the construction period. Protect excavation greater than 5 ft. in depth as required in accordance with Item 402, “Trench Excavation Protection” or Item 403, “Temporary Special Shoring.”

Always open and excavate the trench to the finished grade for a minimum distance of 50 ft. in advance of the previously placed joint of pipe. To allow for possible adjustment of alignment and grade, positively locate
existing sewer lines which will connect to the sewer under construction, well in advance of making those connections.

Construct sanitary sewers in dry trenches. Perform additional work as necessary, such as dewatering or well-pointing, placing additional sheathing, or placing a concrete seal in the bottom of the trench, to accomplish this objective. This work, if necessary, is subsidiary to the pertinent bid items.

If it is necessary to excavate trenches adjacent to improved property, take precautions necessary to prevent damaging or impairing that property. If it is necessary to disturb grass, shrubs, driveways, etc., restore such improvements to their original condition.

3.1.1 Existing Streets. Unless otherwise shown on the plans, open cut existing streets.

If sanitary sewer construction requires cutting through existing streets outside the limits of new street construction, replace them in kind in conformance with the pertinent specifications in the proposal and as directed.

Cut-back the existing pavement a minimum of 1 ft. on each side of the sanitary sewer trench before replacing concrete and asphalt paving. Additional trench width may be required for unstable conditions. If this repaired area is to remain after final construction, then the repair area is to be full lane width from expansion joint to expansion joint for concrete pavement or the length of the repair for asphalt pavement.

If, in the opinion of the Engineer, a single lane closure is insufficient to maintain traffic across a trench, construct temporary access as necessary to safely maintain the traffic flow.

If the proposed sanitary sewer parallels the edge of an existing permanent pavement (i.e., concrete pavement, concrete base with asphalt surface, etc.) and is 3 ft. or less from the edge of that pavement, protect the trench with timber sheathing and bracing. Leave the bracing in place at intervals of 5 ft. maximum, for the duration of the excavation.

Keep the street surface adjacent to the trench free of surplus spoil. Place construction materials at locations that will minimize interference with the traveling public.

A maximum of 2 street intersections may be closed at any time, unless otherwise authorized by the Engineer in writing.

3.1.2 Cutting and Restoring Pavement. If installing sewers in streets or other paved areas, the work includes saw cutting the pavement and asphalt stabilized base (if any), removing the foundation base to neat lines, and replacing these materials after sewer excavation and backfill are complete. The type and thickness of replacement materials is shown on the plans. Performing work on or making repairs to damaged base and pavement within the project limits will be measured and paid for under the applicable specifications.

If excavating in streets or highways, maintain traffic and provide traffic control in accordance with the plans.

When allowed by the construction sequence shown on the plans or when directed, use a “temporary concrete cap” of the depth and class of concrete shown on the plans, or as otherwise directed, instead of a permanent repair.

3.2 Bedding. Before laying the pipe, shape the bedding material to conform to the outside diameter of the pipe as shown on the plans. Carefully prepare bell holes to fit the bell where using bell and spigot pipe.

3.3 Laying Pipe.

3.3.1 General. Lay sewers in a straight line, so that a light can be seen from one manhole to the other, even for the smaller size sewers. Accurately lay the pipe to line and grade, with the spigot end downstream entering the bell of the next joint of pipe. Fit pipes and fittings together and match them so they form a sewer with a
smooth, watertight, and uniform invert. Take measures to provide uniform bearing for the entire length of the pipe.

Install sewer lines meeting the minimum separation distance from any potable water line, as required by the Design Criteria for Sewage Systems, Texas Administrative Code - Chapter 317.13, Appendix E., of the Texas Commission on Environmental Quality Regulations.

Lay pipe to the lines and grades shown on the plans. To ensure proper placement, use adequate surveying methods, equipment, and employ personnel competent in the use of this equipment. Unless otherwise approved, the maximum allowable deviation of the pipe from the horizontal and vertical alignment indicated on the plans is 0.10 ft. Measure and record the “as-built” horizontal alignment and vertical grade at a maximum of every 50 ft. on the on-site recorded plans.

Submit a mylar set of plans with this “as-built” information to the Engineer for final acceptance.

During pipe laying operations, always keep pipe trenches free of water which might impair pipe laying operations. Ensure holes for bells are of ample size to prevent bells from contacting the subgrade. Carefully grade the pipe trenches to provide uniform support along the bottom of the pipe.

Do not lay more than 50 ft. of pipe in the trench ahead of backfilling operations. If the pipe laying operations are interrupted for more than 48 hours, cover the pipe laid in the trench simultaneously on each side of the pipe to avoid lateral displacement of the pipe and damage to the joints. If adjustment of the position of a length of pipe is required after it has been laid, remove and re-lay it in accordance with these specifications at no expense to the Department. After completing pipe laying and joining operations, clean the inside of the pipe and remove any debris.

Use caution to prevent damage to the coating or polyethylene film wrap when placing backfill. Place backfill in accordance with this specification.

Do not place more than 1,000 ft. of pipe on publicly used streets ahead of the trench excavating machine. Obtain permission, in writing, from the owner or the owner’s agent before placing materials or equipment on private property.

Regardless of the type of pipe being used, place sand bedding in the bottom of the trench and compact it to a depth of 6 in. Carefully grade the bedding and excavate bell holes.

Lay pipe with bell ends facing in the direction of laying, unless otherwise directed.

Adjust the pipe and fittings to be at their proper locations and prepare each joint as specified on the plans and by the Engineer. While laying each joint of pipe in the trench, center the spigot end in the bell of the previously laid pipe. Force the pipe home and bring it to correct line and grade. Ensure each length of pipe rests on the bottom of the trench throughout its entire length.

If laying of pipe is discontinued for the day or for an indefinite period, tightly place a cap or plug in the end of the last pipe laid to prevent the intrusion of water. When water is excluded from the interior of polyvinyl chloride pipe, place enough backfill on the pipe to prevent floating. Schedule the work to prevent the possibility of floatation. Remove pipe that has floated from the trench and re-lay it as directed.

When PVC pipe is assembled on top of the trench, allow it to cool to ground temperature before backfilling to prevent pull out due to thermal contraction.

PVC Pipe and Fittings. Splicing is not allowed unless the required length of a straight section of pipe exceeds 30 ft. The Engineer may waive this requirement to meet special conditions.

Use devices required for attaching the pipe to portions of structures or to other types of pipe that are shown on the plans or as approved. Install a water stop gasket and clamp at each PVC connection to a manhole.
After installing, clean and paint pipe and fittings which are exposed to view in the completed structure, as shown on the plans.

3.3.3 Ductile-Iron Pipe and Fittings. Provide and operate proper and suitable tools and appliances for safely and conveniently handling the pipe and fittings. Use caution to prevent damaging the pipe coating. Examine pipe for defects and do not lay pipe that is known to be defective. If any defective pipe is discovered after being laid, remove and replace it with sound pipe at no expense to the Department. If the pipe requires cutting, perform it in conformance with the manufacturer’s recommendations for pipe 12 in. in diameter and smaller. Use approved cutting methods for larger pipes. Ensure each cut is smooth and at right angles to the axis of the pipe.

3.3.4 Thrust Restraint. Unless otherwise shown on the plans, provide Portland cement concrete thrust blocking for force mains up to 12-in. in diameter, to prevent movement of buried lines under pressure at bends, tees, caps, valves, and hydrants. Place concrete in accordance with details on the plans. Place thrust blocks between undisturbed ground and fittings. Anchor the fittings to the thrust blocks so that the pipe and fitting joints are accessible for repairs. Extend the concrete from 6 in. below the pipe or fitting to 12 in. above.

For force mains larger than 12 in. in diameter, and where indicated on the plans, provide restrained joints conforming to the requirements of the force main pipe material specifications. Install restrained joints for the length of pipe on both sides of each bend or fitting for the full length shown on the plans.

Horizontal and vertical bends between zero and 10 degrees deflection angle will not require thrust blocks or harnessed or restrained joints.

For horizontal and vertical bends between 10 degrees and 90 degrees deflection angle, provide thrust restraint as shown on the plans.

Provide thrust restraint at tees, plugs, blowoff drains, valves, and caps, as indicated.

Reinforced concrete encasement of force main pipe and fittings may be used in lieu of manufactured joint restraint systems. Provide alternate joint restraint systems using reinforced concrete encasement that conform to following design requirements:

- Ensure design calculations are performed and sealed by Professional Engineer licensed in the State of Texas.
- Base design calculations upon soil parameters qualified in a geotechnical report for the site where alternative thrust system will be installed. When data is not available for the site, use parameters recommended by a geotechnical engineer.
- The design system pressure is the specified test pressure.
- Utilize the following safety factors in sizing the restraint system:
 - Apply a factor of safety equal to 1.5 for passive soil resistance.
 - Apply a factor of safety equal to 2.0 for soil friction.
- Contain the encasement entirely within the standard trench width and terminate it on both ends at the pipe bell or coupling.
- Design the concrete encasement reinforcement steel for all loads, including internal pressure and longitudinal forces. Design the concrete in accordance with ACI 318.

Install piping and fittings true to alignment with rigid support. Provide anchorage where required. Repair any damage to linings before the pipe is installed. Clean out each length of pipe before installation. Adhere to the pipe manufacturer’s recommendations.

Ensure the deflection at joints does not exceed that recommended by the pipe manufacturer. Provide fittings, in addition to those shown on the plans, if required, in areas where conflict exists with existing facilities.
Fabricate flanged joints using gaskets, bolts, bolt studs with a nut on each end, or studs with nuts where the flange is tapped. Use the number and size of bolts that conform to the same ANSI standard as the flanges.

Tighten bolts in flanged joints or mechanical joints alternately and evenly.

3.3.5 **Fiberglass Pipe.** Do not use stiffening ribs or rings. Provide a water stop flange (wall pipe) for connection to existing cast-in-place manholes.

If the pipe is cut in the field or the interior lining is disturbed, re-coat the interior with a similar quantity of the liner resin in accordance with this specification.

Do not exceed forces recommended by the manufacturer for coupling pipes. If excessive force is required, remove the coupling, determine the source of the problem and correct it.

When jointing the pipe, do not exceed the deflection angle, measured by mandrel, permitted by the manufacturer, unless otherwise directed.

Either affix gaskets to the pipe by means of a suitable adhesive or install them in such a manner to prevent the gasket from rolling out of the pipe’s pre-cut groove.

3.4 **Manholes.** Construct manholes in accordance with Item 465, “Junction Boxes, Manholes and Inlets” and with the details shown on the plans.

3.5 **Adjusting Manholes.** Adjust manholes in accordance with the construction requirements of Item 479, “Adjusting Manholes and Inlets” and as shown on the plans.

Elevations of manholes may be raised by using precast concrete rings. Elevations of manholes may be lowered by removing existing cast-in-place walls, adjusting rings, or the top section of the barrel below the new elevation and then rebuilding or raising the elevation to the proper height.

Salvage and reuse cast-iron frames and covers. Protect or block off manhole or inlet bottoms by using wood forms shaped to fit so that no debris or soil falls to the bottom during adjustment.

Install a cast-in-place slab at the top of the manhole barrel to receive the cast-iron frame and cover. Form concrete slabs a minimum of 6 in. thick. Set the cast-iron frame for the manhole cover in a full mortar bed and adjust it to the established elevation. If placing in streets, adjust covers to be flush with the top of the pavement.

The following requirements apply for fiberglass manhole adjustments: install concrete grade rings for height adjustment, as required. Construct the chimney on the flat shoulder. Do not load the manhole except on the load bearing shoulder of the manhole. The maximum adjustment height is 18 in.

Use a cut length of approved Fiberglass Reinforced Pipe (FRP) to create a finished liner inside the adjustment rings. Cut the pipe to fit between the casting and the top of the fiberglass manhole reducer. Completely seal the liner pipe to the casting and to the manhole reducer section with sealant as recommended by the manufacturer.

Set the cast-iron frame on top of the cone or adjustment rings using approved sealant materials and adjust the elevation of the casting cover to match the pavement surface. For manholes in unpaved areas, set the top of the frame a minimum of 6 in. above the existing ground line unless otherwise shown on the plans.

3.6 **Service Connections.** If existing service connections are tied into existing sewers which will be abandoned, reconnect such connections to the proposed sewers as shown on the plans or as directed.

If sewers are more than 6 ft. in depth from the finished grade to the top of the pipe, construct service connections by placing stacks on the sewer line.
Construct sewer stacks in a manner approved by the Engineer and in accordance with the details shown on the plans. If stacks are to be adjusted, make the adjustment in a manner as directed by the Engineer.

If sewers are 6 ft. or less in depth from the finished grade to the top of the pipe, construct service connections by placing wyes or tees in the sewer line at each location and using 1/4 or 1/8 bends where necessary to tie into the existing house sewer lead.

For stub outs, use PVC sewer pipe, 6-in. through 10-in. diameters, in accordance with ASTM D1784 and ASTM 3034 with a cell classification of 12454-B. Use a SDR (ratio of diameter to wall thickness) of 26 for pipe 12-in. in diameter or less and a SDR of 35 for larger pipe.

Use gasket-jointed PVC pipe with the gasket in accordance with ASTM D3212.

Select the service connection pipe diameter to match the existing service diameter, but use a minimum diameter of 6-in.

Furnish a one-piece prefabricated saddle, made either of polyethylene or PVC, with a neoprene gasket for connection to HDPE. Use full body fittings for new PVC installation.

For connection between a stub out and existing service, use a minimum 6-in. diameter flexible PVC coupling, Fernco Adapter, or an approved equal as needed.

Use 1/2-in. stainless steel bands to secure saddles to the liner pipe and the couplings to the service line.

Reconnect service connections, including those to unoccupied or abandoned buildings or to vacant lots, unless otherwise directed.

Include reconnected services on the as-built plans. Record the exact distance from each service connection to the nearest downstream manhole.

Test the service connection before backfilling. Use backfill in accordance with this specification and details as shown on the plans.

3.7 Jacking, Boring, or Tunneling Pipe.

3.7.1 General. Perform jacking, boring, or tunneling for sanitary sewers at the locations shown on the plans and at other locations specifically designated.

Unless otherwise shown on the plans, provide casing pipe in accordance with the requirements of Section 2.8., "Steel Casing Pipe," of this specification.

3.7.2 Jacking. Perform jacking in accordance with the requirements of Section 476.3.1., “Jacking,” of Item 476, “Jacking, Boring, or Tunneling Pipe or Box.”

3.7.3 Boring. Perform boring in accordance with the requirements of Section 476.3.2., “Boring or Tunneling,” of Item 476, “Jacking, Boring, or Tunneling Pipe or Box.”

If sewer lines cross underneath driveways (16 ft. wide or less) and sidewalks, install pipe in tight-fitting augered holes.

If the centerline of the proposed sanitary sewer is 10 ft. or less from the centerline of an 8-in. diameter or larger growing tree, place the pipe in a tight-fitting augered hole. Extend the bored hole at least 4 ft. beyond each side of the tree.

3.7.4 Tunneling. Perform tunneling in accordance with the requirements of Section 476.3.3., “Tunneling,” of Item 476, “Jacking, Boring, or Tunneling Pipe or Box.”
3.8 Handling of Pipe and Accessories.

3.8.1 General. Unload pipe, fittings, and accessories at the point of delivery and haul them to the project site. Distribute the material opposite or near to the place where it will be laid in the trench. Do not drop the materials. Do not skid or roll pipe handled on skid ways against pipe already on the ground.

Load, transport, unload, and otherwise handle pipe and fittings in a manner and by methods which will prevent damage to them. Handle and transport pipe with equipment designed, constructed, and arranged to prevent damage to the pipe, lining, and coating. Bare chains, hooks, metal bars, or narrow skids or cradles are not permitted to come in contact with the coatings. Ensure spiders are installed by the manufacturer at joint ends of fittings.

Hoist pipe from the trench side into the trench by using a sling of smooth steel cable, canvas, leather, nylon, or similar material.

During pipe construction operations, always use caution to prevent injury to the pipe, protective linings, and coatings.

If stacking pipe, package it on timbers. Place protective pads under the banding straps at the time of packaging.

If fork trucks are used to relocate pipe, pad the forks using carpet or some other suitable type of material. When relocating pipe using a crane or backhoe, use nylon straps, not chains or cables around the pipe for lifting.

Do not lift pipe using hooks at each end of the pipe.

Repair or replace any damage done to the pipe or the protective lining and coating, from any cause, during the installation of the pipeline and before final acceptance by the purchaser, at the expense of the laying Contractor, and in conformance with the applicable standards and as directed.

3.8.2 Cleaning of Pipe and Accessories. Remove lumps, blisters, and excess coating from the bell and spigot ends of ductile-iron pipe and fittings. Wire brush the outside of the spigot and the inside of the bell and wipe clean, dry, and free from oil and grease before laying the pipe.

Remove foreign matter or dirt from the interior of sanitary sewer pipe and accessories and from the mating surfaces of the joints before lowering the material into the trench. During and after laying by approved means, keep the pipe and accessories clean.

Use cleaning solutions, detergents, solvents, etc. with caution when cleaning PVC pipe.

3.9 Abandoning Sanitary Sewers. Where plans call for abandoning sanitary sewers, adhere to the following general procedure:

After the replacement main is constructed, tested, and released, and after services are transferred to the replacement line, locate the line to be abandoned and trace it back to the feeder line and at this point cut, plug, and abandon it. Grout the pipe if required by the plans.

3.10 Removing Sanitary Sewers, Casing, Force Main, and Manholes. Remove sanitary sewers, casing, force mains, and manholes in accordance with Item 100, “Preparing Right of Way” or as shown on the plans. This work includes removing and disposing of the pipe and appurtenances as shown on the plans or as directed. Excavation and backfill, as required, are subsidiary to this Item.

3.11 Joining Pipe and Accessories.
General. After thoroughly cleaning the inside of the bell and the outside of the spigot, install members in conformance with the manufacturer’s recommendation.

Mark pipe and accessories that are not furnished with a depth mark before assembling to assure that the spigot end is inserted to the full depth of the joint.

Polyvinyl Chloride Pipe and Accessories. Join plastic pipe in conformance with the instructions furnished by the manufacturer. Do not handle or install pipe joined using solvent cementing techniques, in the trench until after the joints are sufficiently “cured” to prevent weakening the joint.

Use lubrication for rubber-jacketed joints that is water soluble, non-toxic, non-supporting of bacteria growth, and has no deteriorating effect on PVC or the rubber gaskets.

Ductile-Iron Pipe. Except as noted on the plans, wrap ductile-iron pipe (including fittings and other appurtenances) with a polyethylene film wrap material.

Fiberglass Pipe. Unless otherwise shown on the plans, field connect pipe with fiberglass sleeve couplings that use elastomeric sealing gaskets as the sole means to maintain joint water tightness. Ensure the joints meet the performance requirements of ASTM D4161.

Diversion Pumping. Provide continuous sanitary sewer service to users of the sewer system during construction and maintenance operations, by diverting the flow around such areas. Maintain sewer flow to prevent backup or overflow onto streets, yards, and unpaved areas or into buildings, adjacent ditches, storm sewers, and waterways. Do not divert sewage outside of the sanitary sewer system. During pump operation, provide an experienced operator on site to monitor operation, adjust pumps, perform minor repairs to the system, and report problems.

Installing the Nonmetallic Pipe Detection System. Install the nonmetallic pipe detection system concurrently with placing the proposed pipe. Install this system as specified by the manufacturer and as approved. Install a complete, operational system that is satisfactory to the owner of the utility.

Air Release and Vacuum Valves. Inspect valves in open and closed positions to verify they are in satisfactory working condition. Install valves in conformance with the manufacturer’s recommendation. Set manholes and vaults plumb as shown on the details and center manholes on valves. Provide above-ground vents for manholes and vaults as shown on the plans.

TESTING SANITARY SEWERS FOR LEAKAGE

Basic Requirements. Ensure sewers, when tested in accordance with this specification, do not show leakage of more than 50 gallons per 24 hours per inch of inside diameter, per mile of sewer.

General. Conduct testing under the supervision of the Engineer. It is the Engineer’s option to conduct tests by either the infiltration method or the exfiltration method. On sewers larger than 24 in. in diameter, the tests may consist of visual inspection inside the sewer to locate leaks. The visual inspection method will be used for monolithic sewers. Where the section of sewer to be tested is entirely below the ground water table that will provide the required test head, the test will ordinarily be made by the infiltration method.

Test the first section of each size or type of sewer laid on the job that is 300 ft. or greater in length, installed by each crew, to determine the adequacy of the materials and methods used and the proficiency of the crew. Backfill this section to a minimum of 18 in. above the top of the pipe and test it without undue delay. If this initial section fails to meet the requirements of the test, make changes in methods, materials, and crew as necessary to correct the deficiency. It is the Engineer’s option to require the Contractor to test any or all of the remaining sections of the sewer.

Completely backfill sewers, other than the first section described above, except at the stacks, before testing. It is the Contractor’s option to make preliminary tests with a minimum of 18 in. of backfill over the pipe to
determine if any need for repairs in the sewer is indicated. Such preliminary tests are entirely for the Contractor's information and will not be accepted instead of final tests.

Unless notified that the test will be made by the infiltration method, leave the tops of the stacks exposed and unplugged until after performing the leak test. Temporarily extend upward, stacks which may terminate below the test level by installing an additional length of pipe in the top.

Notify the Engineer a minimum of 24 hours in advance of performing the tests.

If the bottom of the trench is below the ground water level, provide suitable means at each manhole for readily determining the ground water level until testing is completed or waived by the Engineer. This may, as an example, consist of a pipe not less than 3 in. in diameter, plugged at the bottom and perforated for at least the lower 3 ft., with the perforations wrapped with at least two thicknesses of burlap, set in the trench before backfilling. Remove such pipes or cut them off at least 2 ft. below the ground after testing is completed or waived by the Engineer. Before removing, protect the pipes against damage and exclude earth or other material from them.

It is the Engineer's option, to vary the procedures described below under “infiltration test” and “exfiltration test” provided the methods used give an accurate measurement of the leakage occurring at the water levels specified.

4.3 Testing Procedures (Gravity System).

4.3.1 Infiltration Test. This test may be used where the ground water level rises to a plane that provides a test head not less than that specified for exfiltration tests. Stop all pumps and allow the ground water to return to its normal level (at least the elevation as indicated above) and allow it to remain so for at least 24 hours (the pipe will be filled with water to the overflow depth) and ensure leakage flows at a uniform rate through the opening in the plug in the downstream end of the section of sewer being tested before starting the test. Determine leakage by measuring the flow through the opening in the downstream plug during a given time. Perform 5 separate measurements over a 2-hour period. Use the average of the measurements, discarding any 1 of the 5 measurements, except the last, that varies by more than 50% from the average of the other 4. If the results of the test are otherwise satisfactory, but the last of the 5 measurements shows leakage in excess of that permitted, continue the tests to determine if additional leaks have developed during testing.

4.3.2 Exfiltration Test. It is the Contractor's option to keep the pipe full of water for 24 hours before the test to permit absorption by the pipe. If the Contractor wishes to fill the pipe, notify the Engineer by the time backfill is completed. The Engineer will then give notice at least 48 hours before the test will be made to allow time for filling and soaking the pipe.

Supply plugs for this purpose. At least 2 hours before the test starts, bleed off the water to below the level of the top of the pipe at its lower end and allow it to remain so until the water level remains static at this level or continues to fall. Perform the test in the following manner:

Insert a watertight plug equipped with a pipe riser and brace it in the inlet opening of the downstream manhole. Insert and brace a similar plug, equipped with a suitable vent pipe that will permit the air to escape in the pipe at its upper end, in the outlet opening of the upstream manhole.

Fill the sewer and risers with water up to a level that is either 2-1/2 ft. above the highest point in the sewer pipe, service connection, or groundwater table, whichever is highest, plus the vertical distance from the invert of the sewer at its lower end up to the level of the ground water, where such ground water exists above the invert of the sewer.

Fill the sewer with water as a continuous operation as rapidly as the supply will permit. Complete this filling in a minimum of 2 hours for sewers 12 in. in diameter or smaller, 3 hours for sewers 15 in. through 24 in. in diameter, and 4 hours for larger sewers. Over a one-hour period, measure the leakage during the test period by adding measured quantities of water to maintain the water level in the test structure. The quantity of water added to maintain the initial water level is the amount of leakage.
Test criteria and allowable leakage for exfiltration and infiltration tests are shown in Table 5.

Table 5

<table>
<thead>
<tr>
<th>Diameter of Riser or Stack(^1)</th>
<th>Volume per Inch of Depth</th>
<th>Allowable Leakage(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(in.)</td>
<td>(cu. in.)</td>
<td>(gal.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipe Diameter (in.)</td>
</tr>
<tr>
<td>1</td>
<td>0.7854</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3.1416</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>4.9087</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>7.0686</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>12.5664</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>19.6350</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>28.2743</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>50.2655</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>0.0177</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.0197</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>0.0237</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>0.0276</td>
</tr>
</tbody>
</table>

1. For other diameters, multiply the square of diameter, by the value for 1 in. diameter.
2. Equivalent to 50 gallons per inch of inside diameter per mile in 24 hours.

Low Pressure Air Test

Low Pressure Air Test. For sanitary sewers of less than 36-in. average inside diameters, conduct testing in sections less than 300 ft. long. For shorter runs, conduct the low pressure air test from manhole to manhole. Test 36-in. and larger sewer mains, every two runs of pipe with one pipe joint connection in between.

Perform the low pressure air test in accordance with ASTM C828 and ASTM C924, using holding times not less than those listed in Tables 6, 7, and 8.

Low Pressure Air Test:

Note 1: Tables are based on the following equation:

\[
T = 0.0850\frac{(D)(K)}{Q}
\]

- \(T\) = Time for pressure to drop 1.0 pound per square inch gauge (psig), in seconds
- \(K\) = 0.000419(D)(L), but not less than 1.0
- \(D\) = Average inside diameter, in inches
- \(L\) = Length of line of the same pipe size being tested, in feet
- \(Q\) = Rate of loss = 0.0015 Cubic feet/min./sq. ft. of internal surface area

Note 2: Add 1.0 psig for each 2.3 ft. of water above the highest point in the sewer.

Note 3: When two sizes of pipe are involved, compute the time by using the ratio of the lengths involved. For example, using 400 ft. of 10-in. pipe and 200 ft. of 6-in. pipe:

\[
\text{Time} = \frac{\text{Length}_1 \times \text{Time}_1 + \text{Length}_2 \times \text{Time}_2}{\text{Length}_1 + \text{Length}_2}
\]

\[
\begin{align*}
\text{Time} &= 400 \times 15:50 + 200 \times 5:40 \\
&= \frac{400 \times 950 + 200 \times 340}{400 + 200} \\
&= \frac{747 \text{ Seconds}}{400 + 200} = 12:27 \text{ min:sec}
\end{align*}
\]
Table 6

<table>
<thead>
<tr>
<th>Pipe Diameter (in.)</th>
<th>Minimum Time (min:sec)</th>
<th>Length for Minimum Time (ft.)</th>
<th>Time for Longer Length (sec.)</th>
<th>Specification Time for Length (L) Shown in (min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 ft.</td>
<td>150 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200 ft.</td>
<td>250 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300 ft.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5:40</td>
<td>398</td>
<td>0.8548</td>
<td>5:40</td>
</tr>
<tr>
<td>8</td>
<td>7:33</td>
<td>298</td>
<td>1.5196</td>
<td>7:33</td>
</tr>
<tr>
<td>10</td>
<td>9:27</td>
<td>239</td>
<td>2.3743</td>
<td>9:27</td>
</tr>
<tr>
<td>12</td>
<td>11:20</td>
<td>199</td>
<td>3.4190</td>
<td>11:20</td>
</tr>
<tr>
<td>14</td>
<td>14:10</td>
<td>159</td>
<td>5.3423</td>
<td>14:10</td>
</tr>
<tr>
<td>16</td>
<td>17:00</td>
<td>133</td>
<td>7.6928</td>
<td>17:00</td>
</tr>
<tr>
<td>18</td>
<td>19:50</td>
<td>114</td>
<td>10.4708</td>
<td>19:50</td>
</tr>
<tr>
<td>22</td>
<td>25:30</td>
<td>88</td>
<td>17.3089</td>
<td>25:30</td>
</tr>
<tr>
<td>24</td>
<td>28:20</td>
<td>80</td>
<td>21.3690</td>
<td>28:20</td>
</tr>
<tr>
<td>26</td>
<td>31:10</td>
<td>72</td>
<td>25.8565</td>
<td>31:10</td>
</tr>
</tbody>
</table>

Table 7

<table>
<thead>
<tr>
<th>Pipe Diameter (in.)</th>
<th>Minimum Time (min:sec)</th>
<th>Length for Minimum Time (ft.)</th>
<th>Time for Longer Length (sec.)</th>
<th>Specification Time for Length (L) Shown in (min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>350 ft.</td>
<td>400 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>450 ft.</td>
<td>500 ft.</td>
</tr>
<tr>
<td>6</td>
<td>5:40</td>
<td>398</td>
<td>0.8548</td>
<td>5:40</td>
</tr>
<tr>
<td>8</td>
<td>7:33</td>
<td>298</td>
<td>1.5196</td>
<td>7:33</td>
</tr>
<tr>
<td>10</td>
<td>9:27</td>
<td>239</td>
<td>2.3743</td>
<td>9:27</td>
</tr>
<tr>
<td>12</td>
<td>11:20</td>
<td>199</td>
<td>3.4190</td>
<td>11:20</td>
</tr>
<tr>
<td>14</td>
<td>14:10</td>
<td>159</td>
<td>5.3423</td>
<td>14:10</td>
</tr>
<tr>
<td>16</td>
<td>17:00</td>
<td>133</td>
<td>7.6928</td>
<td>17:00</td>
</tr>
<tr>
<td>18</td>
<td>19:50</td>
<td>114</td>
<td>10.4708</td>
<td>19:50</td>
</tr>
<tr>
<td>22</td>
<td>25:30</td>
<td>88</td>
<td>17.3089</td>
<td>25:30</td>
</tr>
<tr>
<td>24</td>
<td>28:20</td>
<td>80</td>
<td>21.3690</td>
<td>28:20</td>
</tr>
<tr>
<td>26</td>
<td>31:10</td>
<td>72</td>
<td>25.8565</td>
<td>31:10</td>
</tr>
</tbody>
</table>

Table 8

<table>
<thead>
<tr>
<th>Pipe Diameter (in.)</th>
<th>Minimum Time (min:sec)</th>
<th>Length for Minimum Time (ft.)</th>
<th>Time for Longer Length (sec.)</th>
<th>Specification Time for Length (L) Shown in (min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>550 ft.</td>
<td>600 ft.</td>
</tr>
<tr>
<td>6</td>
<td>5:40</td>
<td>398</td>
<td>0.8548</td>
<td>7:50</td>
</tr>
<tr>
<td>8</td>
<td>7:33</td>
<td>298</td>
<td>1.5196</td>
<td>9:27</td>
</tr>
<tr>
<td>10</td>
<td>9:27</td>
<td>239</td>
<td>2.3743</td>
<td>11:20</td>
</tr>
<tr>
<td>12</td>
<td>11:20</td>
<td>199</td>
<td>3.4190</td>
<td>13:20</td>
</tr>
<tr>
<td>14</td>
<td>14:10</td>
<td>159</td>
<td>5.3423</td>
<td>15:20</td>
</tr>
<tr>
<td>16</td>
<td>17:00</td>
<td>133</td>
<td>7.6928</td>
<td>17:20</td>
</tr>
<tr>
<td>18</td>
<td>19:50</td>
<td>114</td>
<td>10.4708</td>
<td>19:50</td>
</tr>
<tr>
<td>20</td>
<td>22:40</td>
<td>99</td>
<td>13.6762</td>
<td>22:40</td>
</tr>
<tr>
<td>22</td>
<td>25:30</td>
<td>88</td>
<td>17.3089</td>
<td>25:30</td>
</tr>
<tr>
<td>24</td>
<td>28:20</td>
<td>80</td>
<td>21.3690</td>
<td>28:20</td>
</tr>
<tr>
<td>26</td>
<td>31:10</td>
<td>72</td>
<td>25.8565</td>
<td>31:10</td>
</tr>
</tbody>
</table>
4.3.4 Leakage Testing for Manholes. After completing manhole construction, wall sealing, or rehabilitation, but before backfilling, test manholes for water tightness using hydrostatic or vacuum testing procedures as described below.

Plug influent and effluent lines, including service lines, with suitably-sized pneumatic or mechanical plugs. Use plugs that are properly rated for the pressures required for the test. Adhere to the manufacturer’s safety and installation recommendations. Place plugs a minimum of 6 in. outside of manhole walls. Brace the inverts to prevent lines from dislodging if lines entering the manhole have not been backfilled.

4.3.4.1 Vacuum Testing. Install the vacuum tester head assembly at the top access point of the manhole and adjust it for a proper seal on the straight top section of the manhole structure. Following the manufacturer’s instructions and safety precautions, inflate the sealing element to the recommended maximum inflation pressure. Do not over-inflate the sealing element.

Evacuate the manhole with a vacuum pump to 10 in. of mercury (Hg) then disconnect the pump and monitor the vacuum for the time period specified in the Table 9.

<table>
<thead>
<tr>
<th>Depth in Feet</th>
<th>Time in Seconds, by Pipe Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48 in.</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>24</td>
<td>60</td>
</tr>
<tr>
<td>See Note</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Note: Add T times for each additional 2-ft. depth. (The values listed above have been extrapolated from ASTM C924-85)

If the drop in vacuum exceeds 1 in. of mercury (Hg) over the specified time period tabulated above, locate the leaks, complete repairs necessary to seal the manhole, and repeat the test procedure until satisfactory results are obtained.

4.3.4.2 Hydrostatic Exfiltration Testing. Perform hydrostatic exfiltration testing as follows: seal the wastewater lines entering the manhole with an internal pipe plug, then fill the manhole with water, and maintain it full for a minimum of one hour. The maximum leakage allowed for hydrostatic testing is 0.025 gallons per foot diameter per foot of manhole depth per hour.

If the water loss exceeds the amount tabulated above, locate the leaks, complete repairs necessary to seal the manhole, and repeat the test procedure until satisfactory results are obtained.

4.4 Testing Procedures (Pressure or Force Main System). After each section of force main is completed and can be isolated so high pressure cannot force test water into the operating system, hydrostatically test it. Perform such testing in accordance with Section 4 of AWWA C-600-77, as modified below:

- First, flush the test section with open bleeds with the flow controlled at the feed from the operating system so that the flushing pressure is always well below that of the operating system.
- Momentarily pressurize the pipe to 160 psi as a "burst" test. Conduct the leak test at a pressure of 140 psi.
- Pipe installations exceeding the leakage determined by the following formula will not be accepted:
\[L = \frac{(S)(D)(P)^{0.5}}{133,200} \]

in which \(L \) is the allowable leakage, in gallons per hour; \(S \) is the length of pipe in feet; \(D \) is the nominal inside diameter of the pipe in inches; and \(P \) is the average test pressure during the leakage test, in pounds per square inch gauge.

After removing temporary inserts installed for hydrostatic testing, and before backfilling, leave the replacement piping exposed for visual inspection for leakage under normal pressure (after disinfection).

4.5 **Deflection Test of Thermoplastic Pipe (PVC, etc.).** Thirty days after backfilling, test flexible pipe (PVC, etc.) lines for deflection by pulling a mandrel or an approved deflectometer through the line. Perform mandrel testing in accordance with ASTM D3034 or F794. Remove and reinstall sections indicating 5% deflection or more, then retest for leakage and deflection. Mandrel testing is not required for stubs.

4.6 **Defective Sewers.** Remove sections of the sewer that show leakage exceeding that which is permitted by these specifications and re-lay them or otherwise make good by repairing using approved methods and materials. Perform permanent type repairs. Repair individual leaks that may appear whether or not the overall section meets the leakage requirements. Individual leaks will ordinarily be revealed by looking through the sewer with a light when the ground water level is over the sewer, or immediately after water from exfiltration tests is emptied from the sewer. Settlement in the backfill during exfiltration tests will be taken as an indication of leakage in the sewer.

4.7 **Retests.** After completing repairs, retest for leakage those sewers which failed to meet the requirements of the leak test.

4.8 **Responsibility of the Department.** The Engineer will observe the sanitary sewer construction and other contributing work. He or she will monitor the testing of this system for compliance with the plans and specifications.

4.9 **Responsibilities of the Contractor.** Conduct tests and supply labor, materials, and equipment required to perform the tests described in this specification.

5. **MEASUREMENT**

This Item will be measured as follows:

5.1 **Sanitary Sewers** will be measured by the foot, of the various sizes, types, and wall thickness (if applicable), of sanitary sewer specified, complete in place, tested, and accepted by the Engineer. Sanitary sewer will be measured longitudinally along the centerline of the sewer between the inside faces of the manholes.

If the installation involves a connection to an existing sewer line, the measurement will be made from the end of the existing sewer line to the inside face of the manhole on the work being measured.

Sanitary sewer pipe will be measured as described above and classified as sanitary sewers for the purposes of payment.

Wyes, tees, and bends are subsidiary to this Item. Include them in the measurement for payment of pipe sewer main in which they are installed. Plugs are subsidiary to the pertinent bid items.

5.2 **Steel Casing** will be measured by the foot of the various sizes installed by the open cut method complete in place and accepted by the Engineer. Steel casing will be measured longitudinally along the centerline of the casing pipe. The conditions, etc., regarding the measurement of sanitary sewers stated under Section 5.1. above also apply to casing pipe.
5.3 **Manholes** will be measured by each manhole, of the various types specified, complete in place.

5.4 **Adjusting Manholes** will be measured by each manhole adjusted.

5.5 **Jacking, Boring, or Tunneling** for sanitary sewers and steel casing will be measured by the foot of the various sizes, types, and wall thickness (if applicable) specified of sanitary sewer or steel casing jacked, bored, or tunneled.

5.6 **Service Connections** will be measured by each complete disconnection (abandoned connection) or reconnection of the material, type, diameter, and depth range (0 to 10 ft., 10-15 ft., or greater than 15 ft.) specified for each sanitary sewer service. The depth will be measured from the natural ground level to the flow line of the sanitary sewer main at the point of reconnection, for the Contractor’s information only. One or more connections discharging into a common point will be considered as one service connection.

5.7 **Abandoning Sanitary Sewers** will be measured by each sewer abandoned of the sizes specified.

5.8 **Cutting and Restoring Pavement** will be measured by the square yard, of the depths specified.

5.9 **Air Release and Vacuum Relief Valves** will be measured by each valve assembly installed of the various sizes and types specified.

6. **PAYMENT**

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit prices bid for the items described below. These prices are full compensation for furnishing materials and their preparation; for excavation and backfill; for preparation, shaping, and fine grading the bottom of the trench; for cutting and restoring existing pavement; for hauling, placing, and joining of pipes, valves, and fittings; for constructing bollards, vent piping, stacks, and manholes; and for necessary appurtenances and other items of materials, labor, equipment, tools, and incidentals.

6.1 **Sanitary Sewers.** Payment for sanitary sewers will be made at the unit price bid for “Sanitary Sewers” of the various sizes, types, and wall thicknesses (if applicable) specified, complete in place. Plastic liner is required for concrete pipe interior surfaces and is subsidiary to this bid Item. An internal liner resin is required for centrifugally cast fiberglass pipe and is subsidiary to this bid Item.

Unless otherwise specified on the plans or this specification, excavation, disposing of unsuitable excavated material, backfilling, and the material used for backfill for the complete installation of the sanitary sewer system are subsidiary to and included in the unit price bid for the pipe and any structure for which payment is required.

Fittings, including necessary concrete blocking, pipe clamps, nipples, pipe coatings, lubricants, etc., are subsidiary to the sanitary sewer mains in which they are installed. If additional fittings are required due to plan changes or alterations in line or grade, they will be subsidiary to the sanitary sewer lines in which they are installed.

6.2 **Steel Casing.** Payment for steel casing will be made at the unit price bid for “Casing (Steel)(Sanitary Sewer)” of the various sizes specified, installed by the open cut method, complete in place.

6.3 **Manholes.** Payment for manholes will be made at the unit price bid for “Manholes (Sanitary Sewer)” of the various types specified, complete in place. Rings, covers, and steps are subsidiary to this bid Item.

6.4 **Adjusting Manholes.** Payment for each manhole adjusted will be made at the unit price bid for “Adjusting Manholes (Sanitary Sewer).” The excavation and backfill required are subsidiary to this bid Item.
6.5 **Jacking, Boring, or Tunneling.** Payment for jacking, boring, or tunneling of sanitary sewer will be made at the unit price bid for "Jacking, Boring, or Tunneling (Sanitary Sewer)" of the various sizes, types, and wall thicknesses (if applicable) specified. This price includes furnishing the pipe.

Payment for jacking, boring, or tunneling steel casing will be made at the unit price bid for "Jacking, Boring, or Tunneling Casing (Steel Sewer)" of the various sizes and wall thickness specified (applicable only if exceeding minimum thickness shown in Section 2.8., "Steel Casing Pipe," of this specification). This price includes the steel casing.

Sanitary sewer placed in casing will be paid for at the unit price bid for “Sanitary Sewers” as described above.

Excavating, backfilling, backfill material, and disposing of the unsuitable excavated material caused by jacking, boring, or tunneling pipe or casing, are subsidiary to and included in the unit price bid for the pipe or casing jacked, bored, or tunneled.

6.6 **Service Connections.** Payment for service connections will be made at the unit price bid for “Service Connections (Sanitary Sewer).” This payment includes any sewer stacks required. Excavation and backfill associated with disconnection or reconnection are subsidiary to this bid Item.

No separate payment will be made for an abandoned service connection if the service to be abandoned is within 4 ft. of an active connection. Payment for only one abandoned service connection will be allowed when a second abandoned connection is within 4 ft. of the first.

6.7 **Abandoning Sanitary Sewers.** Payment for abandoning sanitary sewer will be made at the unit price bid for “Abandoning Sanitary Sewer” of the sizes specified. Excavation and backfill required to abandon the sanitary sewer are subsidiary to this bid Item. Where grout is required, as shown on the plans, it is subsidiary to this bid Item.

6.8 **Cutting and Restoring Pavement.** Payment for cutting and restoring pavement will be made at the unit price bid for “Cutting and Restoring Pavement” of the depths specified. Excavation below the pavement and base is subsidiary to this bid Item.

6.9 **Air Release and Vacuum Relief Valves.** Payment for Air Release and Vacuum Relief Valves will be made at the unit price bid for “Air Release Valve,” “Air Release and Vacuum Relief Valve,” or “Vacuum Relief Valve” of the various sizes specified. This price is full compensation for valves, fittings, vent piping, bollards, necessary appurtenances, and incidentals.

Trench excavation protection or temporary special shoring required for trenches which are greater than 5 ft. in depth, and sloping the sides of those trenches to preclude collapse, will be measured and paid for as required by Item 402, “Trench Excavation Protection” or Item 403, “Temporary Special Shoring.”

Furnishing and placing bedding material is subsidiary to the pertinent bid items.

Furnishing and installing a complete, operational nonmetallic pipe detection system, and the materials necessary for this system are subsidiary to the pertinent bid items.

Unless otherwise specified on the plans, repair curbs, pavement, base material, concrete riprap, and sidewalks damaged by construction operations at no expense to the Department, if such damaged items are not part of the Contract.

Testing sanitary sewers for leakage, including labor, materials, and equipment necessary to perform the tests, is subsidiary to the pertinent bid items.
Special Specification 7049

Water Mains

1. **DESCRIPTION**

 Furnish labor, materials, and equipment necessary to provide a complete water main system in conformance with the plans and specifications, and in compliance with the Department’s Utility Accommodations Policy (Title 43, T.A.C., Sections 21.31–21.55). Construct water mains of the sizes, materials, and dimensions shown on the plans including pipe, joints, and connections to new and existing pipes, casing, valves, fittings, fire hydrants, meters, blocking, etc., as many as may be required to complete the work.

 Furnish material and equipment for encasing existing water lines with split steel encasement pipes using the open cut method in accordance with this specification.

 The abbreviations AWWA, ASA, ASTM, ANSI, AASHTO, NACE, NSF, SSPC, and TCEQ used in this specification refer to the following organizations or technical societies:

 - **AWWA** American Water Works Association
 - **ASA** American Standards Association
 - **ASTM** American Society for Testing and Materials
 - **ANSI** American National Standards Institute
 - **AASHTO** American Association of State Highway and Transportation Officials
 - **NACE** National Association of Corrosion Engineers
 - **NSF** National Sanitation Foundations
 - **SSPC** Steel Structural Painting Council
 - **TCEQ** Texas Commission on Environmental Quality

 References to specifications of the above organizations mean the latest standard or tentative standard in effect on the date of the proposal.

2. **MATERIALS**

 All materials must conform to the requirements of this Item, the plans and the following Items:

 - Item 421, “Hydraulic Cement Concrete”
 - Item 440, “Reinforcement for Concrete”
 - Item 441, “Steel Structures”
 - Item 465, “Junction Boxes, Manholes, and Inlets”
 - Item 471, “Frames, Grates, Rings, and Covers”

 2.1. General. Provide new and unused materials for this project unless otherwise stated in the plans or proposal.

 Pipe 6 in. or larger is acceptable to the Texas Fire Insurance Commission without penalty for use in water works distribution systems.

 For water mains less than 24 in. in diameter, use casing insulators between the water main and casing unless otherwise shown on the plans. For water mains 4 in. through 14 in., use 8 in. wide casing insulators.

 For water mains 16 in. through 20 in., use 12 in. wide insulators. For pipe materials up to 12 in., use Pipeline Seal and Insulator Model C8G-2 or approved equal. For water mains larger than 12 in. use Pipeline Seal and...
2.2. **Steel Pipe and Fittings.**

2.2.1. **Steel Carrier Pipe.** Provide steel pipe for use as carrier pipe in the distribution system, conforming to the requirements of AWWA Standard C200. Install steel pipe 20 in. and smaller as aerial crossings, above-ground piping, and for encasement sleeves only. Do not bury steel pipe that is 20 in. and smaller directly or within a casing.

For pipe 24 in. and greater, conform to the requirements of AWWA C200, C207, C208 and AWWA M11 except as modified in this specification. Furnish pipe and fittings that have manufacturer’s certifications ensuring that they have been hydrostatically tested at the factory in accordance with AWWA C200, Section 3.4. Ensure pipe steel meets the requirements of ASTM A36, ASTM A570 Grade 36, ASTM A53 Grade B, ASTM A135 Grade B, or ASTM A139 Grade B as a minimum. Pipe is also subject to the requirements of Underwriters Laboratories, Inc. Specification for “Steel Pipelines for Underground Water Service.”

Provide pipe and fittings to withstand the most critical simultaneous application of external loads and internal pressures based on the minimum of AASHTO HS-20 loading, AREMA E-80 loads, depths of bury as indicated on the plans, and the most critical groundwater level condition. The pipe design conditions follow:

- Working pressure = 100 psi.
- Hydrostatic field test pressure = 150 psi.

For pipe design (24 in. and larger) conform to AWWA M11 with the following conditions:

- Design stress due to working pressure: The maximum is 50% of the minimum yield strength or 16,500 psi maximum stress for mortar-coated pipe.
- Design stress due to hydraulic test pressure: The maximum is 75% of the minimum yield strength or 24,750 psi maximum stress for mortar-coated pipe.
- Modulus of soil reaction (E’), <1,500 psi.
- Unit weight of fill (w) > 120 pcf.
- Deflection lag factor (D1) = 1.2.
- Bedding constant (K) = 0.1.
- Fully saturated soil conditions: hw = h = depth of cover above top of pipe.
- Maximum deflection from specified diameter = 3% for flexible coatings.

Provide pipe and fittings that have been designed by a licensed Engineer. Before manufacturing, submit these signed, sealed, and dated calculations for approval.

Supply pipe in double random lengths unless otherwise shown on the plans. Bevel the ends of the pipe for field butt welding as shown on the plans.

Provide a minimum of 3/8 in. inside joint recess between ends of pipe in straight pipe sections.

Provide a minimum allowable steel wall thickness in accordance with Tables 1 and 2 for HS-20 live loads and depths of bury up to 16 ft.
Table 1
Carrier Pipe (20 in. and Smaller)

<table>
<thead>
<tr>
<th>Nominal Pipe Size (in.)</th>
<th>Outside Diameter (in.)</th>
<th>Min Wall Thickness (in.)</th>
<th>Approximate Weight Per Lineal Ft., Uncoated (lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4.500</td>
<td>0.250</td>
<td>11.35</td>
</tr>
<tr>
<td>6</td>
<td>6.625</td>
<td>0.280</td>
<td>18.97</td>
</tr>
<tr>
<td>8</td>
<td>8.625</td>
<td>0.322</td>
<td>28.55</td>
</tr>
<tr>
<td>10</td>
<td>10.750</td>
<td>0.365</td>
<td>40.48</td>
</tr>
<tr>
<td>12</td>
<td>12.750</td>
<td>0.375</td>
<td>49.56</td>
</tr>
<tr>
<td>16</td>
<td>16.000</td>
<td>0.375</td>
<td>62.58</td>
</tr>
<tr>
<td>20</td>
<td>20.000</td>
<td>0.375</td>
<td>78.60</td>
</tr>
</tbody>
</table>

Table 2
Carrier Pipe (24 in. and Larger)

<table>
<thead>
<tr>
<th>Net Inside Diameter (in.)</th>
<th>Min Wall Thickness (in.)</th>
<th>Flexible Coating</th>
<th>Mortar Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>0.149</td>
<td>0.136</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.149</td>
<td>0.136</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.178</td>
<td>0.163</td>
<td></td>
</tr>
</tbody>
</table>

Note: Refer to the plans for carrier pipe thickness. However, never use a pipe wall thickness less than that defined in the above tables.

2.2.2. Steel Casing Pipe. Ensure pipe intended for use as casing pipe is manufactured in accordance with Section 2.2.1. “Steel Carrier Pipe,” except to ensure that the minimum allowable steel wall thickness conforms to those shown in Table 3 for HS-20 live loads and depth of bury of up to 16 ft.

Table 3
Casing Pipe (Encasement Sleeves)

<table>
<thead>
<tr>
<th>Casing Pipe Size (in.)</th>
<th>Outside Diameter (in.)</th>
<th>Min Wall Thickness (in.)</th>
<th>Approximate Weight Per Lineal Ft., Uncoated (lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8.625</td>
<td>0.219</td>
<td>19.64</td>
</tr>
<tr>
<td>10</td>
<td>10.750</td>
<td>0.219</td>
<td>24.60</td>
</tr>
<tr>
<td>12</td>
<td>12.750</td>
<td>0.219</td>
<td>29.28</td>
</tr>
<tr>
<td>16</td>
<td>16.000</td>
<td>0.219</td>
<td>36.86</td>
</tr>
<tr>
<td>18</td>
<td>18.000</td>
<td>0.250</td>
<td>47.39</td>
</tr>
<tr>
<td>20</td>
<td>20.000</td>
<td>0.250</td>
<td>52.73</td>
</tr>
<tr>
<td>24</td>
<td>24.000</td>
<td>0.250</td>
<td>63.41</td>
</tr>
<tr>
<td>30</td>
<td>30.000</td>
<td>0.250</td>
<td>79.43</td>
</tr>
</tbody>
</table>

Note: Refer to the plans for casing thickness. However, never use a pipe wall thickness less than that defined in the above table.

Provide steel casing sections for split casing in lengths a maximum of 20 ft. Ensure each section is split in half-sections. Bevel the ends and split sections for field butt-welding.

Steel casing pipe is not required to carry the label of the Underwriters Laboratories, Inc.

2.2.3. Steel Pipe Fittings. Provide factory forged steel pipe fittings unless otherwise shown on the plans. Ensure the wall thickness is equal to or greater than the pipe to which the fitting is to be welded. Bevel the ends of the fitting for field butt-welding.

Provide approved sleeve-type flexible and flange adaptor couplings. Ensure the thickness of the middle ring is equal to or greater than the thickness of the pipe wall.

Provide restraint joint connections for 16 in. and larger water main piping shown on the plans to have restraint lengths, unless otherwise shown on the plans. Joints are to be double-welded at butt or lap joints at aerial crossings as shown on the plans. Use flanged joint at valves.
Elbows: Provide 2-piece for 0° to 22.5°; 3-piece for 23° to 45°; 4-piece for 46° to 67.5°; and 5-piece for 68° to 90°, unless otherwise shown on plans.

Outlets: Reinforced in accordance with AWWA M11, Sections 13.3-13.7, AWWA C200, and AWWA C208. Provide interior lining and exterior coating in accordance with paragraphs on coating and lining, and matching pipe to access inlets, service outlets, test inlets, and air-vacuum valve and other outlets, including riser pipes.

Radius: The minimum radius is 2.5 times pipe diameter.

2.2.4. **Hydrostatic Test of Pipe.** Ensure the pipe manufacturer performs hydrostatic testing in accordance with AWWA C200, Section 3.5.3, at the point of manufacture, conducts the test for a minimum of 2 min., and thoroughly inspects the pipe. Repair or reject pipe revealing leaks or cracks. Obtain from the manufacturer and submit to the Engineer, the manufacturer’s written certification that the pipe and fittings used on this project have passed the hydrostatic test.

Calibrate pressure gauges within 1 yr. before testing, as specified in AWWA C200, Section 1.04 L.

2.2.5. **Butt Straps for Closure Piece.** Provide a minimum 12 in. wide split butt strap; minimum plate thickness equal to the thinnest member being joined; fabricated from material equal in chemical and physical properties to the thinnest member being joined.

Provide a minimum lap of 4 in. between the member being joined and the edge of the butt strap, welded on both the inside and outside, unless otherwise approved.

Provide a minimum 6 in. welded outlet for inspecting each closure section, unless the access man way is within 40 ft. of the closure section. Provide forged steel threaded outlets of approved design, where required, for use in passing hose or lead wires into the pipe. Tap plugs with standard pipe threads and weld to the pipe in an approved manner, and use solid forged steel plugs for closure.

Provide full penetration butt or welded joints as shown on the plans. Use flanged joints at valves unless otherwise shown on the plans. Perform x-ray or ultrasonic testing of manual welds on special pipe and fittings.

Dished Head Plugs: Provide dished head plugs (test plugs) to withstand field hydrostatic test pressure from either side of the plug. Ensure the design stress due to hydrostatic pressure is at most 50% of minimum yield. Pipe on the opposite side of the hydrostatic test may or may not contain water. Ensure the manufacturer of the steel pipe hydrostatically tests the plugs at the factory.

Make curves and bends by deflecting joints, by using beveled joints, or by combining these methods, unless otherwise shown on the plans. Do not exceed the joint deflection angle recommended by the pipe manufacturer.

Make penetration of spigot into bell at all points of circumference at least equal to minimum required penetration shown on the plans. Provide beveled pipe sections used in curved alignment of standard length except when shorter sections are required to limit the radius of curvature. In this case, provide equal length sections throughout the curve. Do not allow the bevel to exceed 5°.

2.2.6. **Steel Pipe Flanges.** Ensure steel pipe flanges shown on the plans conform to AWWA Standard C207 for Class D Flanges (same diameter and drilling as Class 125 cast-iron flanges ASA B16.1).

Make cast-iron to steel pipe connections with 1 cast-iron bell flange and 1 steel slip-on flange, and ensure they are electrically isolated.
The use of insulating gaskets, plastic bolt sleeves, and washers of insulating gasket material backed with zinc plated or hot-dip galvanized washers, or epoxy coated bolts, nuts, and washers used with an insulating gasket, are approved for this purpose.

For inline flange joints 12 in. in diameter and greater and for butterfly valve flanges, use Pyrex LineBacker Type E phenolic gaskets manufactured by Pipeline Seal and Insulator Inc., or approved equal.

Use full-face gaskets for other flanged joints not listed above. Provide cloth-inserted rubber gasket material, 1/8 in. thick in accordance with AWWA C207. Ensure gaskets are factory-cut to proper dimensions.

Maintain electrically isolated flanged joints between steel and cast-iron by using epoxy coated bolts, nuts, washers, and insulating type gaskets unless, otherwise approved.

Fabricate flanges with oversize bolt holes, with flanges drilled in pairs, to accommodate insulating sleeves.

2.2.7. Steel Pipe Protective Coatings.

2.2.7.1. General. Use shop-applied protective coatings except for field repairs and coatings of field welded joints. The Engineer may provide for witness of inspection and testing of shop-applied coatings, however, such witness does not relieve the Contractor of the responsibility to furnish material, perform work, and provide quality control in conformance with the applicable AWWA Standard and the requirements of these specifications.

The substrate surface profile and minimum and maximum individual and total dry film thickness (DFT) indicated in this specification apply. No requirement of this specification cancels or supersedes the specific written directions and recommendations of the specific coating manufacturer so as to jeopardize the integrity of the applied system. Measure the dry film thickness in accordance with SSPC PA2.

Field test shop coating and field repairs for holidays, pinholes, or discontinuities, at voltage levels required by the applicable AWWA Standard and in accordance with the applicable NACE procedure, i.e., PRO 188, RPO 274, TMD 384, etc. Submit the test procedure, including voltage levels to be used, before testing. Repair holidays in conformance with the applicable AWWA Standard.

Provide documentation by a NACE-certified inspector of compliance with the required tests.

Handle, store, and use field procedures for shop-coated pipe in conformance with the applicable AWWA Standards. Adequately seal and protect pipe ends from damage during handling and storage. Do not remove such protection until immediately before installing. Do not lift pipe using caliper clamps or hooks at ends of the pipe.

Repair damage to the pipe or the protective coating caused while installing the pipe and before final acceptance by the owner, as directed and in conformance with the applicable standards.

Keep the interior of the pipe and fittings clean of foreign matter before installing and until the work is accepted. Keep joint contact surfaces clean until jointing is complete.

Furnish an affidavit of compliance that all materials and work furnished comply with the requirements of the applicable AWWA Standard and these specifications.

2.2.7.2. Internal Lining for Steel. Ensure the material used for the internal coating of the steel carrier pipe is NSF61-listed as suitable for contact with potable water as required by Chapter 290, Rules & Regulations for Public Systems, Texas Commission on Environmental Quality (TCEQ).

Supply steel pipe with epoxy lining, capable of conveying water at temperatures not greater than 140°F. Provide linings conforming to American National Standards Institute/National Sanitation Foundation (ANSI/NFS) Standard 61, and certification from an organization accredited by ANSI. Unless otherwise noted,
coat exposed (wetted) steel parts of flanges, blind flanges, bolts, and access manhole covers, with epoxy lining as specified.

2.2.7.2. Epoxy Lining. Use Liquid Epoxy meeting the requirements of AWWA C-210, “Liquid Epoxy Coating System for the Interior and Exterior of Steel Water Pipelines,” except as modified in this specification. Provide a Liquid Epoxy system consisting of three coats of polyamide epoxy (no coal tar material) as follows:

- Prime Coat: 2-part, chemically cured, NSF certified epoxy, 4-6 mils dry film thickness (DFT).
- Intermediate Coat: 2-part NSF certified epoxy, 4-6 mils (DFT).
- Finish Coat: 2-part NSF certified epoxy, 4-6 mils (DFT).

Ensure the total system has a minimum DFT of 12 mils and a maximum DFT of 18 mils. Apply each coat in contrasting colors, using a buff prime and intermediate coat and a white finish coat. Use the same manufacturer to supply all material. Coal-tar epoxy material is not permitted. For surfaces to be coated, abrasive blast clean them to a near-white finish in accordance with SSPC-SP10 (NACE 2) to establish an average anchor profile of 2.0 to 3.0 mils, with no individual reading greater than 4.0 mils or less than 1.5 mils. Before applying, inspect the prepared and cleaned surface for evidence of non-visible contaminants such as soluble salts or chlorides in accordance with NACE Technical Committee Report “Surface Preparation of Contaminated Steel Surfaces,” NACE Publication 6G 186.

Re-clean the surface as necessary, until it is free of such contaminants.

Perform an interior adhesion test on pipe 30 in. in diameter and larger in accordance with ASTM D 4541. Minimum field adhesion: 700 psi. Perform this test on pipe for project at a frequency of one for every 1000 sq. ft. of epoxy lining. Perform a cure test in accordance with ASTM D 4752 (solvent rub test) and ASTM D 3363 (pencil hardness) for each section of pipe. Repair tested areas with approved procedures.

Provide Fusion Bonded Epoxy in accordance with AWWA C-213, “Fusion-Bonded Epoxy Coating for the Interior and Exterior of Steel Water Pipelines.”

2.2.7.3. External Coating.

2.2.7.3.1. Above Ground. Externally coat above ground steel piping and fittings with a 3-coat epoxy/epoxy/polyurethane system in accordance with AWWA C-218, “Coating the Exterior of Aboveground Steel Water Pipelines and Fittings,” Section 2.5, Coating System No. 4-91, except as modified in this specification.

- Prime Coat: 2-component, inhibitive epoxy primer; DFT of 4-6 mils.
- Intermediate Coat: 2-component, chemical resistant epoxy; DFT of 4-6 mils.
- Finish Coat: 2-component aliphatic polyurethane; DFT 1.5-2.5 mils.

Ensure the total system has a minimum DFT of 9.5 mils and a maximum DFT of 14.5 mils. Apply each coat in contrasting colors, using a buff prime coat and a blue finish coat, or as directed. Use the same manufacturer to supply all material. For surfaces to be coated, abrasive blast clean them to a near-white finish in accordance with SSPC-SP10 (NACE 2) to establish an average anchor profile of 2.0 to 3.0 mils, with no individual reading greater than 4.0 mils or less than 1.5 mils. Before coating, inspect the prepared and cleaned surface for evidence of non-visible contaminants such as soluble salts or chlorides in accordance with NACE Technical committee Report “Surface Preparation of Contaminated Steel Surfaces,” NACE Publication 6G 186. Re-clean the surface as necessary, until it is free of such contaminants.

Perform an interior adhesion test on pipe 30 in. in diameter and larger in accordance with ASTM D 4541. Minimum field adhesion: 700 psi. Perform this test on pipe for the project at a frequency of one for every 1000 sq. ft. of epoxy lining. Perform a cure test in accordance with ASTM D 4752 (solvent rub test) and ASTM D 3363 (pencil hardness) for each section of pipe. Repair tested areas with approved procedures.
Provide Fusion Bonded Epoxy in accordance with AWWA C-213, “Fusion-Bonded Epoxy Coating for the Interior and Exterior of Steel Water Pipelines.”

2.2.7.3.2. **Buried Steel Pipe, 24 Inch Diameter and Larger Only.** Coat buried steel pipe and fittings (except tunneled, cased, or augered holes) with either of the following systems:

2.2.7.3.2.1. **Tape Coating.** Provide an approved tape for external tape coating. Apply in accordance with AWWA C214 and the requirements of this section; 80 mil shop-applied, Polyken YG-III, Tek-Rap Yard-Rap, or approved equal. Components: Primer, one 20 mil layer of inner-layer tape for corrosion protection and two 30 mil layers of outer-layer tape for mechanical protection. Bond coupling to adjacent pipes with bonding cables as shown on the plans.

Use approved filler putty, type Polyken 939 insulating putty, or approved equal, to fill in the gap and create a smooth sloped transition between the top of the reinforcing plate and the pipe, before applying the tape coating.

Primer: Compatible with the tape coating, supplied by the coating-system manufacturer.

Provide pipe with shop coatings cut back approximately 4 to 4-1/2 in. from the joint ends to facilitate joining and welding of pipe. Taper successive tape layers by 1 in. stagger to facilitate field wrapping and welding of joints. Inner and outer tape width: 12 in. or 18 in.

Do not expose tape coating to direct sunlight for more than 60 days.

Wrap specials and fittings that cannot be machine wrapped due to configuration, with primer layer and two layers of prefabricated tape, each 35 mils thick. Overlap machine applied tape with hand applied tape by minimum of 2 in. and bind to it.

Apply Polyken approved 30 mil filler tape 931, or approved equal, parallel to spiral weld seams if weld height measures greater than or equal to 1/8 in.

2.2.7.3.2.2. **Polyurethane Coating.** Refer to Section 2.2.7.3.1., “Above Ground.” Heat Shrink Joint Sleeves for Tape Coating: Aqua-shield, or approved equal. For repairs to heat shrink joint sleeves, use Aqua-shield Repair Patch Kit, or approved equal.

2.2.7.3.3. **Steel Pipe in Tunneled, Cased, Bored, or Augered Holes.**

2.2.7.3.3.1. **24 Inch and Larger:** Prime steel pipe in tunneled or cased holes with 3.0 to 4.0 mils of a 2-part chemically cured rust inhibitive polyamide epoxy. Prepare the surface the same as for above ground external coating in accordance with Section 2.2.7.3.1., “Above Ground.” Fill the annular space between the tunnel or casing with the specified grout.

2.2.7.3.3.2. **20 Inch and Smaller:** Coat steel pipe in bored or augered holes, or holes in a tunnel or casing, with Corropipe II-TX or Corroclad 2000 as manufactured by Madison Chemical Industries, Inc., or approved equal, and apply in strict conformance with the manufacturer’s recommendations.

For external field welds and other field repairs, use Madison Chemical “GP” II or “TX” Touch Up, or approved equal, in conformance with the manufacturer’s recommendations.

2.2.7.4. **Inspections and Testing of Coatings.** Perform electrical inspection on the inner layer of tape before applying the intermediate layer of tape. If holidays are detected, repair holidays immediately before applying the outer layer of tape. Clear the holiday area of material and re-prime if necessary. Re-coat the area with inner wrap tape. Overlap the inner wrap tape onto the surrounding inner wrap coating by at least 2 in. Perform an electrical re-test at the repaired area after repairing the holiday, and before continuing the outer wrap.
Shrink Wrap: Perform an electrical inspection on the shrink wrap to check for holidays. Perform peel tests over the heat affected zone. Minimum acceptable result: 15 lbs. ft. per inch.

2.3.

Ductile-Iron Pipe and Fittings.

2.3.1.

Ductile-Iron Pipe. Provide ductile-iron pipe conforming to the requirements of AWWA Standard C151. Provide minimum lengths of 18 ft. and minimum thickness of Class 51 for water lines. Provide minimum thickness Class 53 for flanged pipe and minimum thickness Class 52 for areas with pipe offset sections. Use joints of the push-on type or flanged type unless otherwise shown on the plans. Use push-on joints conforming to the requirements of ASA Specification A21.11 (AWWA C111). Use flanged joints conforming to the requirements of AWWA C115 including a cloth inserted rubber gasket material 1/8 in. thick for flanged joints. Do not use threaded or grooved type joints which reduce the pipe wall thickness below the minimum required.

Provide polyethylene encasement material and install in accordance with AWWA C105, and backfill as specified. Apply a minimum of two complete wraps of 8 mil thick polyethylene. Use polyethylene encasement for open cut installations only. For augered sections or sections installed inside a tunnel or casing, provide polyurethane coating.

Ensure the pipe manufacturer performs hydrostatic testing in accordance with AWWA C 151, Section 5.2.1, at the point of manufacture, conducts the test for a minimum of 2 min. and thoroughly inspects the pipe. Repair or reject pipe revealing leaks or cracks. Obtain from the manufacturer and submit to the Engineer, the manufacturer’s written certification that the pipe and fittings used on this project have passed the hydrostatic test.

Prevent any lateral movement of thrust restraints throughout the pressure testing and operation. Passive resistance of soil will not be permitted in the calculation of thrust restraint.

Clearly mark the pipe section to show the location and thickness or pressure class color code.

Provide an exterior coating, in open cut excavations, consisting of a prime coat and an outside asphaltic coating conforming to AWWA C110, C115, or C151 for pipe and fittings. Encase the water line in a double wrap of polyethylene. Use polyethylene wrap conforming to the requirements of Section 2.13., “Polyethylene Film Wrap,” and Section 3.16., “Polyethylene Film Wrap.” Install bond wire as specified.

Coat Ductile-Iron pipe in augered holes with a polyurethane coating. Use a polyurethane coating conforming to the same requirements as those in Section 2.2.7.3.3., “Steel Pipe in Tunneled, Cased, Bored, or Augered Holes.”

2.3.2.

Fittings for Ductile-Iron Pipe. Ensure fittings for use with ductile-iron pipe of nominal sizes 4 in. through 48 in. conform to AWWA Standard C110 or C153.

Use joints of the push-on type or flanged type unless otherwise shown on the plans. Use push-on joints conforming to the requirements of ANSI Specification A21.11 (AWWA C111), rated for a 250 psig working pressure or A21.53 (AWWA C153). Use flanged fittings conforming to AWWA C110, of cast or ductile iron and conforming to ANSI B16.1, class 125 rated at 250 psig working pressure. Screw flanged fittings on threaded pipe ends done in the shop in accordance AWWA C115 for attaching, aligning, and facing.

Coat the inside and outside surfaces of the fittings as specified for the regular lengths of ductile-iron pipe.

Regardless of the coating system, for flanged joints in buried service, provide a petrolatum wrapping system, Denso, or approved equal, for the complete joint and alloy steel fasteners. Alternatively, provide bolts made of Type 304 stainless steel.

Bond joints in accordance with Section 2.6., “Joint Bonding and Electrical Insulation.”
2.3.3. **Restrained Joints.** For buried services, restrain ductile iron pipe 16 in. diameter and larger from movement, using special joints. Provide the following or approved equal:
- Super-Lock Joint by Clow Corporation.
- Flex-Ring or Lok-Ring by American Cast Iron Pipe Company.
- TR-Flex or Field-Lok Joint by U.S. Pipe and Foundry Company.

Provide restrained joints with enough distance from each side of the bend, tee, plug, or other fitting to resist thrust developed at the design pressure for the pipe.

Use water main interior coatings conforming to AWWA C104 or ANSI A21.4, cement-lined with seal coat or ANSI A21.16 fusion-bonded epoxy coating.

Ensure the material used for internal coating is NSF 61 and listed as suitable for contact with potable water as required by Chapter 290, Rules and Regulation for Public Water Systems, Texas Natural Resources Conservation Commission (TNRCC).

2.4. **Polyvinyl Chloride Pipe (PVC) Pipe and Fittings.**

2.4.1. **Polyvinyl Chloride Pipe, 2 Inch through 20 Inch.** Provide PVC pipe 4 in. and larger with integral bell type gasketed push-on joints or plain end pipe with twin-gasketed couplings conforming to the requirements of ASTM Designation D3139 for push-on-type joints. Use rubber gaskets conforming to the requirements of ASTM Designation D1869. Lubricate gaskets with a nontoxic water-soluble lubricant before joining pipe units. Fit pipe units together in such a manner to avoid twisting or damaging the rubber gasket.

Mark furnished PVC pipe on the spigot end for proper depth of makeup to the bell end of a joining length of pipe or fitting.

Provide valves for use with PVC pipe conforming to the requirements of Section 2.9., “Gate Valves, Tapping Valves, and Tapping Sleeves,” except provide valve ends of the push-on-joint type for use with PVC pipe. Provide self-extinguishing PVC pipe that bears Underwriters’ Laboratories mark of approval and is acceptable without penalty to Texas State Fire Insurance Committee for use in fire protection lines. Ensure PVC pipe bears the National Sanitation Foundation Seal of Approval (NSF-PW).

Provide PVC meeting the following thickness when using restrained joints:
- DR 18: For restrained joints where shown in the plans.
- DR 14: For alternate to offset pipe sections shown on the plans. Do not use PVC pipe for offset sections with depth cover greater than 20 ft. or less than 4 ft. Do not use PVC pipe in potentially petroleum-contaminated areas.

Make curves and bends by deflecting joints. Do not exceed the maximum deflection recommended the by the pipe manufacturer. Submit details of other methods of providing curves and bends for review by the Engineer.

Gaskets: Use gaskets meeting the requirements of ASTM F 477. Use elastomeric factory-installed gaskets to make joints flexible and watertight. Flat Face Matting Flange: Full faces 1/8 in. thick ethylene propylene rubber (EPR). Raised Face Matting Flange: Flat ring 1/8 in. EPR, with filler gasket between the outside diameter (OD) of the raised face and the flange OD to protect the flange from the bolting moment. Lubricant for rubber-gasketed joints: Water-soluble, non-toxic, non-objectionable in taste and odor imparted to fluid, non-supporting of bacteria growth, and causing no deteriorating effect on PVC or rubber gaskets. Use one manufacturer to furnish PVC pipe. When an approved PVC system is used as alternate to offset pipe section, a second manufacturer may be used. Do not use PVC pipe in potentially or known contaminated areas. Do not use PVC pipe in areas exposed to direct sunlight.

Ensure the pipe manufacturer performs hydrostatic testing accordance with AWWA C 900, AWWA C 905, AWWA C 909, and ANSI A 21.10 (AWWA C 110) at the point of manufacture. Obtain from the manufacturer.
2.4.2. **Fittings for Polyvinyl Chloride Pipe, 2 Inch.** Provide PVC pipe manufactured in accordance with the requirements of ASTM Designation D1784 for PVC 12454B (Type I, Grade 1) or PVC 12454C (Type I, Grade 1) and with a standard thermoplastic pipe dimension ratio (SDR) equal to 21.

Use fittings for 2 in. PVC pipe with a minimum pressure rating of 200 psi. Use fittings of the solvent-weld, socket type conforming to the requirements of ASTM D2466, or the gasketed push-on type conforming to the requirements of ASTM D2241. Use PVC solvent cements manufactured in accordance with ASTM D2564.

2.4.3. **Polyvinyl Chloride Pipe, 4 Inch Through 20 Inch.** PVC pipe 4 in. through 12 in.: AWWA C 900, AWWA C 909, Class 150, DR 18; AWWA C 900, Class 200, DR 14 as alternate to offset pipe sections; nominal 20 ft. lengths; cast-iron equivalent outside diameters. Pipe 14 in. through 20 in.: AWWA C 905; Class 235; DR 18; nominal 20 ft. lengths; cast-iron equivalent outside diameter.

Use joints conforming to the same requirements as those specified for 2 in. PVC pipe.

2.4.4. **Bends and Fittings for PVC Pipe, 4 Inch through 20 Inch.** Provide fittings conforming to the requirements of Section 2.3.2., “Fittings for Ductile-Iron Pipe.” Use polyethylene wrapped fittings as required by Section 2.13., “Polyethylene Film Wrap,” and Section 3.16., “Polyethylene Film Wrap.”

Provide restrained joints with enough distance from each side of the bend, tee, plug, or other fitting to resist thrust developed at the design pressure for the pipe.

Approved Certa-Lok PVC restrained joints, 200-250 psi, may be provided for up to 12 in. in diameter. Where preventing movements of 12 in. diameter or greater pipe due to thrusts is necessary, provide the following restrained joints, or approved equal:

2.4.4.1. **Fittings.** JCM 610 Sur-Grip Fitting Restrainer by JCM Industries, Inc. or Series 500 Fitting Restrainer by Ebba Iron, Inc., One Bolt by One Bolt, Inc., or approved equal.

2.4.4.2. **Bell and Spigot.** JCM 620 or 621 Sur-Grip Bell Joint Restrainer by JCM Industries, Inc. or Series 1500 or Series 1100HV Joint Restrainer by Ebba Iron, Inc., One Bolt by One Bolt, Inc., or approved equal.

2.4.5. **Nonmetallic Pipe Detection.** Where nonmetallic pipe is installed longitudinally underground, provide for a method of detecting the location of the nonmetallic pipe. The specific method is shown on the plans or will be approved. This system may involve some components to be installed in the trench around the pipe to be detected using a metal detector. Or the system may consist of locating equipment capable of creating a non-destructive pressure wave which can be detected above ground using a portable detection device with both audible and visual indicators. Ensure either system of detection is capable of accurately locating the pipe to a maximum depth of 3 ft. over the areas shown on the plans.

Either system must be capable of locating lines under earth, concrete, or asphaltic surfaces. Use equipment, materials, and installation as specified by the manufacturer.

2.5. **Fiberglass Reinforced Plastic (FRP) Pipe for Casing.**

2.5.1. **FRP Casing Pipe.** Ensure pipe used for casing is centrifugally cast fiberglass pipe conforming to the requirements of AWWA Standard C 950 and the requirements of this section.

Design fiberglass casing pipe wall thickness to withstand the most critical simultaneous application of external loads, including construction loads and internal pressures. Base the design on the minimum of AASHTO HS-20 loading, AREMA E-80 loads, and depths of bury as indicated on the plans. Design for the most critical groundwater level condition. The pipe design conditions follow:

- Working Pressure = 100 psi
Hydrostatic Field Test Pressure = 150 psi

Provide the pipe with pressure rated fiberglass sleeve couplings or O-ring bell-and-spigot joints that use elastomeric sealing gaskets to maintain joint water-tightness conforming to the requirements of ASTM D 4161. Provide the casing end treatments with rubber boot type seals capable of maintaining casing water-tightness. Provide casing pipe, gasketing and end treatments that have a very-low to zero corrosive reaction to the chemicals listed on the pipeline product lines shown in the plans. The pipeline products encountered at proposed water line crossings include, but are not limited to:

- MTBE (Methyl Tertiary Butyl Ether)
- TBA (tertiary butyl arsine)
- Nitrogen
- Benzene
- Petroleum
- Natural Gas
- Ethane

Provide pipe manufactured with an epoxy vinyl ester resin with the physical and chemical properties of HETRON 970-35 by Ashland, or approved equal.

Provide fiberglass casing sections in nominal lengths of 20 ft. Provide a stiffness class of fiberglass pipe that satisfies design requirements, but not less than 46 psi, when used in direct bury operation. For tunneled and augered sections, use pipe and pipe joints designed to carry loads including but not limited to: Overburden and lateral earth pressures, subsurface soil, grouting, other conditions of service, thrust of jacks, and stress anticipated during handling and installation. Do not create grout holes with pipe.

Submit shop drawings signed and sealed by a Professional Engineer licensed in State of Texas showing following:

- Manufacturer’s pipe design calculations including thrust restraint design.
- Details of pictorial nature of critical features and specials indicating alignment and grade, laying dimensions, fabrication, fitting, flange, and fully dimensioned details, with plan view detailing pipe invert elevations, bends, and other critical features. Indicate station numbers for fittings corresponding to the e plans. Do not start production of pipe and fittings before review and approval by Engineer. Provide final approved lay schedule on CD-ROM in Adobe Portable Document Format (*.PDF).
- Certification from manufacturer that design was performed for the project in accordance with the requirements of this section. This Certification is to be signed and sealed by Professional Engineer licensed in the State of Texas.
- Gasket and resin selection for approval.

2.6. **Joint Bonding and Electrical Insulation.** For electrical bond wires, use a minimum No. 2 AWG, 7 strand, and copper cable, furnished with high molecular weight polyethylene insulation (HMWPE). Remove 1 in. of HMWPE insulation from each end of the bond wire. Provide 2 bond wires as shown on the plans.

Provide a flange adaptor with an insulating kit, as required, when connecting new piping to existing piping and piping of different materials. Provide electrical flange insulation through the installation of the following materials:

2.6.1. **Insulating Gasket.**

2.6.1.1. **Piping Sized 30 Inches in Diameter and Greater.** Provide Pyrox G-10 with nitrile seal, Type E LineBacker gasket as manufactured by Pipeline Seal and Insulator, Inc. or approved equal.

2.6.1.2. **Piping Sized Between 12 Inches and 24 Inches in Diameter.** Provide Phenolic PSI with nitrile seal, Type E LineBacker gasket as manufactured by Pipeline Seal and Insulator, Inc., or approved equal.
The Contractor may provide a plain-faced phenolic gasket, as manufactured by Pipeline Seal and Insulator, Inc., or approved equal. Place the phenolic gasket between two full-faced gaskets. Provide cloth-inserted rubber gasket material, 1/8 in. thick in accordance with AWWA C207. Use gaskets that are factory cut to proper dimensions.

2.6.2. **Sleeves and Washers.**

2.6.2.1. **Piping Sized 30 Inches in Diameter and Greater.** Provide full length Mylar sleeves with Pyrox G-10 washers, double washer sets as manufactured by Pipeline Seal and Insulator Inc., or equal.

2.6.2.2. **Piping Sized Between 12 Inches and 24 Inches in Diameter.** Provide full length Mylar sleeves with phenolic washers, double washer sets as manufactured by Pipeline Seal and Insulator, Inc. or approved equal.

2.7. **Copper Tubing for Copper Service Lines and Small Mains.** For 3/4 in., 1 in., 1-1/2 in., and 2 in. diameter copper tubing for underground service, use Type "K" soft annealed and seamless with the proper bending temper and conforming to ASTM Designation B88 and Federal Specification WW-T-799 with the following exceptions:

Section 14 of ASTM Designation B88 is hereby modified to provide for the following number of samples for each size of tubing:

- For each 7,500 ft. of tubing: 1 sample
- Items of less than 7,500 ft. of tubing: 1 sample

Furnish 3/4 in. and 1 in. tubes in 60 ft. coils. Furnish 1-1/2 in. and 2 in. tubes in coils of minimum 40 ft. length. Use minimum joint spacing in multiples of 60 ft. or 40 ft. respectively.

Provide flared or compression-type brass fittings for use with Type K annealed copper tubing in accordance with AWWA C600.

2.8. **Brass Fittings for Underground Services Lines and Small Mains (Less Than 24 inch Diameter).**

2.8.1. **General.** Unless otherwise provided in this specification, use brass fittings in underground installations of service lines and small mains in the water distribution system.

Use brass fittings composed of Copper Alloy No. C 83600 conforming to the requirements of ASTM Designation B62. Ensure the general pattern for each fitting conforms to that of standard brass fittings as manufactured by Mueller Company, Hays Manufacturing Company, or an approved equal.

Compression fittings may be used for unions except where they occur under existing or future paving. Use compression tube fittings with Buna-N beveled gaskets.

Ensure each fitting has the manufacturer’s name or trademark and size plainly stamped into or cast on the body. Provide straight pipe adjacent to fittings for at least 10 in.

Provide waterways no smaller in diameter than the nominal size of the stop and accurately finish to a watertight joint; face all nuts and washers to a true fit; and design them such that the joint remains watertight and reasonably easy to operate after repeated use over a number of years. Use external threads conforming to AWWA Standard C800 and, on corporation stops, protect them in shipment by using plastic coatings or an alternate approved method.

2.8.2. **Corporation Stops.** Provide inlet ends of one of the following types: Standard corporation stop threads as specified in Table 1, AWWA C800; iron pipe thread (permissible for use with service saddles only); or Hays 4200- 4202 or approved equal.
Use one of the following types of valve body: Tapered plug type; O-ring seat ball type; or the rubber seat ball type.

Provide outlet ends with a flared-copper connection for use with Type-K soft copper or compression type fitting.

For PVC pipe, provide all brass corporation stops specifically designed for use with PVC pipe.

2.8.3. **Curb Stops.** Provide inlet ends with flared copper connections or compression type fittings.

Use a valve body with a straight through or angled meter stop design equipped with padlock wings and of the O-ring seal straight plug type or the rubber seat ball type.

Provide the outlet with female iron pipe threads or swivel nut spud threads, 3/4 in. and 1 in. stops, and with 2-hole flanges for 1-1/2 in. and 2 in. sizes.

2.8.4. **Service Saddles.** Provide service saddle with dual straps and one of the following types: Brass body and straps; ductile-iron body and straps, vinyl coated; ductile-iron body, vinyl coated with stainless steel straps.

Taps for PVC Water Mains: Use dual strap or single, wide band strap saddles which provide full support around the circumference of the pipe and a bearing area with enough width along the axis of the pipe, 2 in. minimum, to ensure that the pipe will not be distorted when the saddle is tightened. Use Romac Series 101N wide band, stainless-steel tapping saddle with AWWA standard thread (Mueller thread), or approved equal.

2.8.5. **Angle Stops.** Provide angle stops in accordance with AWWA C800; ground-key stop type with bronze locking head stop cap; inlet and outlet threads conforming to the application tables of AWWA C800; and inlet side with a flared connection or Mueller 110 compression type, or an approved equal.

2.8.5.1. **Outlet for 3/4 Inch and 1 Inch Size.** Provide meter swivel nut with saddle support.

2.8.5.2. **Outlet for 1-1/2 Inch through 2 Inch Size.** Provide O-ring sealed meter flange, iron pipe threads.

2.8.6. **Fittings.** Provide fittings in accordance with AWWA C800 and as described below:

2.8.6.1. **Castings.** Smooth, free from burrs, scales, blister, sand holes, and defects which would make them unfit for their intended use.

2.8.6.2. **Nuts.** Smooth cast and with symmetrical hexagonal wrench flats.

2.8.6.3. **Flare-joint Fittings.** Smooth cast. Machine seating surfaces for metal-to-metal seal, to proper taper or curve, free from any pits or protrusions.

2.8.6.4. **Thread Fittings.** Use N.P.T. threads and protect male threaded ends in shipment by using plastic coatings or other equally satisfactory means.

2.8.6.5. **Compression Tube Fittings.** Provide with a Buna-N beveled gasket.

Brass fittings will require the following testing:

- Submerge in water for 10 sec. at 85 psi with stops in both closed and open positions.
- Reject any fittings that show air leakage. The Department may confirm tests locally. An entire lot from which samples were taken will be rejected when random sampling discloses unsatisfactory fittings.

2.9. **Gate Valves, Tapping Valves, and Tapping Sleeves.**

2.9.1. **Gate Valves.** Use gate valves conforming to AWWA Standard C500, C509, C515, and the following supplemental specifications:
Provide direct-bury valves and valves in subsurface vaults that open clockwise. Prove above-ground valves that open counter-clockwise.

If the type of valve is not indicated on the plans, use gate valves as line valves for sizes less than 20 in. If the type of valve is specified, no substitute will be allowed.

Use a valve body of straight-through or angled, meter-stop design equipped with the following:

- O-Ring Seal – straight plug type.
- Rubber Seat – ball type

Provide the outlet end with female, iron-pipe threads or swivel-nut, meter-spud threads on 3/4 in. and 1 in. stops; and with a 2-hole flange on 1-1/2 in. and 2 in. sizes.

Where installing at depths greater than 4 ft., provide gate valves with a non-rising, extension stem with a coupling able to attach securely to the operating nut of the valve. Terminate the upper end of the extension stem in a square wrench nut no deeper than 4 ft. from the finished grade. Support the extension stem with an arm attached to the wall of the manhole or structure that loosely holds the extension stem and allows rotation in the axial direction only.

Provide gate valves in factory mutual type meter installations conforming to the provisions of this specification with outside screw and yoke valves, and carrying the label of Underwriter’s Laboratories, Inc.

Provide coatings in accordance with AWWA C550; Indurall 3300 or approved equal, that are non-toxic; do not impart taste to water; function as a physical, chemical, and electrical barrier between base the metal and surroundings; and are a minimum 12 mil thick fusion-bonded epoxy. Before assembling the valve, apply the protective coating to the interior and exterior surfaces of the body.

Provide flange joints when the valve is connected to steel pipe.

Mount valves horizontally if the proper ground clearance cannot be achieved by a normal vertical installation. For horizontally mounted gate valves, provide bevel operation gear that is mounted vertically, for above ground operation.

2.9.1.1. Gate Valves 1-1/2 Inches in Diameter and Smaller. Use an operating pressure of 125 psi; bronze mounting; rising-stem; single-wedge; disc type; screwed ends; Crane No. 428, or approved equal.

2.9.1.2. Gate Valves 2 Inches in Diameter. Use an iron body; double gate; non-rising stem; 150 lb. test; 2 in. square nut operating clockwise to open.

2.9.1.3. Gate Valves 4 Inches to 12 Inches in Diameter. Non-directional; standard-wall resilient-seated in accordance with AWWA C509, parallel seat double disc in accordance with AWWA C500, or reduced-wall resilient-seated gate valves AWWA C515; operating pressure of 200 psi; pressure rating bronze mounting; push-on bell ends with rubber joint rings and nut-operated unless otherwise specified; resilient-seated provided by American Darling AFC-500, US Pipe Metro Seal 200, or approved equal; Reduced-wall resilient seated valves by American Flow Control Series 2500, or approved equal; double disc provided by American Darling S2, Clow F-6102, or approved equal; and comply with following unless otherwise shown on the plans:

2.9.1.3.1. Design. Fully encapsulated rubber wedge or rubber seat ring mechanically attached with minimum 304 stainless steel fasteners or screws; threaded connection isolated from water by compressed rubber around opening.

2.9.1.3.2. Body. Cast or ductile iron; flange bonnet and stuffing box together with ASTM A307 Grade B bolts. Cast the manufacturer’s initials, pressure rating, and year manufactured into the valve body.
2.9.1.3.3. **Bronze.** Ensure that the valve components in the waterway contain at most 15% zinc and at most 2% aluminum.

2.9.1.3.4. **Stems.** ASTM B763 bronze, alloy number 995 minimum yield strength of 40,000 psi; minimum elongation in 2 in. of 12%; non-rising.

2.9.1.3.5. **O-rings.** For AWWA C509, Sections 2.2.6 and 4.8.2. For AWWA C500, Section 3.12.2. For AWWA C515, Section 4.2.2.5.

2.9.1.3.6. **Stem Seals.** Consist of 3 O-rings, 2 above and 1 below the thrust collar, with an anti-friction washer located above the thrust collar.

2.9.1.3.7. **Stem Nut.** Independent or integrally cast of ASTM B62 bronze.

2.9.1.3.8. **Resilient Wedge.** Molded; synthetic rubber; vulcanized and bonded to cast-iron or ductile-iron wedge tested to meet or exceed ASTM D429 Method B; or attached with 304 stainless steel screws; seat against epoxy-coated surface in the valve body.

2.9.1.3.9. **Bolts.** Furnish in accordance with AWWA C509 Section 2.2.5, AWWA C500 Section 3.4, or AWWA C515 Section 4.4.4 stainless steel; cadmium-plated, or zinc-coated.

2.9.1.4. **Gate Valves 14 Inches and Larger in Diameter.** AWWA C500; parallel seat double disc, or AWWA C515; reduced-wall, resilient-seated gate valves; flanged ends and nut-operated unless otherwise specified. Provide reduced-wall resilient-seated valves with 250 psig pressure rating and manufactured by American Flow Control Series 2500, or approved equal. Provide double disc valves with 150 psig pressure rating and manufactured by American Darling 52, Clow F-6102, or approved equal. Comply with following requirements unless otherwise shown on the plans.

2.9.1.4.1. **Body.** Cast iron or ductile iron; flange together bonnet and stuffing box with ASTM A 307 Grade B bolts. Cast the following into the valve body: manufacturer's initials, pressure rating, and year manufactured. When mounting horizontally, equip valves greater in diameter than 12 in. with rollers, tracks, and scrapers.

2.9.1.4.2. **O-rings.** For AWWA C500, Section 3.12.2. For AWWA C515, Section 4.2.2.5.

2.9.1.4.3. **Stems.** ASTM B 763 bronze, alloy number 995 minimum yield strength of 40,000 psi; minimum elongation in 2 in. of 12%, non-rising.

2.9.1.4.4. **Stem Nuts.** Machined from ASTM B 62 bronze rod with integral forged thrust collar machined to size; non-rising.

2.9.1.4.5. **Stem Seals.** Consist of 3 O-rings, 2 above and 1 below the thrust collar, with an anti-friction washer located above the thrust collar for operating torque.

2.9.1.4.6. **Bolts.** AWWA C500 Section 3.4 or AWWA C515 Section 4.4.4; stainless steel: cadmium-plated, or zinc-coated.

2.9.1.4.7. **Discs.** Cast iron with bronze disc rings securely pinned into machined dovetailed grooves.

2.9.1.4.8. **Wedging Device.** Solid bronze or cast-iron, bronze-mounted wedges. Thin plates or shapes integrally cast into cast-iron surfaces are acceptable. Provide other moving surfaces integral to wedging action that are bronze monel or nickel alloy-to-iron.

2.9.1.4.9. **Gear Cases.** Cast iron; furnished on 18 in. and larger valves and of extended type with steel side plates; lubricated; gear case enclosed with oil seal or O-rings at shaft openings.
2.9.1.10. **Bronze Mounting.** Built as integral unit mounted over, or supported on, cast-iron base and of sufficient dimensions to be structurally sound and adequate for imposed forces.

2.9.1.11. **Stuffing Boxes.** Located on the top of the bonnet and outside the gear case.

Provide a bypass for double-disc gate valves 24 in. and larger.

2.9.1.5. **Gate Valves 14 Inches to 36 Inches in Diameter.** Provide AWWA C515, reduce-wall, resilient-seated gate valves with 250 psi pressure rating. Furnish with spur or bevel gearings.

Mount valves horizontally if proper ground clearance cannot be achieved by normal vertical installation. For horizontally mounted gate valves, provide bevel operation gear mounted vertically for above ground operation.

Use valve body, bonnet, wedge, and operator nut constructed of ductile-iron.

Fully encapsulate the exterior of the ductile-iron wedge with rubber. Ensure the wedge is symmetrical and seals equally well with flow in either direction.

Bolts: AWWA C515, Section 4.4.4, stainless steel; cadmium-plated or zinc-coated.

Provide high-strength bronze stem and nut.

O-rings: AWWA C515, Section 4.2.2.5, pressure O-rings as gaskets. Provide stem sealed by 3 O-rings. The top 2 O-rings are to be replaceable with the valve fully open at the full rated working pressure. Provide thrust washers for the thrust collar for easy valve operation.

2.9.2. **Tapping Valves.** Provide double disc or resilient wedge type tapping valves meeting the requirements of gate valves, as listed above, except for the type of joints; inlet flanges meeting AWWA C110, Class 125 or meeting AWWA C110, Class 150 or higher and with a minimum eight-hole flange. Provide outlets with standard mechanical or push-on type joints that fit any standard tapping machine.

Provide a valve seat opening such that a full-size shell cutter for the nominal size tap may pass through the valve without any contact with the valve body.

Provide valve boxes conforming to the requirements of Section 2.11., “Valve Boxes.”

2.9.3. **Tapping Sleeves.** Provide tapping sleeve bodies in accordance with AWWA C110 ductile-iron; or AWWA C111 carbon steel; in 2 sections to be bolted together with high-strength, corrosion-resistant, low-alloy, steel bolts, and with mechanical joint ends.

Provide flanged branch outlets of tapping sleeves; machined recess in accordance AWWA C207 Class D, ANSI 150 lb. drilling. Ensure the gasket is affixed around the recess of the tap opening to preclude rolling or binding during installation.

Provide tapping sleeves with a 3/4 in. NPT test opening for testing before tapping. Provide a 3/4 in. bronze plug for the opening.

2.9.3.1. **Steel Sleeves.** Do not use steel sleeves for taps greater than 75% of the pipe diameter.

Use steel sleeves only on pipe diameters 6 in. and larger. No “size-on-size” sleeve will be permitted (i.e., 6 in. x 6 in., etc.). To accomplish size-on-size connections, the next smaller tap may be made and a LEB (large end bell) increaser used. Where fire service from a 6 in. main is approved, only a ductile-iron split sleeve is permitted.
Provide a body of heavy welded steel construction. Groove the top half of the body to permanently retain a neoprene O-ring seal against the outside diameter of the pipe.

Provide fusion-bonded steel sleeves, epoxy-coated to a minimum 12 mil thickness. Ensure the finished epoxy coat is free of laminations and blisters; does not peel; remainspliant and resistant to impact. Ship steel sleeves in wooden crates that protect the epoxy coating during transport and storage.

Use bolts and nuts conforming to AWWA Standard C500, Section 3.5, and coated with a 100% vinyl resin (or made of corrosion resistant material).

Steel Tapping Sleeves: Use Smith Blair No. 622, Rockwell No. 623, JCM No. 412, or approved equal.

2.9.4. **Air Release and Vacuum Relief Valves.**

2.9.4.1. **Combination Air Valves.** Provide where combination air valves are designed to fulfill the functions of air release, permitting the air accumulated in the line at the high point of elevation to escape while the line is under pressure, and vacuum relief. Valve exterior: Paint with shop-applied primer suitable for contact with potable water. Provide Apco Model 145C or 147C, Val-matic Series 200, or approved equal valves as shown on the plans.

2.9.4.2. **Air Release Valves.** Provide with flanged inlet and outlet connections as specified on the plans. For 2 in. and 3 in. single body valves, size the orifice for a 100 psi working pressure. Fabricate the air relief valve of materials as follows: body and cover, ASTM A 48, Class 30 cast-iron; float and leverage mechanism, ASTM A 240 or A 276 stainless steel; orifice and seat, stainless steel against Buna-N or Viton mechanically retained with hex head nut and bolt. Other valve internals: stainless steel or bronze.

2.9.4.3. **Air Release and Vacuum Valves.** Provide single-body standard combination or duplex-body custom combination valves as shown on the plans.

2.9.4.3.1. **2 Inch and 3 Inch Single-body Valves.** Provide inlet and outlet sizes as shown on the plans and an orifice sized for a 100 psi working pressure. Valve materials: Body, cover, and baffle, ASTM A48, Class 35, or ASTM A126, Grade B cast iron; plug or poppet, ASTM A276 stainless steel; float, ASTM A240 stainless steel; seat, Buna-N; other valve internals, stainless steel. Paint valve exterior with an epoxy shop-applied primer. Provide Apco Model 145C or 147C, Val-matic Series 200, or approved equal.

2.9.4.3.2. **3 Inch and Larger Duplex-body Valves.** As shown on the plans, provide an Apco Series 1700 with a No. 200 air release valve, GA Industries Fig. No. AR/GH-21K/280, or approved equal.

Air and vacuum valve materials: Body and cover, ASTM A48, Class 35, cast iron; float, ASTM A240 stainless steel; seat, Type-304, stainless steel and Buna-N; other valve internals, stainless steel or bronze. Air release valve: Construct as specified in Section 2.9.4.2., “Air Release Valves.”

2.9.5. **External Coating Above Ground Valves.** Coat valves with a polyurethane coating conforming to the same requirements under Section 2.2.7.3.2.2., “Polyurethane Coating.”

2.10. **Butterfly Valves.** Provide butterfly valves and operators conforming to the requirements of AWWA Standard C504 Class 150B, except as modified or supplemented in this specification. Provide short-body valves with a flanged design for closing against a flow velocity of 16 ft. per sec. at a normal working pressure of 150 psi and with a downstream pressure of 0 psi (Class 150B).

Provide direct-bury valves and valves in subsurface vaults that open clockwise. Provide above-ground and plant valves that open counter-clockwise.

Body: Cast iron, ASTM 126, Class B.

Discs for Butterfly Valves: Either cast-iron or ductile-iron.
Provide valves with Buna-N or neoprene seats mounted either on the disc or in the body. Mechanically secure the seats, not relying solely on adhesive properties of epoxy or similar bonding agents to attach the seats to the body. Mechanically retain the seats on the disc by using stainless steel (18-8) retaining rings held in place by stainless steel (18-8) cap screws that pass through a rubber seat for added retention. When the seat is on the disc, retain the seat in position by using shoulders located on both the disc and the stainless-steel retaining ring. Provide mating surfaces for seats of Type 304 or Type 316 stainless steel, secured to the disc by mechanical means. Sprayed on or plated mating surfaces will not be allowed. Provide a cast-iron disc conforming to ASTM A126, Class B or ductile-iron conforming to AWWA C151. The seat must be replaceable in the field for valves greater than 30 in. in diameter. Valves with segmented retaining rings will not be accepted.

Coat interior wetted ferrous surfaces of the valve, including the disc, with epoxy suitable for potable water conditions. Furnish epoxy, perform surface preparation, and apply epoxy in accordance with AWWA C550 and the coating manufacturer’s recommendations. Provide 3 coats of 2-component, high-build epoxy with a minimum dry thickness of 12 mils. Use Indurall 3300, or approved equal, epoxy coating. Holiday test and measure the coatings for thickness.

Use Type 304 or Type 316 stainless steel for the valve shaft and keys, 24 in. in diameter and greater, that require a minimum of 2 in., or taper pins used for attaching the valve shaft to the valve disc. Do not use a torque plug to attach the valve shaft to the valve disc. All portions of shaft bearings: Stainless steel, bronze, nylon, or Teflon (supported by fiberglass mat or backing material with a proven record of preventing Teflon flow under load) in accordance with AWWA C504, stainless steel bearing material. Design the valve shaft to withstand 3 times amount of torque necessary to the open the valve.

Packing: Field-adjustable, split-V type, and replaceable without removing the operator assembly.

Retaining hardware for seats: Type 304 or Type 316 stainless steel. Nuts and screws used with clamps and discs for rubber seats: Securely held with lock tight, or other approved method, from loosening by vibration or cavitational effects.

Seat the valve disc in a position 90° to the pipe axis and ensure it rotates 90° between the fully-opened and tightly-closed position. Install valves with valve shafts horizontal and the convex side of the disc facing the anticipated direction of flow, except where shown otherwise on the plans.

Use push-on or flanged (flanged valves coupled to Bell-Flange adapters may be used) joint types for installation with cast-iron or ductile-iron pipe. Use flanges conforming in dimensions and drilling to ANSI B16.1 for cast-iron body valves, Class 125. Use bolts conforming to AWWA Standard C500, Section 9, in valve installations, including bolts for operators, housing, etc. Use flanged joints for steel or concrete steel cylinder pipes.

Provide properly sized gear type actuators for valves 8 in. and larger. Provide fully enclosed and traveling-nut type, rack and pinion type, or worm-gear type gear actuators. Equip direct-bury valves with a 2 in. square nut operating clockwise to open the valve. Completely enclose the space between the actuator housing and the valve body. Ensure that no moving parts are exposed to the soil or elements. Provide oil-tight and water-tight actuators, factory packed with suitable grease. Use operators conforming to the requirements of AWWA Standard C504 and equipped with adjustable limit stop devices.

Design worm-gear and traveling-nut operators so a torque of 150 ft.-lb. or less will operate the valve at the most adverse condition for which the valve is designed. Ensure the vertical axis of the operating nut does not move as the valve is opened or closed.

If the type of valve is not indicated on the plans, use butterfly valves for line valve sizes 24 in. and larger. For valves 24 in. and larger, provide valves manufactured by Pratt, Dezurik, or approved equal. Provide valves from an approved manufacturer. Provide valves and actuators from the same valve or actuator manufacturer. Ensure the shaft connecting the actuator to the valve body is fully enclosed. Provide a fully enclosed, watertight bonnet and extension.
2.11. **Valve Boxes.** Provide Type "A," cast-iron or ductile-iron slide-type valve boxes as manufactured by Bass and Hays Foundry, Inc. or approved equal. Ensure the chemical composition of Casting "A" conforms to the requirements of AWWA Standard C110. Fabricate the base of each valve box from 6 in. cast-iron or ductile-iron pipe, conforming to the requirements of this specification except that the lining and coating will comply with this section.

Cast a letter "W" into the lid, 1/2 in. in height and raised 3/32 in., for valves serving potable water lines.

Coat boxes, bases, and lids by dipping them in hot bituminous varnish.

2.12. **Fire Hydrants.**

2.12.1. **General.** Provide fire hydrants, including 6 in. gate valve and box, conforming to the requirements of AWWA C502, except as modified or supplemented in this specification, and that are on the Utility Owner's approved products list.

Provide fire hydrants in conformance with AWWA C 502, Standards for Dry Barrel Fire Hydrants (Latest Edition). Provide hydrants that are approved by the City of Houston. Only hydrants with a current Certification of Responsibility will be allowed. The hydrants shown in Table 4 are currently approved. Alternative hydrants will not be considered.

<table>
<thead>
<tr>
<th>Hydrant</th>
<th>City of Houston Engineering Control Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Pipe and Foundry Con. M-94 Metropolitan 5-1/4 in. A495</td>
<td>DWG 960324 Rev. dated 2/06/02</td>
</tr>
<tr>
<td>Mueller Company Super Construction 250 5-1/4 in. A423</td>
<td>DWG FH-70 Rev. B dated 7/02/08</td>
</tr>
<tr>
<td>American AVK Company AVK Series 2780 Nostalgic</td>
<td>DWG 2780-Houston-2Rev. AAD3, dated 3/24/04</td>
</tr>
</tbody>
</table>

Ensure they are of dry-barrel, tamper resistant, and collision-safety construction design. Provide hydrants from same manufacturer throughout the project.

Installation of used, salvaged, or reconditioned fire hydrants will not be permitted.

2.12.2. **Hydrant Barrel.** Fabricate the lower hydrant barrel as a ductile-iron single piece, and connect it to the upper hydrant barrel by means of a joint coupling that will provide a 360° rotation of the upper barrel. Clearly mark the finish grade on the barrel. Provide the specified bury length, equal to the distance from the bottom of the inlet to the ground line.

Provide the hydrant barrel with a non-tapped, non-corrodible drain or drip valve, completely made of bronze or bronze-lined. Ensure the drain valve operates, automatically and positively, to drain the barrel when the hydrant valve is in the fully-closed position, and to completely close the drain opening so as to prevent leaking when the hydrant valve is in the open position.

Equip each hydrant barrel with two 2-1/2 in. nominal inside diameter hose nozzles and a single 4 in. nominal inside diameter pumper nozzle conforming with National (American) Standard Fire Hose Coupling Screw Threads, bronze (minimum Grade D) (per NFPA No. 194 and ANSI B26-1925).

Security fasten field-replaceable nozzles into the upper barrel by mechanical means, install by turning counterclockwise, seal with O-rings, and mechanically lock in place with a security device. Provide nozzles with nozzle caps and neoprene gasket seals. Securely attach the caps to the hydrant barrel with chains of not less than 1/8 in. diameter. Situate the pumper nozzle to allow an unobstructed radius of 10 in. from the threaded surface of the nozzle throughout the path of travel of a wrench or other device used to fasten a hose to the nozzle.
Orient the hydrant so that the pumper nozzle faces the curb or street nearest the hydrant.

Design the barrel joint connecting the upper and lower hydrant sections so that the hydrant shut-off valve will remain closed and reasonably tight against leakage in the event of an impact accident resulting in damage to or breaking of the hydrant above or near ground level. Provide the joint with a breakable bolt flange or breakable coupling including an adequate number of bolts, above finish grade.

Fabricate the operating and hold down nuts of stainless steel, cast-iron, or ductile-iron with bronze inserts. Provide a security device with each hydrant employing a bronze operating nut to protect this feature of the hydrant from malicious mischief or unauthorized removal. Ensure that such security devices do not require special tools for normal off/on operation of the hydrant. For the operating nut, use a tapered pentagon 1-1/2 in. point to face at the base, and 1-1/8 in. point to face at the top of the nut, opening left (counterclockwise). Fabricate hold down assemblies of metallic materials suitable for the intended service.

Design the hydrant barrel to permit the use of one or more standard extensions, available from the hydrant manufacturer, in lengths from 6 in. to 60 in. in 6 in. increments.

2.12.3. **Shut-off Valve and Inlet Shoe.** Provide hydrants with circular, compression-type shut-off valves which close with the water pressure, with center stem construction and which remain closed and tight against leakage upon impact. Ensure each shut-off valve is circular and not less than 5-1/4 in. in diameter. Seal the bottom end of the stem threads from contact with water by using a cap nut. Provide a bronze valve seat ring, threaded into a bronze drain ring to provide an all-bronze drain way. Ensure the seat ring and main valve assembly is removable from above ground through the upper barrel by using a light-weight seat removal wrench.

Construct the valve seat facing of molded rubber with a Durometer rating of 90 ± 5, a minimum thickness of 1/2 in., and that is resistant to microbiological attack.

Unless otherwise shown on the plans, provide a hydrant inlet shoe that is an elbow with the AWWA standard bell designed for a nominal 6 in. mechanical joint hub end, or push-on assembly as specified. Provide a hydrant shoe of cast-iron or ductile-iron pipe that is flanged, swivel or slip joint with harnessing lugs for restrained joints. Coat the interior of the shoe with a minimum of 12 mils of fusion bonded epoxy conforming to NSF Standard 61. For underground flanging, incorporate a minimum of six 3/4 in. diameter electro-galvanized or cadmium-coated steel bolts or four 5/8 in. diameter stainless or cadmium-coated steel bolts.

2.12.4. **Valve Stem.** Where threads are located in the barrel or waterway, use Everdure operating stems, or other high-quality, non-correctible metal.

Use bronze-to-bronze working parts in the waterway; genuine wrought-iron or steel where threads are not located in the barrel or waterway, bronze bushed at the penetration of the stuffing box; seal the threads against contact with water regardless of the (open or closed) position of the main valve. Provide the valve stem with a breakable stem coupling opposite the barrel breakaway feature. Construct connecting pins and locking devices of bronze or other corrosion-resistant material. Provide the valve stem with a bronze sleeve, O-ring seals, and travel stop. Ensure the operating threads, working parts, and bearing surfaces are fully lubricated during normal operation of the fire hydrant. Ensure the lubricant is contained in a lubricating reservoir that is sealed at the top and bottom. Equip the operating assembly with a thrust bearing or lubricated thrust collar to minimize operating torque. Provide a lubricant meeting the requirements of FDA 21 CFR 178.3570 and manufactured with FDA-approved oxidation inhibitors.

Provide a valve stem that operates counterclockwise (turning to the left) to open.

2.12.5. **Gaskets and Seals.** Provide dynamic seals of O-ring type, oil-resistant material, which do not require adjustment for a watertight seal. Provide moving parts in contact with the seal made of bronze or other corrosion-resistant material.

Provide static seals of Buna “N” or other approved synthetic composition.
2.12.6. **Painting.** Shop coat the fire hydrant's exterior with 1 coat of rust prohibitive primer. Ensure the top half of the hydrant from the traffic flange up, receives 1 coat of blue enamel before delivery to the jobsite as outlined by the following:

2.12.6.1. **Exterior Above the Traffic Flange (Including Bolts and Nuts).** Prepare the surface in accordance with SSPC-SP10 (NACE 2), near-white blast-cleaned surface.

Coat with a 3-coat alkyd/silicone/alkyd system with a total dry film thickness (DFT) of 6-9 mils as follows:
- **Prime Coat.** Oil Modified Alkyd Primer, Acro Products No. 1104, Heavy Duty Tank & Steel Primer, or approved equal, in general accordance with SSPC Paint Specification No. 25. Apply with a total dry film thickness (DFT) of 2-3 mils.
- **Finish Coat.** Silicone Alkyd Resin Enamel, Acro Products No. 2215, or approved equal, in general accordance with SSPC Paint Specification No. 21. Total dry film thickness (DFT) of 2-3 mils. Except do not finish shop coat the hydrant bonnet, only intermediate coat it. Field applies and color code the finish coating when installed.
- **Colors.** For primer, use the manufacturer's standard color. For the finish coat of the hydrant body, use blue (Acro 555 crystal blue or equivalent). Finish coat the hose connection caps white, and paint a white band of finish coat 2 in. in width on the hydrant body approximately 6 in. above and parallel to the traffic flange. For intermediate coat, use a contrasting color to the blue finish coat, such as white.

2.12.6.2. **Exterior Below the Traffic Flange.** Prepare the surface in accordance with SSPC-SP10 (NACE 2), near-white blast-cleaned surface.

Coat with a 3-coat system as follows:
- **Primer and intermediate coat - coal tar epoxy, Acro Products No. 4467, or approved equal, in general accordance with SSPC Paint Specification No. 16. Apply 2 coats with a dry film thickness (DFT) of 8-10 mils each, for a total dry film thickness (DFT) of 16-20 mils.
- **Finish coat - water based vinyl acrylic mastic, Acro Products No. 7782, or approved equal. Apply 1 coat with a dry film thickness (DFT) of 6-8 mils. For the color of the finish coat, use the same as for the finish coat for the exterior above the traffic flange i.e., blue (Acro 555 crystal blue or equivalent).

2.12.6.3. **Interior Surfaces Above and Below the Main Valve.** Provide material used for internal coating of hydrant interior ferrous surfaces below the main valve that is NSF61 listed as suitable for contact with potable water, as required by Chapter 290, "Rules and Regulation for Public Water Systems," Texas Commission on Environmental Quality (TCEQ).

Prepare the surface in accordance with SSPC-SP10 (NACE 2), near-white blast-cleaned surface.

Provide a liquid or powder epoxy system coating in accordance with AWWA Standard C-550. Apply the coating in 2 or 3 coats, according to the manufacturer’s recommendations, for a total dry film thickness of 12-18 mils.

2.12.6.4. **General.** Apply coatings in strict conformance with the manufacturer’s recommendation. No requirement of this specification cancels or supersedes the written directions and recommendations of the specific coating manufacturer so as to jeopardize the integrity of the applied system.

Ensure the hydrant supplier furnishes an affidavit of compliance that the materials and work furnished comply with the requirements of this specification and referenced applicable standards.
After installing the hydrants and before the main is accepted, paint the bonnet portion of each fire hydrant as shown in Table 5.

<table>
<thead>
<tr>
<th>Size of Supply Line (in.)</th>
<th>Color of Bonnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Yellow</td>
</tr>
<tr>
<td>8</td>
<td>White</td>
</tr>
<tr>
<td>10-20</td>
<td>Green</td>
</tr>
<tr>
<td>24 and Larger</td>
<td>Orange</td>
</tr>
</tbody>
</table>

Ensure the color shades and paint quantities are approved and comply with the current specifications.

2.12.7. **Performance Standards.** Provide hydrants capable of a free discharge of 1,500 gal. per minute (gpm) or greater, from a single pumper nozzle at a hydrant inlet static pressure not exceeding 20 psig as measured at or corrected to the hydrant inlet at its centerline elevation.

Provide hydrants capable of a discharge of 1,500 gpm or greater from a single pumper nozzle at a maximum permissible head loss of 8.0 psig (when corrected for inlet and outlet velocity head) for an inlet operating pressure not exceeding 37 psig as measured at or corrected to the hydrant inlet at its centerline elevation.

2.12.7.1. **Hydraulic Performance Testing.** AWWA C502; ensure the certified pressure loss and quantity of flow test is conducted by a qualified testing laboratory on a production model (5-ft. bury length) of the hydrant (same catalog number) proposed for certification. Submit a certified test report containing following information:

- Date of test, within the previous 5 yr., on a fire hydrant with similar hydraulic characteristics.
- Name, catalog number, place of manufacture, and date of production of hydrants tested.
- Schematic drawing of testing apparatus, containing dimensions of piping elements including:
 - Diameter and length of inlet piping.
 - Distance from flow measuring points to pressure measurement point.
 - Distance from flow and pressure monitoring points to the hydrant inlet.
 - Distance from pressure monitoring point to nozzles.
 - Diameter and length of discharge tubing.
- Elevation of points of measurement, inlet, and outlet.
- Reports or certificates documenting the accuracy of the measuring devices used in testing.
- Conduct the tests on at least 3 hydrants of the same fabrication design. Inlet water temperature: 70°F ± 5°F.
- For traffic impact testing, submit a certified test report outlining the results of the traffic impact test involving standard production models of the fire hydrant with breakable barrels of the same design as that proposed for certification. Install these hydrants per AWWA C600; strike at a point 18 in. ± 2 in. above the designated ground line. Conduct tests using the point of impact on hydrant barrel within 2 in. of a line perpendicular to base and equidistant from the pumper nozzle and one hose nozzle.
- Conduct successive tests simulating impacts by standard American-made vehicles with gross weights of 3,500 lb., 5,500 lb., and 10,500 lb.
- Document the tests to provide the following minimum information:
 - Detailed schematic drawings of the test facility.
 - Complete description of the mechanical impact testing equipment used.
 - Complete list of the hydrant parts and materials damaged in each impact test.
 - Photographs.
2.12.8. Hydrant Leads. Provide hydrant branch leads conforming to the same requirements under Section 2.2.3., “Steel Pipe Fittings;” Section 2.3., “Ductile-Iron Pipe and Fittings;” or Section 2.4., “Polyvinyl Chloride Pipe (PVC) Pipe and Fittings.”

2.13. Polyethylene Film Wrap.

2.13.1. General. Except where noted on the plans, use polyethylene film as a wrap to protect cast-iron pipe, ductile-iron pipe, and fittings. Provide polyethylene film conforming to the requirements outlined in this specification and use only in open-cut construction.

2.13.2. Film. Provide polyethylene film in accordance with ASTM 1248 and AWWA C105, Type 1, Class C, Category 5, Grade J-3, 2.5% to 3% carbon black content. Unless otherwise shown on the plans, provide film 8 mils thick with a minimum tensile strength of 1,200 to 2,500 psi, elongation up to 600% and either in tubular or sheet form. Furnish film supplied in tubular form in the minimum widths shown in Table 6.

<table>
<thead>
<tr>
<th>Nominal Pipe Size (in.)</th>
<th>Push-on Joint Flat Tube Width (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>24</td>
<td>53</td>
</tr>
</tbody>
</table>

For film in sheet form, furnish in widths equal to twice that shown for tube widths.

2.13.3. Polyethylene Tape. For taping film edges and overlays, use 3 in. wide plastic-backed adhesive tape. Use Polyken No. 900, Scotch Wrap No. 50, or approved equal.

2.14. Bedding Material. Unless otherwise shown on the plans, provide one of the following types of bedding for water mains:

2.14.1. Bank Run Sand. Furnish bank run sand bedding as called for in these specifications and consisting of soil classified as SP, SW, or SM by the Unified Soil Classification System (USCS). Provide sand with a plasticity index, when tested, of less than 7% and a liquid limit of 25 or less. Ensure the bank run sand gradation has a maximum of 15% passing the No. 200 sieve when tested, and is free of roots, organic material, trash, clay lumps, or other deleterious or objectionable material.

2.14.2. Concrete Sand. Furnish concrete sand bedding conforming to the specifications for Fine Aggregates specified in ASTM Standard C-33. Provide Fine Aggregates consisting of natural sand, manufactured sand, or a combination of the two, within the gradation limits shown in Table 7.
Table 7

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 in.</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 8</td>
<td>80-100</td>
</tr>
<tr>
<td>No. 16</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 30</td>
<td>25-60</td>
</tr>
<tr>
<td>No. 50</td>
<td>10-30</td>
</tr>
<tr>
<td>No. 100</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Ensure the aggregates do not contain any roots, organic material, trash, clay lumps, or other deleterious or other objectionable materials, in excess of the limits prescribed in the C-33 Standard.

2.14.3. **Pea Gravel.** Furnish pea gravel bedding conforming to the specifications for Coarse Aggregates specified for No. 8 size in ASTM Standard C-33. Provide Coarse Aggregates consisting of gravel composed of small, smooth, rounded, stones or pebbles, within the gradation limits shown in Table 8.

Table 8

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 in.</td>
<td>100</td>
</tr>
<tr>
<td>3/8 in.</td>
<td>85-100</td>
</tr>
<tr>
<td>No. 4</td>
<td>10-30</td>
</tr>
<tr>
<td>No. 8</td>
<td>0-10</td>
</tr>
<tr>
<td>No. 16</td>
<td>0-5</td>
</tr>
</tbody>
</table>

Ensure the aggregates do not contain any roots, organic material, trash, clay lumps or other deleterious or other objectionable materials, in excess of the limits prescribed in the C-33 Standard.

2.14.4. **Gem Sand.** Furnish gem sand generally conforming to specifications for Coarse Aggregates specified for No. 8 size in ASTM Standard C-33. Specifically, provide aggregates within the gradation limits shown in Table 9.

Table 9

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 in.</td>
<td>95-100</td>
</tr>
<tr>
<td>1/4 in.</td>
<td>60-80</td>
</tr>
<tr>
<td>No. 4</td>
<td>15-40</td>
</tr>
<tr>
<td>No. 10</td>
<td>0-5</td>
</tr>
</tbody>
</table>

Ensure the aggregates do not contain any roots, organic material, trash, clay lumps, or other deleterious or other objectionable materials, in excess of the limits prescribed in the C-33 Standard.

2.15. **Backfill Material.** For sand backfill encasement of water mains, use one of the following materials, unless otherwise shown on the plans:

2.15.1. **Cement Stabilized Sand.** Furnish cement stabilized backfill containing a minimum of 5% cement per cu. yd. of material placed, based on the dry weight of the aggregate in accordance with Tex-120-E. Provide materials consisting of aggregate, cement, and water. Use cement and water conforming to the material requirements of Item 421. Provide sand aggregate, free from deleterious matter, with a plasticity index not greater than 6 when tested by Tex-106-E.

2.15.2. **Earth or Native Soil.** Furnish earth or native soil backfill consisting of soil containing no deleterious material such as trash, wood fragments, organic, or other objectionable material. Supply the material from either the material removed from the excavation or from offsite sources.

The material may consist of soil classified by the Unified Soil Classification System (USCS) as ML, CH, CL, CL-ML, SC, SP, SM, SW, or GC. Use earth backfill that meets the compaction requirements specified in this specification and does not cause any settlement.
2.15.3. **Bank Run Sand.** Furnish bank run sand backfill as called for in these specifications and conforming to the same requirements as those under Section 2.14.1., “Bank Run Sand.”

2.16. **Concrete.** Use Class “A” concrete in conformance to the requirements of Item 421, unless otherwise shown on the plans. Leave the forms in place unless directed to remove certain sections of the forms.

2.17. **Water Meters, Meter Vaults, and Meter Boxes.**

2.17.1. **Water Meters.** Provide meters of the type and size indicated on the plans.

2.17.1.1. **Provide Bolted Split Casings.** Main casings of meters and external fasteners: Copper alloy with minimum 75% copper for 5/8 in. to 2 in., bronze or cast-iron, hot-dipped galvanized or epoxy coating for coating for 3 in. and larger.

2.17.1.2. **Straightening Vanes.** Use non-corrosive material compatible with the case material.

2.17.1.3. **Intermediate Gear Train.** Do not allow the intermediate gear train to come in contact with water; operate in suitable lubricant.

Register: Automatic Meter Reading (AMR) type that provides pulse, contact closure, piezo switch, or encoder-generated output signal, compatible with Utility Owner’s radio and telephone AMR systems. Provide a minimum 12 ft. of wire when permanently connected to the register. Lens: impact resistant. Register box: tamper resistant by means of a tamper screw or plug: Register: permanently sealed, straight-reading, center-sweep test hand, magnetic driven, reading in U.S. gal. Digits: 6, black in color with the lowest registering three digits (below 1,000 gal. registration) in contrasting digit and background colors. Register capacity of meters: 9.99 million gal. for 5/8 in. to 2 in. and 999.999 million gal. for 3 in. and larger.

Connections: 5/8 in. to 1 in.: threads at each end; 1-1/2 in. to 2 in.: two-bolt oval flanges each end; 3 in. and larger: flange at each end.

Stamp the manufacturer’s meter serial number on the outer case. Stamp the manufacturer’s meter serial number on the outside of the register lid, when provided. Ensure the manufacturer’s serial numbers are individual and not duplicated.

Meters: Equip with AMR type register to connect to the Utility Owner’s AMR system. Compound Meter manufactured by: Badger, Hersey Products, Neptune, Sensus, or approved equal. Turbine Meters: manufactured by Badger, Hersey Products, Neptune, Sensus, or approved equal.

Fire Service Meters: manufactured by Hersey Products, Neptune, Sensus, or approved equal. Displacement Meters: manufactured by Badger, Neptune, Hershey, Kent, Sensus, or approved equal.

2.17.1.4. **Manufacturing Quality Control.** Permit successful interchangeability from one meter to another of same size; registers, measuring chambers and units, discs or pistons as units, change gears, bolts, nuts, and washers, without affecting the accuracy of the new meters.

2.17.1.5. **Commercial Meter Valves for Meter Installations.** Provide commercial meter valves identical to line valves except provide them with Class 125 flanges and equip them with hand wheels operating counterclockwise to open.

For pipe and fittings inside the meter box or meter vault, use ductile-iron conforming to Section 2.3., “Ductile-Iron Pipe and Fittings,” and as specified on the plans.

2.17.2. **Meter Vaults.**

2.17.2.1. **General.** Furnish meter vaults in either of the following designs: precast concrete vault, cast-in-place concrete vault, or solid masonry, unless a specific type of construction is required on plans. Ensure
dimensions and reinforcement complies with the Utility Owner’s standard meter vault drawings for the type and size shown on the plans. Use Class “S” concrete conforming to the requirements of Item 421.

2.17.2.2. **Precast Concrete Vaults.** Construct precast concrete vaults as shown on the plans. Use reinforcing steel conforming to the requirements of Item 440.

Install precast vaults in conformance with the manufacturer recommendations. Set level and on a minimum 3 in. thick bed of sand conforming to the requirements of Section 2.15, “Backfill Material.” Seal lifting holes with cement mortar or non-shrink grout.

2.17.2.3. **Meter Vault Floor Slab.** Slope the floor 1/4 in. per foot toward the sump. Make the sump 12 in. in diameter, or 12 in. square, and 4 in. deep, unless other dimensions are shown on the plans. Install dowels at a maximum of 18 in., center-to-center, or install a mortar trench for keying the walls to the floor slab.

2.17.2.4. **Cast-In-Place Concrete Vaults.** Construct cast-in-place concrete vaults as shown on the plans. Use reinforcing steel conforming to the requirements of Item 440. Key the walls to the floor slab.

2.17.2.5. **Frame and Cover.** Use A-36 welded steel, or approved equal. Fabricate the cover plate with a 1/4 in. skid-resistant raised pattern floor plate. Fabricate the meter access door from the same material as the cover plate. Perform welding in accordance with the provisions of Item 441. Nondestructive testing will not be required.

Furnish castings for frames, grates, rings, and covers conforming to ASTM A48 Class 30. Provide locking covers if indicated on the plans. Use castings capable of withstanding the application of an AASHTO HS-20 loading, unless otherwise specified.

Provide covers and frames conforming to the shape dimensions, and with the wording or logos shown on the plans. The standard diameter dimension for manhole covers is 32 in. Furnish frames, grates, rings, and covers conforming to Item 471, except as noted above and except for measurement and payment.

2.17.3. **Meter Boxes.**

2.17.3.1. **General.** Furnish meter boxes for 5/8 in. through 1 in. meters of the following materials:

- Non-traffic bearing locations: cast-iron, concrete, or plastic as specified on the plans.
- Traffic bearing locations: cast iron.

Meter boxes for 1-1/2 in. and 2 in. meters: cast-iron. Provide meter box lids with a key-operated, spring type, locking device and a reading lid. Ensure the lids contain enough metals so that the meter box is easily located with metal a detector. If words are specified on the plans, cast them into lid with letters of 1/2 in. height and raised by 3/32 in. Ensure the size reads 5/8 in. to 1 in. or 1-1/2 in. to 2 in.

Furnish meter boxes conforming to the following approximate dimensions:

- Length: At the top, 15-1/2 in.; at the bottom, 20 in.
- Width: At the top, 12-1/2 in.; at the bottom, 14-3/4 in.
- Height: 12 in.

Ensure that meter box extensions 3 in. and 6 in. in height are available from the manufacturer.

2.17.3.2. **Cast-Iron Meter Boxes.** Furnish cast-iron boxes that are clean and free from sand blow-holes or other defects, and conforming to the requirements of ASTM A48. Machine the bearing surfaces so that the covers seat evenly in the frames. Provide boxes and lids with a dipped, coal-tar-pitch, varnish finish. Provide lock-type meter boxes when shown on the plans. Ensure the lock mechanisms work with ease.

2.17.3.3. **Concrete Meter Boxes.** Furnish concrete meter boxes made of Class “A” concrete conforming to requirements of Item 421. Construct boxes as shown on the plans. Furnish castings that are free from
fractures, large or deep cracks, blisters or surface roughness, or any other defects that may affect serviceability.

2.17.3.4. **Plastic Meter Boxes.** Furnish plastic meter boxes made of high-density polyethylene conforming to the ASTM Specifications shown in Table 10.

<table>
<thead>
<tr>
<th>ASTM Test</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>D256</td>
<td>Impact Strength = 1.9 ft.-lb./in. (Izod, Notched)</td>
</tr>
<tr>
<td>D256</td>
<td>Impact Strength = 6.4 ft.-lb./in. (Izod, Un-Notched)</td>
</tr>
<tr>
<td>D638</td>
<td>Tensile Strength (2.0 Min) = 3,400 psi</td>
</tr>
<tr>
<td>D648</td>
<td>Deflection Temperature = 170°F</td>
</tr>
<tr>
<td>D790</td>
<td>Flexural Modulus = 90,000 psi</td>
</tr>
<tr>
<td>D676</td>
<td>Shore D Hardness, 55-65 Impact</td>
</tr>
<tr>
<td></td>
<td>Strength, Falling Dart Method, 100 in.-lb.</td>
</tr>
</tbody>
</table>

Provide meter boxes meeting the following test requirements:
- **Static Load:** Not less than 2,500 lb. using a 6 in. disc with direct compression exerted at the center of the top of the meter box with a solid plastic lid.
- **Deflection:** Not less than 1,000 lb. load required to deflect the top edge of the meter ox 1/8 in.

Provide a meter box body, without lid, weighing approximately 7 lb.

2.18. **Affidavit of Compliance.** Unless otherwise directed, furnish a manufacturer's affidavit of compliance for each of the materials used in this project. Ensure the affidavit certifies that factory inspection and specified tests were performed and that the material furnished complies with the requirements outlined in this specification.

2.19. **Pressure Reducing Station.** Unless otherwise shown on the plans, furnish new and unused station piping, valves, and fittings, of the same type as specified on the plans.

Use Class "S" concrete in conformance with Item 421.

Provide reinforcing steel in conformance with Item 440.

Provide a Pressure Reducing Valve (PRV) with a strainer, in the location and arrangement shown on the plans. Provide a valve body made of ductile iron with Class 150 ANSI B16.1 flanges. Provide a valve cover made of ASTM A 48 cast iron. Use Buna-N rubber parts. No leather parts are allowed. Provide a resilient seat with a rectangular cross-section.

Valve internals: Provide a single moving disc and diaphragm assembly. Use a flexible nylon fabric-reinforced elastomer diaphragm integral with assembly. Provide valve internal trim (seat ring, disc guide, and cover bearing) made of stainless steel. Apply a heat fusion bonded epoxy coating to the internal and external surfaces of the valve body including the disc retainer and diaphragm washer. Holiday test the coating applied to the valve body to confirm a minimum even coating of 5-7 mils. Treat the stem with a penetrative salt nitride process. Use a Xylan-coated seat. Leather parts are not allowed. Prepare threaded connections by first using an approved pipe tape.

Furnish control tubing containing shutoff cocks with a "Y" strainer. Equip the valve to allow installing control tubing on either side of the valve. Equip the valve with a valve position indicator.

Ensure the valve and valve box are initially set in the field by an authorized manufacturer's representative. Set the downstream pressure at 60 psi unless otherwise specified. Ensure the PRV includes an adjustable and pressure sustaining pilot system. Use a diaphragm type or piston type valve for the main valve.

Provide Cla-Val Model 90-01BDSYKCKD, Watts ACV Model 115-3M, or approved equal.
Provide a basket strainer upstream of the pressure reducing valve as shown on the plans. Furnish a quick-opening type strainer body, of fabricated steel construction with ANSI Class 150 flanges. Use Type 304 stainless steel for the basket.

Provide a Hayward Model 90, or equal, for PRV's 4 in. to 24 in. When there are space constraints, provide a Hayward Model 510, or equal, for PRV's 14 in. or greater.

2.20. **Adjusting Manholes.** Reuse removed manhole and inlet rings, plates, grates, covers, and brick if they are in good condition as determined by the Engineer. Provide additional materials in accordance with Item 465 at no cost to the Department. Single- or multiple-piece prefabricated metal extension rings may be used for the adjustment of manholes as approved. Provide concrete that conforms to the requirements of Item 421.

3. **CONSTRUCTION**

All construction must conform to the requirements of this Item, the plans and the following Items:

- Item 100, “Preparing Right of Way”
- Item 400, “Excavation and Backfill for Structures”
- Item 402, “Trench Excavation Protection”
- Item 403, “Temporary Special Shoring”
- Item 421, “Hydraulic Cement Concrete”
- Item 465, “Junction Boxes, Manholes, and Inlets”
- Item 476, “Jacking, Boring, or Tunneling Pipe or Box”
- Item 479, “Adjusting Manholes and Inlets”

3.1. **Excavation.**

3.1.1. **Trenches.** Construct water lines and fire hydrant branches (leads) in open cut trenches with vertical sides except in those locations where the pipe is tunneled, cased, or augered. Construct the trenches to the dimensions shown in the excavation and backfill details.

Sheath and brace the trenches to the extent necessary to maintain the sides of the trench in a vertical position throughout the construction period. Protect excavation greater than 5 ft. in depth as specified by Item 402, or Item 403.

Open and excavate the trenches to the finished grade. To allow for possible adjustment of the alignment and grade, locate the water mains to which the mains and fire hydrant branches (leads) under construction are to be connected, well in advance of making connections.

Construct water mains and fire hydrant branches (leads) in dry trenches. If necessary, employ well pointing or additional sheathing to accomplish this objective, at no additional cost to the Department.

For pipes less than 18 in. in diameter, the minimum trench width below the top of the pipe is the outside diameter of the pipe, plus 18 in. For pipes 18 in. and larger, the minimum trench width below the top of pipe is the outside diameter of pipe plus 24 in. Additional width will be required for unstable conditions. The Engineer will determine unstable conditions.

Where it is necessary to excavate trenches adjacent to improved property, take precautions to avoid damaging or impairing that property. Where it is necessary to disturb grass, shrubs, driveways, etc., restore such improvements to their original condition.

Use enough trench width or benches above the embedment zone when installing well point headers or manifolds and pumps, where the trench depth makes it uneconomical or impractical to pump from the surface elevation. Provide enough space between the shoring cross braces to permit equipment operations and handling the forms, pipe, embedment and backfill, and other materials.
Before moving the supports, place and compact the embedment to enough depth to provide protection of the pipe and stability of the trench walls. As the supports are moved, finish placing and compacted the embedment.

Immediately before placing the embedment materials, ensure the bottoms and sidewalls of trenches are free of loose, sloughing, caving, or otherwise unsuitable soil.

Place and compact the embedment materials directly against the undisturbed soils in the trench sidewalls or against sheeting which will remain in place.

Do not place trench shields or shoring within the height of the embedment zone unless using some means to maintain the density of the compacted embedment material. If using moveable supports in embedment zone, lift the supports incrementally to allow placing and compacting of the material against undisturbed soil.

Place haunching material around the pipe and compact it to provide uniform bearing and side support.

Place trench dams in Class I embedments near the midpoint of line segments longer than 100 ft. between manholes.

Where damage to the completed pipe installation work is likely to result from withdrawal of the sheeting, leave the sheeting in place.

3.1.2 Existing Streets. Unless otherwise shown on the plans, open cut existing streets.

Where water line construction requires cutting through existing streets outside the limits of new street construction, replace those streets in kind in conformance with the appropriate specifications in the proposal or as directed. When cutting pavement outside the Department’s right of way, comply with the Utility Owner Street Cutting Ordinance.

Where, in the opinion of the Engineer, it is necessary to maintain traffic across a trench, construct temporary bridges as necessary to facilitate the movement of traffic.

At locations where the proposed water main parallels the edge of an existing permanent pavement (i.e., concrete pavement, concrete base with asphalt surface, etc.), and is 3 ft. or less from the edge of that pavement, protect the trench with timber sheathing and bracing. Leave the bracing in place at intervals of 5 ft. maximum.

Keep the street surface adjacent to the trench free of surplus spoil. Place construction materials at locations that minimize interference with the traveling public.

Do not close more than 2 street intersections at any one time unless authorized in writing.

3.2 Jacking, Tunneling, Boring, or Augering.

3.2.1 General. Perform jacking, tunneling, or augering for water mains and fire hydrant branches (leads) at the locations shown on the plans and at other locations specifically designated by the Engineer.

Unless otherwise shown on the plans, use casing pipe conforming to the requirements of Section 2.2.2., “Steel Casing Pipe.”

Excavate auger pits to a finished grade at least 6 in. lower than that indicated by the construction stakes or as approved, to ensure that a dry pit bottom is encountered.

Provide a minimum width of jacking, tunneling, or augering pits such that there is at least 6 in. of space between the pipe and the walls of the auger pit. The maximum allowable width of the pit is 5 ft., unless otherwise approved. Ensure the width of the pit at the surface is not less than at the bottom. The maximum
allowable length of the pit is 5 ft. longer than 1 full joint of pipe of the type being used and does not exceed 25 ft., unless approved.

Grout in place tunnels for water lines with 36 in. diameters. When casing size is 48 in. in diameter or greater, or when using a tunnel liner plate, regardless of the water line diameter, grout in place unless otherwise directed. Provide an annular grout consisting of a sand-cement mortar mix with a 28 day compressive strength of at least 1,500 psi, when tested in accordance with ASTM C 942. The maximum allowable density is 130 pcf.

Use admixtures meeting ASTM C 494 and ASTM C 1017 as required, to improve pump ability, control the time of set, hold sand in suspension, and reduce segregation and bleeding. Fill the annular space in 3 lifts to prevent pipe floating. In addition, place appropriate blocking between the carrier pipe and the top of the liner to maintain position. Place a concrete invert to facilitate threading the carrier pipe.

Do not allow inadvertent metallic contact between the casing and the carrier pipe. Place spacers to ensure that the carrier pipe is adequately supported throughout its length, particularly at ends, to offset setting and possible electrical shorting, unless otherwise approved by Engineer. Ensure the end spacer is within 6 in. of the end of the casing pipe, regardless of the size of the casing and carrier pipe or the type of spacer used. Casing spacers are designed to withstand much greater loads than can be safely applied to most coatings. Therefore, the spacing between spacers depends largely on the load bearing capabilities of the pipe coating and the flexibility of the pipe.

Install casing spacers in conformance with the manufacturer’s instructions. Use special care to ensure that subcomponents are correctly assembled, evenly tightened, and that no damage occurs while tightening the insulators or inserting the carrier pipe.

Seal the annulus between the carrier pipe and casing with casing end seals at each end of the casing.

Insular Spacing:
- Provide spacing as shown on the plans with a maximum distance between spacers of 10 ft. for pipe sizes for pipe sizes 4 in. to 14 in. and 8 ft. for pipe sizes 16 in. to 30 in.
- For ductile-iron pipe, flanged pipe, or bell-and-spigot pipe, install spacers within 1 ft. on each side of the bell or flange, and one in the center of the joint when 18 ft. to 20 ft. long joints are used.
- If the casing or carrier pipe is angled or bent, reduce the spacing. Provide the casing with a smooth, continuous interior surface.

Perform bedding and backfilling of jacking, tunneling, boring, or augering pits in conformance with the details on the plans and these specifications.

3.2.2. **Jacking Steel Casing.** Perform jacking of steel casing in accordance with the requirements of Item 476.

3.2.3. **Tunneling.** Perform tunneling in accordance with the tunneling requirements of Item 476.

3.2.4. **Boring or Augering.** Perform boring or augering in accordance with the requirements of Item 476.

Do not exceed 100 ft. for the length of the auger hole without a receiving pit.

Do not exceed 75 ft. for the length of the auger hole for PVC pipe 12 in. and less in diameter without a receiving pit.

Do not exceed 40 ft. for the length of the auger hole for PVC pipe 16 in. and greater in diameter without a receiving pit.

At locations where water pipes cross underneath driveways (of 16 ft. or less in width) or sidewalks, install the pipe in tight fitting augered holes.
At locations where the centerline of the proposed water main is 10 ft. or less from the centerline of an 8 in. diameter or larger growing tree, place the pipe in a tight fitting augered hole. Extend the bored hole at least 4 ft. beyond each side of the tree.

Block the void space around the pipe in the augered hole with approximately 12 in. of packed clay or similar approved material, so that the bedding or backfill does not escape into the void around the pipe in the auger hole, when compacted.

Around the pipe, use the minimum volume of the clay or similar acceptable material as shown in Table 11.

<table>
<thead>
<tr>
<th>Pipe Diameter (in.)</th>
<th>Minimum Quantity (cu. Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 through 8</td>
<td>0.5</td>
</tr>
<tr>
<td>12 through 16</td>
<td>0.75</td>
</tr>
</tbody>
</table>

3.2.5. Bedding for Trenches and for Jacking, Tunneling, Boring, or Augering Pits.

3.2.5.1. Pipe Bedding for Water Mains Less Than 24 Inches in Diameter.

3.2.5.1.1. Open Cut Trench Installation. Construct trenches with a minimum of 6 in. bedding. Remove the soil in the bottom of the trench, excavate to a minimum depth of 6 in. below the bottom of the pipe, and replace the soil with bedding material. Remove saturated material from the bottom of the pit before placing the bedding. Place the pipe in the bedding such that there is a 6 in. bedding below and up to the spring line of the pipe.

Compact the bedding material to within 95% of the standard density within 5% of the optimum moisture as determined by Tex-113-E. Mechanically compact the bedding material by using vibratory equipment or any other acceptable equipment.

3.2.5.1.2. Jacking, Tunneling, Boring or Augering Pits. Construct pits with a minimum of 6 in. bedding. Remove the soil in the pit, excavate to a minimum depth of 6 in. below the bottom of the pipe and replace the soil with bedding material.

If the bottom of the excavation becomes wet due to the presence of groundwater and a dewatering system is not required, and if directed, over excavate an additional 6 in. to a depth of 1 ft. below the bottom of the pipe. Place a non-woven geotextile fabric and then compact 12 in. of bank run sand or concrete sand in a single lift on top of the fabric. Compact the upper 6 in. to 90% of the standard maximum density as determined by Tex-113-E. The Engineer may require the Contractor to remove unstable or unsuitable material, even though the Contractor has not determined the material to be unsuitable.

Mechanically compact the bedding material by using vibratory equipment or any other acceptable equipment. Compact the bedding material to 95% of the standard density within 5% of the optimum moisture, as determined by Tex-113-E.

3.2.5.1.3. Bedding Materials. The following describes the acceptable materials for bedding:
- Section 2.14.1., “Bank Run Sand”
- Section 2.14.3., “Pea Gravel”

Bank run sand may be used as bedding material around the pipe only if, as determined by the Engineer, the trench bottom and sides are dry. If sand is used, place the pipe in the bedding so that there is at least 6 in. bedding around and on top of the pipe. Compact the sand as described in Section 3.2.5.1.1., “Open Cut Trench Installation.”

3.2.5.2. Pipe Bedding for Water Mains 24 Inches or Greater in Diameter.
Open Cut: Provide pipe bedding as described in Section 3.2.5.1., “Pipe Bedding for Water Mains Less Than 24 Inches in Diameter,” with the following exceptions: Use bank run sand for the bedding material as described in Section 2.14, “Bedding Material.”

Compact cement stabilized sand used as backfill or as pipe bedding as specified on the plans, in 6 in. lifts to 95% of the standard maximum density as determined by Tex-113-E, at the optimum moisture content.

3.3. **Handling Pipe and Accessories.** During pipe construction operations, use caution to prevent injury to the pipe, protective linings, and coatings in conformance with the manufacturer’s recommendations. Do not place debris, tools, or other materials in the pipe.

Repair any damage to the pipe or the protective lining and coating from any cause during the installation of the pipeline and before final acceptance by the purchaser. Perform this work as directed, in conformance with the applicable standards, and at no cost to the Department.

Unload pipe, fittings, valves, and accessories at the point of delivery and haul them to the project site. Distribute the material opposite or near the place where it will be laid in the trench such that storm water or runoff will not enter or pass through the pipe. Do not drop the materials. Do not allow pipe handled on skid ways to be skidded or rolled against pipe already on the ground.

Load, transport, unload, and otherwise handle pipe and fittings in a manner and by methods which prevent damage of any kind. Handle and transport pipe with equipment designed, constructed, and arranged to prevent damage to the pipe, lining, and coating. Do not allow bare chains, hooks, metal bars, or narrow skids or cradles to come in contact with the coatings. Provide pipe fittings with enough interior strutting or cross-bracing to prevent deflection under their own weight.

Hoist the pipe and fittings from the trench side into the trench by means of a sling of smooth steel cable, canvas, leather, nylon, or similar material. Do not lift pipe by using hooks at each end of the pipe. When stacking pipe, ensure it is packaged on timbers. Place protective pads place under the banding straps at the time of packaging.

When using fork trucks to relocate pipe, pad the forks using carpet or some other suitable type of material. When relocating pipe using a crane or backhoe, use nylon straps or smooth steel cable, do not use chains, around the pipe for lift.

3.4. **Cutting Pipe.** Cut pipe 12 in. in diameter and smaller in conformance with the manufacturer’s recommendations. Cut pipe larger than 12 in. in an approved manner. Perform each cut at right angles to the axis of the pipe and file or grind to remove sharp edges. Use a cutting machine unless otherwise approved by Engineer. Do not damage pipe or linings and coatings, while cutting.

3.5. **Defective or Damaged Material.** Inspect pipe and accessories for defects before lowering into the trench. Repair or replace any defective, damaged, or unsound material as directed.

If a damaged piece of pipe, furnished by the Contractor, is placed in the water main, furnish the labor and materials necessary to remove and replace the defective pipe and to restore the street to its original condition at no cost to the Department. If the Contractor damages the pipe after installation, the Engineer may permit the damaged section to be cut from the length, unless it is the opinion of the Engineer that the entire length was damaged. The cost of and replacement of broken pipe is at the expense of the Contractor.

3.6. **Cleaning Pipe and Accessories.** Remove lumps, blisters, and excess coating from the bell and spigot ends of steel pipe, ductile-iron pipe, valves, hydrants, and fittings. Wire brush the outside of the spigot and the inside of the bell and wipe clean, dry, and free from oil and grease before laying the pipe.

Remove foreign matter or dirt from the interior of water pipe, accessories, and from the mating surfaces of the joints, before lowering the material into the trench. Keep the pipe and accessories clean during and after laying by approved means.
Use cleaning solutions, detergents, solvents, etc. with caution when cleaning PVC pipe.

Provide cleanup and restoration crews to work closely behind the pipe laying crews, and where necessary, during disinfection, testing, service transfers, abandonment of old mains, backfilling, and surface restoration.

Upon completely installing a section not exceeding 4,000 ft. per crew, immediately prepare to disinfect and pressure test between valves or plugs. No later than 3 days after completing disinfection preparatory work, submit to the Utility Owner an appropriate request for disinfection.

Begin transfer of services no later than 7 calendar days after successfully completing the disinfection and pressure testing.

Immediately after transfer of services, begin abandonment of the old mains, including re-sodding and placing sidewalks and pavements.

Do not begin construction of additional sections if the above conditions are not met.

For large diameter water mains, do not install more than 2,000 ft. of main, until the previous 2,000 ft. is cleaned up and the site is fully restored. Schedule paving crews so that the repaving work will not lag behind the pipe laying work by more than 1,000 ft.

Completely restore the site within 30 days from the date the water main is successfully disinfected and hydrostatically tested, unless extended in writing by the Engineer.

For projects involving multiple locations, limit water main installation to a maximum of 2 project site locations.

Remove construction debris or foreign material and thoroughly clean and flush piping systems as approved. Provide temporary connections, equipment, and labor for cleaning. The Engineer must inspect the water main for cleanliness before filling.

Disinfection of Water Lines: Conform to the requirements of Section 3.17., “Disinfecting Mains and Testing for Leakage.”

3.7. Laying Pipe. For the work of laying the pipe, employ only workers who are skilled and experienced in laying pipe of the type and joint configuration being furnished. Provide watertight pipe and pipe joints. Lay pipe with the bell ends facing in the direction of laying, unless otherwise directed.

Lay pipe to the lines and grades shown on the plans. To ensure proper placement, use adequate surveying methods and equipment, and employ personnel competent in using this equipment. Ensure the pipe does not deviate from the horizontal and vertical alignment indicated on the plans by more than 0.10 ft., without prior approval. Measure and record the “as-built” horizontal alignment and vertical grade at a maximum of every 50 ft. on the on-site recorded plans.

During pipe laying operations, keep pipe trenches free of water which might impair the laying operations. Ensure holes for bells are of ample size to prevent the bells from coming in contact with the subgrade. Carefully grade pipe trenches to provide uniform support along the bottom of the pipe.

Do not lay more than 50 ft. of pipe in the trench ahead of the backfilling operations. If pipe laying operations are interrupted overnight, cover the pipe laid in the trench simultaneously on each side of the pipe or completely backfill, to avoid lateral displacement of the pipe and damage to the joints. If adjustment of the position of a length of pipe is required after it is laid, remove and re-lay it in conformance with these specifications and at no expense to the Department. After pipe laying and joining operations are complete, clean the inside of the pipe and remove debris.

Use care to prevent damage to the coating when placing backfill. Backfill in accordance with Section 3.11, “Backfilling.”
Lay pipe in a straight line unless otherwise shown or approved. Long radius curves, either horizontal or vertical, may be laid with standard pipe using deflections at the joints. If curved pipe is shown, needing no special fittings, the curves can be made by deflection of the joints with standard lengths of pipe as approved. If maximum pipe joint deflections are permitted, do not exceed the manufacturer’s recommendation for maximum pipe joint deflections. Joint the gasketed pipe in a straight alignment and then deflect it to the curved alignment.

If the vertical deflection exceeds the maximum recommended by the manufacturer, remove the entire portion of the deflected pipe section and install new pipe as directed. Perform this work at no expense to the Department. The Engineer may measure assessment of deflection at any location along the pipe. Arithmetical averages of the vertical deflection or similar average measurement methods will not be deemed as meeting the intent of the standard.

Where field conditions require horizontal deflection curves not shown on the plans, the Engineer will determine the methods to be used.

No additional payment will be made for laying pipe on curves as shown, or for change orders involving standard lengths of pipe deflected at the joints. Adjust the pipe, valves, hydrants, and fittings to be at their proper locations and prepare each joint as specified in Section 3.8., “Joining Pipe and Accessories.” As each joint of pipe is laid in the trench, center the spigot end in the bell of the previously laid pipe, then force home the pipe and bring it to the correct line and grade. Ensure each length of pipe rests on the bottom of the trench and is inspected for damage throughout its entire length.

When pipe laying is discontinued for the day or for an indefinite period, tightly place a cap or plug in the end of the last pipe laid to prevent the intrusion of water. When water is excluded from the interior of pipe, place enough backfill on the pipe to prevent floating. Schedule the work to prevent the possibility of floatation. Remove from the trench any pipe that has floated and re-lay as directed.

When assembling PVC pipe on top of the trench, allow it to cool to ground temperature before backfilling, to prevent pull-out due to thermal contraction.

Do not schedule night works or plant shut down to begin within 2 working days before or after Utility Owner-designated holidays.

For tie-ins to existing water mains, provide the necessary material on-hand to facilitate connection before shutting down the existing water main.

Ensure that separation from gravity sanitary sewers and manholes, or from force mains, is a minimum of 9 ft. clearance in all directions or as specified, unless a special design is shown on the plans.

Minimum Clearance of this specification:
- Parallel water line and gravity sanitary sewer force main, or manhole with no leaks: Minimum 4 ft. horizontal clearance from the outside wall of the water line to the outside wall of the gravity sanitary sewer, force main, or manhole.
- Water line crossing above gravity sanitary sewer or force main with no leaks: Minimum 2 ft. vertical clearance.
- Water line crossing below a sanitary sewer or force main with no leaks: Minimum 2 ft. vertical clearance.

3.8.1. Ductile-Iron Pipe, Valves, Hydrants, and Fittings. After thoroughly cleaning the inside of the bell and the outside of the spigot, install members in conformance with the manufacturer's recommendation and AWWA C600, or as modified by these specifications.
Mark pipe and accessories that are not furnished, with a depth mark before assembly to ensure that the spigot end is inserted to the full depth of the joint.

Brace the fittings on small mains with short pieces of 2 in. galvanized pipe as directed.

Brace each plug installed under this contract by a standard pipe clamp, a 3 ft. nipple of the same diameter pipe as the nearby sections of mains, and a block of concrete.

For 4 in. through 12 in. water mains, use pipe clamps that are Underwriters Lab-approved for underground water service piping. For water mains 16 in. and larger, use pipe clamps conforming to details shown on the plans.

For rubber-gasketed joints use lubrication that is water soluble, non-toxic, non-objectable in taste and odor imparted to the fluid, non-supporting of bacteria growth, and has no deteriorating effect on coatings or rubber gaskets.

3.8.2. **Polyvinyl Chloride Pipe and Accessories.** Join plastic pipe in conformance with the instructions furnished by the manufacturer. To prevent weakening the joint, do not handle or install in the trench pipe joined using solvent cementing techniques, until the joints “cure.”

For rubber-gasketed joints, use lubrication that is water soluble, non-toxic, non-objectable in taste and odor imparted to the fluid, non-supporting of bacteria growth, and has no deteriorating effect on PVC or rubber gaskets.

3.8.3. **Welded Joints for Steel Pipe.** Ensure the joints receive a full-penetration butt weld type double weld, in accordance with AWWA C206. It is the Contractor’s option to use either automatic or hand welders. Before starting the work, provide proof of certification of qualification for welders employed on the project for every type of work procedure and position involved. Ensure qualification is in accordance with AWWA C206.

Ensure complete penetration of deposited metal with the base metal. Provide inside fittings and joints that are free from globules of weld metal that would restrict flow or become loose.

Miter end cuts of both ends of butt-welded joints may be used for joint deflections of up to 2.5°.

Set fittings and joints square and true, and preserve the alignment during welding operations. Align the butting ends to minimize the offset between surfaces. For pipe of the same nominal wall thickness, do not exceed 1/16 in. offset. Use line-up clamps for this purpose; however, exercise caution to avoid damaging to the linings and coatings.

Furnish each welder employed with a steel stencil for marking welds, so the work of each welder can be identified. Mark pipe with the assigned stencil adjacent to the weld. If a welder leaves the job, void that stencil and do not duplicate it. Welders making defective welds must discontinue work and leave the project site. Such welders may return to the project site only after recertification.

During welding, protect the lining by draping an 18 in. wide strip of heat-resistant material over the top half of the pipe on each side of the lining holdback to avoid damage to the lining by the hot splatter. Protect the tape coating similarly.

Provide welding rods of a type compatible with the metal being welded, to obtain the strongest bond, E-70XX.

Deposit the metal in successive layers so there will be at least 2 passes or beads for automatic welding and 3 passes or beads for manual welding in the completed weld.

On welds, do not deposit more than 1/4 in. of metal on each pass. Thoroughly clean the weld by wire brushing and hammering on each individual pass including the final one, to remove dirt, slag, or flux.
Do not perform welding under any weather condition that would impair the strength of the weld, such as wet surface, rain or snow, dust or high winds, unless the work is properly protected.

If using tack welds, ensure they are of the same material and made by the same procedure as the completed weld. Otherwise, remove tack welds during the welding operation.

Remove dirt, scale, and other foreign matter from the inside of piping before tying in sections, fittings, or valves.

Provide a minimum overlap of 4 in. of butt strap over the adjacent piece on butt strap closures.

Employ an approved independent certified testing laboratory, to perform weld tests and associated work to accommodate testing on the entire job. Include the cost of such testing in the contract unit bid price for the water main. Furnish copies of test reports to the Engineer for review. Ensure testing is by X-ray methods for butt welds and is performed for every joint weld. If a defective weld is revealed, assume the cost of repairing and retesting the repaired weld. The Engineer has the full and final decision as to the suitability of welds tested. If any interior or exterior coating or lining is damaged during the welding process, repair it and return it to its original state as approved, in conformance with applicable AWWA standards.

Provide cylindrical corrosion barriers (CCBs) for epoxy-lined steel pipe smaller than 24 in. in diameter. Furnish CCBs manufactured by CCB International, Inc., or approved equal. CCBs are not required if the minimum wall thickness is 1/2 in. or greater.

In addition to the welding requirements contained in this specification, conform to the protection fitting manufacturer’s installation recommendations.

Provide the services of a technical representative of the manufacturer available on site at beginning of pipe laying operations. Ensure this representative is able to train welders and advise regarding installation and general construction methods. Employ only welders with at least 12 mo. experience installing protection fittings.

3.8.4. Flanged Joints for Steel Pipe. Before installing bolts, accurately center the flange joints and align them to prevent mechanical pre-stressing of flanges, pipe, and appurtenances. Align bolt holes to straddle the vertical, horizontal, or north-south, centerline. The maximum inclination of the flange face from the true alignment is 3/64 in. per foot.

Use full-face gaskets for flanged joints. Provide 1/8 in. thick cloth inserted rubber gasket material. Cut the gaskets at the factory to the proper dimensions.

Unless otherwise noted, provide insulation kits at connections to the existing water system or at locations to isolate one type of cathodic system from another type; between water line, access manhole piping, and other major openings in the water line; or as shown on the plans.

For isolating flange joints 30 in. in diameter and greater, and at butterfly valve flanges, provide a Pyrox G-10 with nitrile seal, Type E LineBacker gasket as manufactured by Pipeline Seal and Insulator, Inc., or approved equal, conforming to ANSI A 21.11 mechanical joint gaskets. For isolating flange joints 24 in. in diameter and smaller, provide a Phenolic PSI with nitrile seal, Type E LineBacker gasket as manufactured by Pipeline Seal and Insulator, Inc., or approved equal, conforming to ANSI A 21.11 mechanical joint gaskets.

Use galvanized or black nuts and bolts to match the flange material. Use cadmium-plated steel nuts and bolts underground. Tighten the bolts progressively to prevent unbalanced stress. Consistently maintain approximately same distance between the two flanges at all points around the flanges. Tighten the bolts alternately (180° apart) until they are evenly tight. Draw the bolts right to ensure properly seating the gaskets. Provide Denso, or approved equal, petroleum-based tape wrapping system for nuts and bolts.
Pay particular attention to procedures used in tightening and torqueing flanged joints. Improper methods may result in leakage and require corrective measures. Follow recommended industry standards and guidelines as set forth by the various fabricators and manufacturers.

3.8.5. **Flanged Joints For Use On Ductile-Iron Pipe.** See the requirements of Section 3.8.4., “Flanged Joints for Steel Pipe.”

3.9. **Thrust Restraint.** Provide adequate temporary blocking of fittings when making connections to the distribution system and during hydrostatic tests. Provide enough anchorage and blocking to resist stresses and forces encountered while tapping the existing waterline. For new waterlines 16 in. in diameter and larger, provide restraining joints as specified in this section. Provide restrained joint lengths as shown on the plans or as directed. For existing waterlines and waterlines less than 16 in. in diameter, restrain pipe joints with concrete thrust blocks or provide joints as specified in this section.

The length of the restrained joints shown on the plans, assumes that hydrostatic testing will begin upstream and proceed downstream with respect to the normal flow of the water in the pipe. If installation or testing of the pipe differs from this assumption, submit for approval a revised method of restraining the pipe joints upstream and downstream of the device used to test against (i.e., block valve, blind flange, or dished head plug).

3.10. **Electrical Continuity Bonds.**

3.10.1. **General.** Attach the bond wires at the required locations using the Thermite welding process.

3.10.2. **Thermite Welding Methods.** Perform Thermite welding of bond wires to the piping in the following manner:

Ensure the pipe to which the wires will be attached is clean and dry. Use a grinding wheel to remove coating, mill scale, oxide, grease, and dirt from an area approximately 3 in. square. Grind the surface to bright metal.

Remove approximately 1 in. of insulation from each end of the wires to be Thermite welded to the structure, exposing clean, oxide-free copper for welding.

Select the proper size Thermite weld mold as recommended by the manufacturer. Place the wire between the graphite mold and the prepared metal surface. For No. 12 AWG size wires, use a copper sleeve crimped over the wire. Place the metal disk in the bottom of the mold. Place the Thermite weld charge in the mold. Squeeze the bottom of the cartridge to spread ignition powder over the charge.

Close the mold cover and ignite the starting powder with a flint gun. After the exothermic reaction, remove the Thermite weld mold and gently strike the weld with a hammer to remove the weld slag. Pull on the wire to assure a secure connection. If the weld is not secure or the wire breaks, repeat the procedure with a new wire. If the weld is secure, coat bare metal and weld metal with a coal-tar compound. If a polyurethane dielectric coating has been used, use a compatible polyurethane coating.

3.11. **Backfilling.**

3.11.1. **General.** Backfill trenches in accordance with the requirements of Item 400.

Begin backfilling and cleaning up each section of main, i.e., from valve to valve, immediately upon completing the hydrostatic test, unless otherwise permitted by Engineer, and continue until obtaining a final and complete clean-up of the section. Any portion of the trench that is left open in excess of that required to facilitate hydrostatic testing may be ordered closed by the Engineer.

Use surplus excavated materials in the embankments or dispose of them as directed.

3.11.2. **Backfilling Pipe for Water Mains.**
3.11.2.1. **Open Cut.** After the pipe joints are made up and inspected, backfill the trenches with excavated materials or any other backfill material covered by this specification, as approved. Backfill the portion from the spring line of the pipe (or from 6 in. on top of pipe if sand bedding is used) to the top of the trench in maximum lifts of 9 in. loose measurement (provided the trench is not located in sidewalks, roadways, roadway shoulders, driveways, etc. that are being used for automobile or pedestrian traffic). Mechanically compact the backfill material using vibratory equipment, or any other acceptable equipment, so that no settlement occurs. Compact to a density of at least 95% of the maximum dry density, as determined in accordance with Tex-114-E. The Engineer reserves the right to perform compaction tests on an as-needed basis. Compaction by water tamping is prohibited.

Do not allow dirt, clods, or trench sides to fall or rest against the pipe before completing the embedment or backfill.

The allowable materials for backfill are listed in Section 2.15, “Backfill Material.”

Continue backfilling and compacting in this manner to the minimum elevation shown in the excavation and backfill diagram.

3.11.2.2. **Boring or Augering Pits.** Backfill boring or augering pits with bank run sand up to 1 ft. from the top of the natural ground. For the final 12 in., use backfill consisting of 10 in. of native soil in the bottom and 2 in. of bank run sand just below the grass.

Backfill the portion from the spring line of the pipe to the top of the pit in lifts not exceeding 9 in. (loose measurement). Mechanically compact the backfill by using vibratory equipment, or any other acceptable equipment, so that no settlement occurs. Compact the material to a density of at least 95% of the maximum dry density at optimum moisture content as determined in accordance with Tex-113-E or Tex-114-E. The Utility Owner may perform compaction tests on an as-needed basis. Compaction by water tamping is prohibited.

Do not allow dirt, clods, or auger pit sides to fall or rest against the pipe before completing the embedment or backfill.

The only allowable material for backfill in boring or augering pits is bank run sand, described in Section 2.15, “Backfill Material.”

3.12. **Valves and Fire Hydrants.** Ensure each valve and fire hydrant is completely closed when placed in the pipe line.

Install valves and hydrants in accordance with AWWA C600, except where modified by this specification. Provide drainage at the base of the hydrant in accordance with AWWA C600.

Set each hydrant at the location and grade indicated by the stakes, and plumb, brace, and install in accordance with AWWA’s requirements for fire hydrant installation. If the barrel of a hydrant is to pass through a concrete slab, fit a piece of 1 in. thick pre formed bituminous expansion joint material closely around the section of the barrel passing through the concrete.

Locate the nozzle centerline a minimum of 18 in. above the finish grade.

Place 12 in. x 12 in. yellow indicators (plastic, sheet metal, plywood, or other approved material) on pumper nozzles of new or relocated fire hydrants installed on new mains not in service. Remove indicators after the new main is tested and approved.

3.13. **Tapping Sleeves and Valves.**
3.13.1. **General.** Install tapping sleeves and valves at the locations and using the sizes shown on the plans. Thoroughly clean the tapping sleeve, tapping valve, and pipe in conformance with the manufacturer’s instructions before installing.

Hydrostatically test the installed tapping sleeve to 150 psig for a minimum of 15 minutes. Inspect the sleeve for leaks, and remedy any leaks before the tapping operation.

When tapping concrete pressure pipe, size on size, use a shell cutter one standard size smaller than that of the water line being tapped. Do not use Large End Bell (LEB) increases with a next size tap except for existing asbestos-cement pipe.

3.13.2. **Installation.** Verify the outside diameter of the pipe to be tapped before ordering the sleeve. Tighten the bolts in the proper sequence to avoid placing undue stress on the pipe. Align the tapping valve properly and attach it to the tapping sleeve. Insert the insulation sleeve into the flange holes of the tapping valve and pipe. Insert the sleeve on pipe side of tapping valve. Do not damage insulation sleeves during the bolt tightening process.

Make the tap with a sharp shell cutter using the following criteria: For 12 in. and smaller taps use a minimum cutter diameter 1/2 in. less than the nominal tap size. For 16 in. and larger taps, use the manufacturer’s recommended cutter diameter.

Withdraw the coupon and flush the cuttings from the newly-made tap. For 12 in. and smaller taps, wrap the completed tapping sleeve and valve in accordance with this specification.

For 16 in. and larger taps, apply Denso or approved equal, petroleum-based tape wrapping system around the completed tapping sleeve and valve. Place the concrete thrust block behind the tapping sleeve (not over the tapping sleeve and valve).

Arrange for the mandatory inspection of the installation before backfilling. Completion of the inspection is not required before backfilling. Backfill in accordance with this specification and as shown on the plans.

If Asbestos-Cement (AC) Pipe is encountered, follow the Safety Practice outlined in the Asbestos-Cement Pipe Producers Association publication, “Recommended Work Practices for A/C Pipe,” and make them “Mandatory Practices” for this project.

3.14. **Boxes for Valves.** Cut the cast-iron or ductile-iron pipe to the proper length, then assemble and brace the box as approved. Construct manholes over the operators of butterfly valves for sizes 30 in. and larger.

Concrete for valve box placement: For locations in new concrete pavement, use the same strength and mix design as that of new pavement. For other locations, use Class “A” Concrete, conforming to the requirements of Item 421.

Install valve box and riser piping plumbed in a vertical position. Provide 6 in. telescoping freeboard space between the riser pipe top butt end and the interior contact flange of the valve box, for vertical movement damping. Ensure the riser (bell end of pipe) rests on the valve flange, or provide a suitable foot piece to support the riser pipe.

Set, align, and adjust the valve box so that the lid is level with the final grade.

Paint the covers of new valve boxes in “Fluorescent Orange” when installed. After completion and approval by the Engineer, repaint the covers in “Black.”

3.15. **Wet Connections.** Make the wet connections, as directed, in such a manner and at such hours to minimize inconvenience to the public. When the existing mains have been cut or a plug removed for a connection, pursue the work of making the connection without interruption until complete.
If the Contractor proceeds with a wet connection without a complete shut-off, there will be no extra compensation for damages or extra work resulting from the incomplete shut-off.

The Utility Owner will operate gate valves in the existing system and in sections of completed mains that have been placed in service. Notify the Utility Owner at least 48 hr. in advance of making connections.

Wet connections that are 2 in. or smaller are sometimes referred to on the plans as 2 in. standard connections or gooseneck connections.

Items that may be necessary to complete these types of wet connections include corporation cock, saddle, copper tubing, brass fittings, and 2 in. valves. Do not use these connections on or consider them as part of a 2 in. service line.

The Utility Owner will handle, at no cost to the Contractor, operations involving opening and closing valves for wet connections.

3.16. Polyethylene Film Wrap. Except as noted on the plans, wrap ductile-iron pipe (including fittings and other appurtenances), with a polyethylene film. Also wrap fire hydrant barrels.

Remove lumps of clay, mud, cinders, etc., on the pipe surface before installing the polyethylene encasement. Prevent soil or embedment material from becoming trapped between the pipe and the polyethylene. Fit the polyethylene film to the contour of the pipe to affect a snug, but not tight fit; encase with minimum space between the polyethylene and the pipe. Provide enough slack in contouring to prevent stretching the polyethylene where it bridges irregular surfaces, such as bell-spigot interfaces, bolted joints, or fittings, and to prevent damage to the polyethylene due backfilling operations. Secure overlaps and ends with adhesive tape to hold polyethylene encasement in place until backfilling operations are complete.

For installations below the water table and in areas subject to tidal actions, seal both ends of the polyethylene tube with adhesive tape at the joint overlap.

Repairs: Repair any cuts, tears, punctures, or damage to the polyethylene with adhesive tape or with a short length of polyethylene sheet or cut open tube, wrapped around the pipe to cover the damaged area, and secured in place.

Openings in Encasement: Provide openings for branches, service taps, blow offs, air valves, and similar appurtenances by making an X-shaped cut in the polyethylene and temporarily folding back the film. After the appurtenance is installed, tape the slack securely to the appurtenance and repair the cut, as well as other damaged areas in the polyethylene, with tape. Service taps may also be made directly through the polyethylene. Repair any resulting damaged areas as described above.

Junctions between Wrapped and Unwrapped Pipe: Where polyethylene-wrapped pipe joins an adjacent pipe that is not wrapped, extend polyethylene wrap to cover the adjacent pipe for distance of at least 3 ft. Secure the end with circumferential turns of tape. Wrap service lines of dissimilar metals with polyethylene or suitable dielectric tape for a minimum clear distance of 3 ft. away from cast-iron or ductile-iron pipe.

3.16.1. Tubular Type Wrap. When the polyethylene film is supplied in tubular form, install it on the pipe before placing the pipe in the trench and in the following manner:

Elevate the spigot end of the pipe, brush mud and debris from the pipe, and slip a length of film (approximately 2 ft. longer than the joint of pipe) over the joint of the pipe. Wrap the film tightly around the spigot end, leaving about 1 ft. extending beyond the end of the pipe, and tape the edge down lightly with polyethylene tape.

When lifting the joint of pipe for placing in the trench, remove any remaining mud, clay, or debris. Insert the spigot end into the bell end of the joint previously placed, push home, and release the pipe into the trench. Pick up the pipe joint at the bell, slide the film to a point back of the bell, and prepare a bell hole.
When laying the next joint, pull the film beyond the bell to overlap the film attached to the spigot of the new pipe joint. Wrap the film by folding it longitudinally and tape it securely in place to prevent damage during backfill. Do not tape the end that is slipped over the last bell but bind it with twine or other approved material.

At each corporation, draw the loose material up around the corporation base and seal it with tape to insulate the 2 dissimilar metals.

Wrap fittings and fire hydrant leads, and tape or bind the wrap with heavy twine. Wrap fittings, such as bends and reducers, similarly to the method outlined above. Wrap specials, such as valves, tees, crosses, etc., by splitting, tucking, and overlapping the polyethylene tube, then closing the field-made splices with the required tape. Material to cover the valves may be acquired from excess overlapping polyethylene tubing on adjacent pipe joints. Draw the polyethylene tubing over the bell of the pipe on either side and insulate with field-made seams as described above. Completely wrap fittings and specials that require concrete blocking, before placing concrete.

3.16.2 **Sheet Type Wrap.** Apply sheet type wrap around the pipe either before or after positioning the pipe in the trench. Install “above ground” in a manner similar to that described above for tubular installation. Install “in trench” in a manner similar to that described below:

Cut the polyethylene sheet to a length approximately 2 ft. longer than the pipe section. Center the length to provide a 1 ft. overlap on each adjacent pipe section, bunching it until it clears the pipe ends. Wrap the polyethylene around the pipe so that it circumferentially overlaps the top quadrant of the pipe. Secure the cut edge of the polyethylene sheet at intervals of approximately 3 ft.

Lower the wrapped pipe into the trench and make up the pipe joint with the preceding section of pipe. Make shallow bell holes at joints to facilitate installation of the polyethylene. After completing the joint, make the overlap and secure the ends.

Repair cuts, tears, punctures, or other damage to the polyethylene. Proceed with installing the next section of pipe in the same manner.

3.16.3 **Boring or Augering Section Installation.** Use cast-iron or ductile-iron pipe with a polyurethane coating as specified in this Specification.

Provide a final seal against the intrusion of the backfill material by completely encasing the tapping sleeve with sheet vinyl of 8 mil thickness. Apply tape to secure this wrapping, using Polyken No. 900, Scotch Wrap No. 50, or approved equal, manufactured for this purpose.

3.17 **Disinfecting Mains and Testing for Leakage.**

3.17.1 **Disinfecting Mains.** The Utility Owner will furnish water for disinfecting and flushing without charge to the Contractor.

Furnish the necessary taps, risers, and jumpers of such sizes and materials as are specified by the Engineer, and install the subject material in the locations designated. Normally, each valve section of main will require two 3/4 in. taps; however, on larger mains the Engineer may order that 1-1/2 in. or 2 in. taps and risers be used.

Furnish and install the necessary temporary blind flanges, sleeves, plugs, etc., as required to disinfect and pressure test the new mains.

Use fire hydrants as blow-offs to flush newly constructed waterlines 8 in. diameter and above.

After laying and backfilling the pipe, disinfect the newly laid pipe. Unless otherwise shown on the plans, the Utility Owner will furnish and pay for the labor and materials necessary for the initial application of the disinfecting agent. Slowly fill each valves section of pipe with water and expel the air from the pipe.
and install taps at the points of highest elevation, if required to accomplish this. After filling the main with water and expelling the air, charge the pipe with the disinfecting agent and allow it to stand for 24 hr. Unless otherwise shown on the plans, the Utility Owner will then flush the main with water. After flushing, draw samples from the main and test for 2 consecutive days at a valid, approved testing facility. After samples are drawn and the test results pass, proceed with the pressure test and any necessary repairs. If the samples do not pass, re-disinfect the pipe until the samples taken are passed by the certified and approved testing facility. Unless otherwise shown on the plans, in the event that more than one disinfection of the main (or portion of the main) is required, the additional disinfection will be charged to the Contractor at rates established by the Utility Owner.

After disinfecting and flushing water lines, bacteriological tests will be performed by the Utility Owner or testing laboratory.

When test results indicate a need for additional disinfection of water lines based on Texas Department of Health requirements, assist Utility Owner with additional disinfection operations.

3.17.2. Testing for Leakage. Following the first disinfection test, subject the newly laid pipes to a hydrostatic pressure of 125 psi, unless otherwise shown on the plans. Where practicable, test pipe lines in lengths between line valves or plugs, of at most 1,500 ft. unless otherwise approved. Perform the pressure test by means of a pump connected to the pipe in a manner satisfactory to the Engineer. Furnish, install, and operate the necessary connections, pump, meter, and gauges. Before running the pressure test, ensure the meter is tested, sealed, and approved (at the Contractor’s expense) by an approved, certified testing facility. Ensure the minimum duration of the test is 8 hr. If a large quantity of water is required to maintain pressure during the test, discontinue testing until the cause of the water loss is identified and corrected.

Observe the following general regulations during each leakage test for cast-iron, ductile-iron, and PVC pipe:

Except for welded steel pipe in which no leakage is permitted, ensure that pipe lines, when subjected to the specified pressure test, do not show leakage in excess of 3.19 gal. per inch of diameter, per mi., in 24 hrs.

Repair portions of the pipe showing visible leaks regardless of the total leakage shown by the pressure test. Remove and replace cracked or defective pipes, fittings, valves, or hydrants discovered by means of this pressure test with sound material. If the main is opened for any reason, re-disinfect it until satisfactory samples are obtained. Also, pressure tests it until the requirements of this specification are met.

Immediately upon completing disinfection and pressure testing, remove all taps, risers, and blow-offs, then backfill the remainder of the trench in accordance with the requirements of this specification.

Perform leakage testing at no additional cost to the Department.

3.18. Using Completed Sections of Mains. The Utility Owner may use and operate portions of the water mains that are disinfected and pass the leakage test. Unless otherwise shown on the plans, operate the valves in such completed sections only with the express permission of the Utility Owner.

The use of the mains is not construed as acceptance of them and does not relieve the Contractor’s responsibility for fulfilling the conditions of the contract, unless the mains are damaged due to negligence on the part of the Utility Owner.

3.19. Lowering Mains. When lowering a main, perform the initial excavation in such a manner to permit the mains to rest on a number of dirt benches. If soil conditions are unsatisfactory for dirt benches, use wooden blocks to support the mains. Then attach the pipe by using ropes, cable, or chains to overhead supports; remove the dirt benches or wooden blocks, and slowly and evenly lower the pipe into position. After lowering the mains, repair each damaged joint as directed.

3.20. Copper Service Line Construction. The use of Hays-Seal and Mueller Company catalog numbers to describe various fittings is not intended to be proprietary, but merely to indicate clearly the respective types of fittings to be furnished.
3.20.1. **Installing Service Lines.** For curb and gutter streets, lay copper service lines with a minimum 30 in. of cover from top of curb to the top of the service line. For crowned streets with open ditches, lay copper service lines with a minimum 30 in. of cover at the crown and with a minimum 18 in. of cover from the flow line of the ditch to the top of the service line. Ensure service line locations are clear of proposed paving and underground work.

Exercise caution to keep the lines free of dirt and foreign matter at all times. Assemble copper lines in an entirely slack position and free of kinks. Use service lines consisting of one continuous run of copper tubing where possible. Do not use bends greater than that originally found in the coil of tubing as packaged.

For 1-1/2 in. and 2 in. copper tubing shipped in straight lengths, use the following bend criteria:

For 2 in. copper tubing, a maximum of one 45° bend may be accomplished in a 4 ft. section; for 1-1/2 in. copper tubing, a maximum of one 45° bend in a 3 ft. section. No kinks, dents, flats, or crimps will be permitted.

Locate meters, in general, 1 ft. into the street right of way. Where this is not applicable, locate meters approximately 1 ft. from the sidewalk on the curb side. If the present meter location conflicts with proposed driveway turnouts or other proposed street improvements, shift the meter to miss the obstruction and reconnect it to the customer’s service line. Reset meters at positions such that the top of the meter is 4 in. to 6 in. below the finished grade.

Where the plans call for salvaging and relocating the meter, meter box, and curb stop, remove these materials with care, thoroughly clean them, and submit them for inspection by the Engineer, before installing them in the new location. If the plans call for relocating the meter (other than at some point along the existing service line), a new service line will be required.

Where it is necessary to cross a paved street, push the service line under the paving through a pre-drilled and prepared opening. Use only full lengths of copper tubing, taking care not to damage the tubing when pulling it through the prepared hole.

A compression type union is only permitted when a full 40 ft. (60 ft. for 3/4 in. to 1 in.) length of tubing cannot completely span underneath the pavement. Do not use compression type unions under the paved street.

3.20.2. **Installing Corporation Stops.** Tap the main at a location such that a straight line passing through the meter and the corporation stop will be at 90° to the main. Locate taps in the upper portion of the main within 45° of the pipe spring line. Perform the cutting operation with an approved sharp shell cutter tool.

Install taps for service lines conforming to the requirements of Table 12. Space taps a minimum of 2 ft. apart.
Table 12
Service Tap Requirements for Service Lines

<table>
<thead>
<tr>
<th>Water Main Type and Diameter</th>
<th>3/4 in.</th>
<th>1 in.</th>
<th>1-1/2 in.</th>
<th>2 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 in. Cast-Iron or Ductile-Iron</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
</tr>
<tr>
<td>4 in. Asbestos-Cement</td>
<td>WBSS</td>
<td>WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
</tr>
<tr>
<td>4 in. PVC (AWWA C 900)</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
</tr>
<tr>
<td>6 in. and 8 in. Cast-Iron or Ductile-Iron</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
</tr>
<tr>
<td>6 in. and 8 in. Asbestos-Cement</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
</tr>
<tr>
<td>6 in. and 8 in. PVC (AWWA C900)</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
</tr>
<tr>
<td>12 in. Cast-Iron or Ductile-Iron</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
</tr>
<tr>
<td>12 in. Asbestos-Cement</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
</tr>
<tr>
<td>12 in. PVC (AWWA C900)</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
<td>DSS, WBSS</td>
</tr>
<tr>
<td>16 in. and up Cast-Iron or Ductile-Iron</td>
<td>DWBSS</td>
<td>DWBSS</td>
<td>DWBSS</td>
<td>DWBSS</td>
</tr>
<tr>
<td>16 in. and up Asbestos-Cement</td>
<td>DWBSS</td>
<td>DWBSS</td>
<td>DWBSS</td>
<td>DWBSS</td>
</tr>
<tr>
<td>16 in. and up PVC (AWWA C900)</td>
<td>DWBSS</td>
<td>DWBSS</td>
<td>DWBSS</td>
<td>DWBSS</td>
</tr>
</tbody>
</table>

DSS = Dual Strap Saddles
WBSS = Wide Band Strap Saddles
DWBSS = Dual Wide Band Strap Saddles

3.20.3. **Installing Curb Stops.** Set curb stops or angle stops only at the outer end of the service line just ahead of the meter. Secure the opening in the curb stop to prevent unwanted material from entering. Use eighth bend or quarter bend couplings to accomplish close quarter turns in the service line.

In 3/4 in. and 1 in. services, install a meter coupling or swivel nut meter spud curb stop, ahead of the meter. Also install a straight meter coupling on the outlet end of the meter. Install a new curb stop when the service line is extended.

3.20.4. **Sequence of Work.** Open the trench for the proposed service line or prepare the jacking and receiving pits.

Install the corporation stop in a workmanlike manner using the proper equipment.

Install the copper service line and connect it to the corporation stop.

Install the curb stop on the meter end of the service line.

With the curb stop open, and before connecting the service line to the meter, open the corporations stop and flush the service line adequately. Close the curb stop, leaving the corporation stop in the full open position.

Check the service line for apparent leaks. Repair leaks before proceeding.

Connect the service line to the meter and, if necessary, adjust the meter location. Use care to ensure that the inlet side of the meter is connected to the water service line. Momentarily open the curb stop to verify proper registration of the meter.

Backfill the excavations, tamping the backfill material in place to the density of the soil in the adjacent trench walls.

If relocating the meter, relocate the meter box so that it is centered over the meter with the top of the lid flush with the finished grade. When the meter must be located in driveways or sidewalks furnish and install an approved traffic type meter box with a cast-iron lid.

3.21. **Cutting and Plugging Water Mains.** Where the plans call for abandoning water mains, adhere to the following general procedure:

After constructing, disinfecting, testing, and placing the replacement main in service, and services are transferred to the replacement main, locate the main to be abandoned, trace it back to the feeder main, and...
at this point cut and plug it at the tee. Normally, installing a plug, clamp, and a concrete thrust block does this. In cases of 1-1/2 in. or 2 in. corporation cock or tapping sleeve and valve (TS&V) connections, remove the valve and install a cap or plug at the tee. Ensure the line to be abandoned is not valves off at the nearest valve, nor cut and plugged other than at the supply main.

Adequately plug the ends or openings in abandoned mains or cap them in an approved manner and replace excavation, backfill, and any street surfaces, to the Engineer’s satisfaction. Perform this work in accordance with Sections 3.1., “Excavation,” and 3.11., “Backfilling.”

Remove surface identification, i.e., valve boxes and fire hydrants. Where valve boxes are in improved streets (other than shell), pouring valve boxes full of concrete with the cap permanently removed is permitted.

Do not remove plugs during the months of peak water demands, June, July, and August, unless otherwise approved.

3.22. Service Lines of Public Utilities. Where any pipe or conduit of a public utility corporation crosses the water main trench, support such pipe or conduit in a manner satisfactory to the Engineer.

If the Contractor considers it necessary for a utility company to relocate their utility lines or other improvements, notify the Engineer in advance.

If the Engineer considers it imperative to make the change, the Engineer will make the necessary arrangements with the utility company.

3.23. Relocating Meter Vaults. Salvage existing valves, meters, and strainers from inside the vault and return them to the Utility Owner, or as designated on the plans.

Install pipe, valves, service lines, and other appurtenances in accordance with the sections of this specification or as directed.

In general, install the type of meter vault shown on the plans or as approved.

3.23.1. Precast Concrete Vault. Construct and furnish the precast concrete vault as shown on the plans.

Set the precast concrete vault level on a minimum 3 in. bed of sand in an excavation and bring it to grade. Then install piping and backfill with sand around the vault.

3.23.2. Cast-in-Place Concrete Vault. Construct the cast-in-place concrete vault as shown on the plans. Key the walls to the floor slab and form to the dimensions shown on the plans. Provide a minimum wall thickness of 4 in. Cast the walls monolithically. One cold joint is allowed when the vault depth exceeds 12 ft. Set the frame for the cover while the concrete is still green.

3.23.3. Frame and Cover. Construct the frame and cover as shown on the plans.

In grass areas, set the frame and cover 2 in. to 3 in. above the natural ground or finished grade and parallel to it (the maximum allowable angle from horizontal is 20°). Slope the backfill away from the meter.

In sidewalk areas, set the frame and cover 1/2 in. to 1 in. above the adjacent concrete and parallel to it. Slope the replacement concrete away from the meter to meet the adjacent concrete.

3.23.4. Inspections. The following inspections will be made jointly by the Engineer and representatives of the Utility Owner:

- Site Location Inspection - to obtain the required approval of proposed meter location before commencing work.
- Final Inspection – conducted after the backfill is in place, the cover is installed, the cleanup is completed, and the surface is restored.
3.24. **Adjusting Existing Surface Structures.**

3.24.1. **Valve Boxes.** Salvage and reuse the valve box. Remove and replace the 6 in. ductile-iron riser pipe with a suitable length for the depth of cover required to establish the adjusted elevation to accommodate the actual finished grade.

Reinstall the valve box and riser piping plumbed in a vertical position. Provide a minimum of 6 in. telescoping freeboard space between the riser pipe top butt end and the interior contact flange of the valve box, for vertical movement damping.

After setting, aligning, and adjusting the valve box so that the top lid is level with the final grade, place a 24 in. by 24 in. by 8 in. thick concrete block around the valve box. Center the valve box horizontally within the concrete box.

3.24.2. **Meter Boxes.** Salvage and reuse meter boxes when possible. Reinstall them in conformance with the manufacturer’s recommendations. Repair any damage sustained by the meter box during relocation or service transfer, at no expense to the Department.

If the existing meter box requires replacement, the Contractor may obtain a new box from the Utility Owner by providing adequate documentation of the existing and proposed locations.

3.24.3. **Meter Vaults.** Adjust meter vaults in conformance with the details shown on the plans. Salvage and reuse access covers.

3.25. **Relocating Water Meters and Boxes.** Salvage, clean, inspect, and install existing curb stops, meters, unions, and meter boxes at the new locations in conformance with specifications in this section. When the meter and box is relocated, move it the minimum distance to enable access for new connections. Repair any damage sustained by the meter box during relocation or service transfer, at no expense to the Department.

If unable to salvage the existing boxes, the Contractor may obtain new boxes from the Utility Owner by providing proper documentation of the existing and proposed locations of the meter.

When approved, the Contractor may relocate meter boxes located adjacent to existing pavement, if this operation facilitates construction or decreases the costs. Obtain written approval of the Engineer and perform this work, including excavation, piping, meter box relocation, removal and replacement of paving, etc., at no cost to the Department.

3.26. **Installing Split Casing.** Notify the Utility Owner at least 48 hr. in advance of any work planned involving existing water lines. Do not, at any one time, expose more than 20 ft. of water lines to be encased.

Place 6 in. x 6 in. x 1-1/4 in. neoprene pads between the split casing sections and the top and bottom of the water lines spacing them at approximately 6 ft. or as directed.

Ensure the completed and shaped trench to receive the casing is of wide enough to provide free working space for satisfactorily installing the casing and backfilling under and around the casing.

Hold the split casing in place for welding by using hinges, coupling bands, or any other acceptable method.

Use a casing diameter not less that the outside dimension of the pipe at is longest dimension plus 4 in.

Perform welds conforming to the requirements of AWWA Standard C 206. Provide welds capable of developing the full strength of the pipe throughout the joint and casing split.

Seal the ends of the encasement pipe with casing and seals in accordance with Section 2.2.1., “Steel Carrier Pipe,” to prevent the entrance of the excessive ground water.
3.27. **Modifications for Cathodic Protection.**

3.27.1. **General.** Provide cathodic protection systems as shown on the plans.

References to steel pipe apply to tape-coated welded steel pipe. If damage occurs to the pipe coatings during the welding process, refurbish the affected area to its original condition.

3.27.2. **Bonded Joints.** Where rubber gasket bell and spigots are provided, provide for bonded joints by either welding a strap or clip between the bell and the spigot of each joint, or by providing a Thermite-welded cable between the bell and the spigot of each joint. Provide pipes, whether installed in a tunnel or open cut, with bonded joints, except where providing insulating flanges. Where welding joints for thrust restraint, no additional bonding is required.

Bonding Strap or Clip: Provide a strap or clip for bonding the bell to the spigot, that is free of foreign material that could increase the contact resistance between the wire and the strap or clip.

Unless otherwise noted, provide insulation kits at connections to the existing water system, at locations to isolate one type of cathodic system from another type, between the water main and extra piping, or as shown on the plans.

3.28. **Removing and Salvaging Fire Hydrants and Water Meters.** Deliver removed and salvaged fire hydrants and water meters to the Utility Owner at the location shown on the plans, or as directed.

3.29. **Installing the Nonmetallic Pipe Detection System.** Install the nonmetallic pipe detection system concurrently with placing the proposed pipe. Install as specified by the manufacturer and as approved.

3.30. **Removing Water Mains and Removing Water Mains with Casing.** Remove water mains and water mains with casing in accordance with Item 100, or as shown on the plans. This includes removing and disposing of pipe and appurtenances as shown on the plans or as directed. Perform related excavation and backfilling, as required, at no additional cost the Department.

3.31. **Adjusting Manholes.** Perform work in accordance with Item 465. Excavate and backfill in accordance with Item 400. Carefully remove and temporarily store as directed, manhole and inlet rings, covers, plates, and grates to be reused. Clean mortar and grease from the contact areas of reused items. Dispose of unused removed material as directed. Use construction methods described in Sections 479.3.1, “Lowering the Top of a Manhole or Inlet,” and 479.3.2, “Raising the Top of a Manhole or Inlet,” unless otherwise shown on the plans.

3.31.1. **Lowering the Top of a Manhole or Inlet.** Remove a sufficient depth of brick courses or concrete to permit reconstruction on a batter not exceeding 1 in. horizontal to 2 in. vertical. Where brickwork is present, clean the mortar from the top course of brick. Rebuild the manhole or inlet to the original top dimensions or to the dimensions shown in the plans. Install the manhole or inlet ring and the cover, plate, or grate to conform to the proposed new surface contour.

3.31.2. **Raising the Top of a Manhole or Inlet.** Clean the top surface of brick or concrete. Construct to the proper new elevation using new brick, brick salvaged from other manholes or inlets, prefabricated metal extension rings, concrete rings, or Class A concrete. Install the manhole or inlet ring and the cover, plate, or grate to conform to the proposed new surface contour. Install prefabricated extension rings in accordance with manufacturer’s instructions.

4. **MEASUREMENT**

4.1. **Water Main Pipe and Steel Casing.** Measured by the foot, of the various sizes and types specified. Water mains and casing will be measured along the axis of the pipe and no deductions will be made for valves or fittings. Reducers will be classed as pipe of the size of the larger end.
Unless otherwise shown on the plans, Fire Hydrant Branches (Leads) will be measured by the foot, of the various types and installation methods specified, along the axis of each branch (lead) from the hydrant to the end of the branch (lead). No deductions will be made for valves or fittings.

4.2. **Split Steel Casing.** Measured by the foot, of the various sizes shown on the plans.

4.3. **Fiberglass Reinforced Plastic (FRP) Pipe for Casing.** Measured by the foot, of the various sizes shown on the plans.

4.4. **Jacking, Tunneling, Boring, or Augering.** Jacking, Tunneling, Boring, or Augering for water mains and steel casing will be measured by the foot, of the sizes, types, and wall thickness (applicable only for casing) specified.

Jacking, Tunneling, Boring, or Augering for fire hydrant branches (leads) will be measured by the foot, of the various types specified.

4.5. **New Copper Service Lines.** Measured by each service line installed.

Short Side service line refers to service connections made to meters located on the same side of the street as the supply main is located. Long Side service line refers to service connections made to meters located on the opposite side of the street from the supply main, or from the center of the street, where the supply main is located in the center of the street.

4.6. **Gate Valves, Tapping Sleeves and Valves, and Butterfly Valves.** Measured by each assembly installed, of the various sizes specified, except that gate valves 20 in. in diameter and smaller, are subsidiary to the water lines.

4.7. **Fire Hydrants.** Measured by each assembly installed, including a 6-in. gate valve and box, regardless of depth. It is the Contractor’s responsibility to install the fire hydrant assembly such that it meets the standard installation requirements of this specification and the manufacturer’s specifications.

Fire Hydrant Branches (Leads) will be measured as indicated in Sections 4.1., “Water Main Pipe and Steel Casing” and 4.4., “Jacking, Tunneling, Boring, or Augering.”

4.8. **Meters and Vaults.** Measured by each assembly constructed.

4.9. **Air Release and Vacuum Relief Valves.** Measured by each assembly, of the various sizes, with the valve box installed.

4.10. **Pressure Reducing Stations.** Measured by the lump sum unit constructed.

4.11. **Blow Off Valves.** Measured by each assembly, of the various sizes and types, with the valve box installed.

4.12. **Removing Fire Hydrants.** Measured by each assembly removed and disposed of properly.

4.13. **Removing Water Valves and Boxes.** Measured by each assembly removed and disposed of properly.

4.14. **Removing and Relocating Meters and Boxes.** Measured by each assembly removed, cleaned, and installed at the new location.

4.15. **Removing Meters and Vaults.** Measured by each assembly removed and disposed of properly.

4.16. **Removing and Salvaging Water Meters.** Measured by each assembly removed and salvaged.

4.17. **Removing and Salvaging Fire Hydrants.** Measured by each assembly removed and salvaged.
4.18. **Removing and Relocating Water Meters and Meter Vaults.** Measured by each assembly removed and relocated.

4.19. **Adjusting Meter Vaults.** Measured by each assembly adjusted.

4.20. **Adjusting Meter Boxes.** Measured by each assembly adjusted.

4.21. **Adjust or Relocate Water Meter.** Measured by each assembly adjusted or relocated.

4.22. **Lowering Water Mains.** Measured by the foot, of the sizes and types of pipe lowered.

4.23. **Cutting and Plugging Water Mains.** Measured by each location a water main is cut and plugged, of the sizes indicated.

4.24. **Removing Pressure Reducing Stations.** Measured by each complete pressure reducing station removed.

4.25. **Wet Connections.** Measured by each connection, of the sizes specified.

4.26. **Extra Hand Excavation or Extra Machine Excavation.** Measured by the cubic yard in its original position. Excavation performed by manual labor at the locations specifically designated by the Engineer, and which is not included under or subsidiary to other bid items contained in this specification, is considered Extra Hand Excavation or Extra Machine Excavation.

4.27. **Adjusting Manholes.** Adjusted manholes will be measured as each manhole adjusted.

5. **PAYMENT**

The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement” will be paid for at the unit prices bid for the items of work described below. These prices are full compensation for furnishing, hauling, placing, and installing the materials; for inspecting and testing; and for other materials, labor, equipment, tools, and incidentals.

5.1. **Water Main Pipe and Steel Casing.** Payment for water main pipe, and steel casing will be made at the unit prices bid for "Water Main Pipe (Cast-Iron)," “Water Main Pipe (Steel),” “Water Main Pipe (Ductile Iron),” “Water Main Pipe (Copper),” “Water Main Pipe (Polyvinyl Chloride)(PVC),” and “Casing (Steel),” of the various sizes and types specified, installed by the open-cut method.

Unless otherwise shown on the plans or specifications, excavating, disposing of unsuitable excavated material, backfilling, and the material for backfill, for the complete installation of the water main system, are subsidiary to this bid Item.

5.2. **Split Steel Casing.** Payment for split steel casing will be made at the unit price bid for “Split Steel Casing,” of the various sizes specified, installed by the open cut method.

5.3. **Fiberglass Reinforced Plastic (FRP) Pipe for Casing.** Payment for Fiberglass Reinforced Plastic (FRP) Pipe for Casing will be made at the unit price bit for “Fiberglass Reinforced Plastic (FRP) Pipe for Casing” of the various sizes specified.

5.4. **Jacking, Tunneling, Boring, or Augering.** Payment for jacking, tunneling, boring, or augering water main will be made at the unit price bid for “Jacking, Tunneling, Boring, or Augering (Water Main),” of the sizes and types specified. This price includes furnishing the pipe.

Payment for jacking, tunneling, boring, or augering fire hydrant branches (leads) will be made at the unit price bid for “Jacking, Tunneling, Boring, or Augering Fire Hydrant Branch (Lead)(6 in.),” of the types and installation method specified. This price includes furnishing the pipe.
Payment for jacking, tunneling, boring, or augering steel casing will be made at the unit price bid for “Jacking, Tunneling, Boring, or Augering Casing (Steel),” of the sizes, types, and wall thickness (applicable only if exceeding minimum thickness, shown in Section 2.2.2, “Steel Casing Pipe”) specified. This price includes the casing. Water mains and fire hydrant branches (leads) placed in the casing will be paid for by the appropriate bid item.

Excavating, backfilling, backfill material, and disposing of unsuitable excavated material for jacking, tunneling, boring, or augering pits are subsidiary to these bid items.

5.5. **New Copper Service Lines.** Payment for copper service lines will be made at the unit price bid for “Service Line (Short Side 5/8 in. to 1 in.),” “Service Line (Long Side 5/8 in. to 1 in.),” “Service Line (Short Side 1-1/2 in. to 2 in.)” and “Service Line (Long Side 1-1/2 in. to 2 in.),” installed. This price is full compensation for labor, materials, excavation, and backfill required to install the facility, including connection to the customer’s service line.

5.6. **Gate Valves, Tapping Sleeves and Valves, and Butterfly Valves.** Payment for gate valves (larger than 20 in. in diameter), tapping sleeves and valves, and butterfly valves will be made at the unit price bid for “Gate Valve,” “Tapping Sleeve and Valve,” and “Butterfly Valve,” of the various sizes specified, with the valve box installed.

5.7. **Fire Hydrants.** Payment for fire hydrants will be made at the unit price bid for “Fire Hydrant Assembly,” including 6 in. gate valve and box, installed regardless of barrel depth.

Payment for fire hydrant branches (leads) will be made at the unit price bid for “Fire Hydrant Branch (Lead) (6 in.)” installed by the open-cut method.

Any adjustment required either in the flow line of the water main or to the barrel length of the fire hydrant is subsidiary to this bid Item.

5.8. **Meters and Vaults.** Payment for meters and vaults will be made at the unit price bid for “Meter and Vault” constructed.

5.9. **Air Release and Vacuum Relief Valves.** Payment for air release and vacuum relief valves will be made at the unit price bid for “Air Release and Vacuum Relief Valve,” of the various sizes specified, with the valve box installed.

5.10. **Pressure Reducing Stations.** Payment for pressure reducing stations will be made at the unit price bid for “Pressure Reducing Station.” This price is full compensation for performing the necessary excavation, backfill, finish grading, constructing the concrete structure, and furnishing and installing station appurtenances addressed under Article 2, “Materials,” of this specification.

5.11. **Blow Off Valves.** Payment for blow off valves with boxes will be made at the unit price bid for “Blow Off Valve” of the various sizes and types specified, with the valve box installed.

5.12. **Removing Fire Hydrants.** Payment for removing fire hydrants will be made at the unit price bid for “Removing Fire Hydrant.” This price includes removing valves from the existing location, disposing of the valves, and plugging at the tee. Excavation and backfill required for removing fire hydrants are subsidiary to this bid Item.

5.13. **Removing Water Valves and Boxes.** Payment for removing water valves and boxes will be made at the unit price bid for “Removing Water Valve and Box.” Excavation and backfill required for removing water valves and boxes are subsidiary to this bid Item.

5.14. **Removing and Relocating Meters and Boxes.** Payment for removing and relocating meters and boxes will be made at the unit price bid for “Removing and Relocating Meter and Box.”
5.15. **Removing Meters and Vaults.** Payment for removing meters and vaults will be made at the unit price bid for “Removing Meter and Vault.” This includes salvaging the meter strainers and valves and delivering them to their owner at the location shown on the plans or as directed.

5.16. **Removing and Salvaging Water Meters.** Payment for removing and salvaging water meters will be made at the unit price bid for “Removing and Salvaging Water Meter.” This price includes removing salvaged water meters from the existing locations and delivering them to the owner. Excavation, backfill, and finish grading required for removing the water meters are subsidiary to this bid Item.

5.17. **Removing and Salvaging Fire Hydrants.** Payment for removing and salvaging fire hydrants will be made at the unit price bid for “Removing and Salvaging Fire Hydrant.” The salvaging of fire hydrants will be a cash reimbursement to the owner by the Contractor where the fire hydrants will become the property of the Contractor or the Contractor will deliver the fire hydrants to the Utility Owner at the location shown on the plans. Excavation, backfill, and finish grading required for removing fire hydrants are subsidiary to this bid Item.

5.18. **Removing and Relocating Water Meters and Meter Vaults.** Payment for removing and relocating water meters and meter vaults will be made at the unit price for “Removing and Relocating Water Meter and Meter Vault.”

5.19. **Adjusting Meter Vaults.** Payment for adjusting meter vaults will be made at the unit price bid for “Adjusting Meter Vault.” This price is full compensation for furnishing the required materials, including backfill as required, excavation, tools, labor, equipment, and incidentals.

5.20. **Adjusting Meter Boxes.** Payment for adjusting meter boxes will be made at the unit price for “Adjusting Meter Box.”

5.21. **Adjust or Relocate Water Meter.** Payment for adjusting or relocating water meters will be made at the unit price for “Adjusting or Relocating Water Meters.” This price is full compensation for adjusting or relocating water meters. Miscellaneous fittings required to complete the work will not be paid for directly, but will be subsidiary to this Item unless otherwise shown on the plans. Water line sterilization and testing of the completed water main system is considered subsidiary to this Item.

5.22. **Lowering Water Mains.** Payment for lowering water mains will be made at the unit price bid for “Lowering Water Mains,” of the sizes and types of pipe lowered. This price is full compensation for lowering and adjusting pipes, as well as any connected valves, boxes, and service lines. Excavation and backfill required for lowering water mains are subsidiary to this bid Item.

5.23. **Cutting and Plugging Water Mains.** Payment for cutting and plugging water mains will be made at the unit price bid for “Cut and Plug Water Main,” of the sizes indicated. This price is full compensation for performing excavation, backfill, finish grading, and other incidental items required to abandon or cut and plug the water main as set forth this specification. Where grout is required, as shown on the plans, it is subsidiary to this bid Item.

5.24. **Removing Pressure Reducing Stations.** Payment for removing pressure reducing stations will be made at the unit price bid for “Removing Pressure Reducing Station.” This price is full compensation for performing the necessary excavation, backfill, finish grading, pipe removal, structure removal, and for tools, equipment, and incidentals.

5.25. **Wet Connections.** Payment for wet connections will be made at the unit price bid for “Wet Connections,” of the sizes specified.

5.26. **Extra Hand Excavation or Extra Machine Excavation.** Payment for extra hand excavation or extra machine excavation will be made at the unit price bid for “Extra Hand Excavation” or “Extra Machine Excavation.” This price is full compensation for labor, hand tools, machines, dewatering, and handling and properly disposing of any excess excavated material not suitable for bedding or backfill for this project.
5.27. **Adjusting Manholes.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Water Main (Adj Exist Manhole)." This price is full compensation for replacement of Air Release / Vacuum Release Valve and installation of the Standard Bollards as shown on the plans; for materials including backfill as required, and for excavation, tools, equipment, labor, and incidentals.

Trench excavation protection or temporary special shoring for trenches greater than 5 ft. in depth, or sloping the sides of these trenches to preclude collapse, will be measured and paid for as required by Item 402, "Trench Excavation Protection," or Item 403, "Temporary Special Shoring."

Furnishing and placing bedding material is subsidiary to the various bid items.

Providing fittings, including necessary concrete thrust blocking, pipe clamps, nipples, pipe coatings, and lubricants, etc. is subsidiary to the water mains in which they are installed.

In addition, providing fittings required due to plan changes or alterations in line and grade, is subsidiary to the water mains in which they are installed.

Furnishing and installing taps, risers, jumpers, blind flanges, cast-iron sleeves, plugs, reducers etc., as required to disinfect and pressure test the new mains is subsidiary to the various bid items. In addition, necessary excavation and backfill, site grading, and maintenance until completion of pressure testing are subsidiary to the various bid items.

Unless otherwise shown on the plans, the work performed and materials furnished to support the pipes or conduits of public utilities are subsidiary to the various bid items.

Furnishing and installing the nonmetallic pipe detection system, as well as the labor and materials necessary for the system, is subsidiary to the various bid items. In addition, ensure that the detection system is complete, operational, and satisfactory to the Utility Owner.

Adjusting valve boxes is subsidiary to the various bid items.