The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

26.166' Overall Top Width
13.083'

Face of Rail
2" End Cover

2" End Cover
Face of Rail

26'-6" Overall Bottom Width
24'-0" Roadway Width (Nominal)
13'-1"

4'-11

5B20
4B20
4B20
4B20
4B20
5B20

Box Beam 1

Bars DT and H placement

End Diaphragm ~ See TYPICAL
Bars T at Face of Rail

Bars A at 6" Max Spa

Deflections may be adjusted based on Field Camber and actual dimension may be less. Deflections shown are theoretical (E = 5 x 10^11 ksi). Calculated deflections shown are theoretical and actual dimension may be less.

11. If multi-span units with stop continuous over interior supports are indicated on the bridge layout, bars must be continuous through joints. See Continuous Slab Detail.

2. Based on theoretical beam camber, dead load deflections of 5" Cast-in-place slab, shear key and slab and a constant grade, the contractor must adjust these values for any vertical curve.

3. Stop thickness at midspan of beams may not exceed 1 inches.

4. This standard does not provide for changes in roadway cross slopes within the structure.

5. If using Type A expansion joints, the maximum distance between joints is 100 feet.

6. Provide Class S (HPC) concrete if shown elsewhere in the plans.

GENERAL NOTES:

Designs according to AASHTO LRFD Specifications.

Provide Class B aggregate of 4,000 psi for slab and shear key.

Provide Class S (HPC) aggregate if shown elsewhere in the plans.

All reinforcing must be Grade 60.

Concrete or beams or units, with the stop continuous over interior Bents, may be formed with the details on this standard. Unit lengths, cover (Typ), and shear key, are provided. For non-standard requirements, will be as follows:

- Beams: N = 4 x 20 ft

- Epoxy coated ~ #4 = 2'-1"

- Uncoated ~ #4 = 1'-5"

- Bar laps, where required, will be as follows:

Two-span or three-span units, with the slab continuous over Interior Bents, may be formed with the details on this standard. Unit Length

Provide Class S concrete (f'c = 4,000 psi) for slab and shear key.

Note: Deflections shown are due to dead load and a constant grade. The contractor must adjust these values for any vertical curve.

The use of this sheet does not support the use of Transition Bents.

See railing details and standard BBRAS for rail anchorage.

It is recommended, with crown cross-slope, to erect beams adjacent to crown point first. For structures without a crown point, it is recommended to erect beams on the high side of cross-slope first and progress to the low side.

The following are standard BRAS for rail anchorage.

Table of Deflections and Section Depths

<table>
<thead>
<tr>
<th>SPAN LENGTH</th>
<th>POINT</th>
<th>MEDIAN</th>
<th>TOTAL</th>
<th>CENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 ft</td>
<td>10 ft</td>
<td>15 ft</td>
<td>20 ft</td>
</tr>
<tr>
<td></td>
<td>2.25</td>
<td>1.6</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table of Deflections

<table>
<thead>
<tr>
<th>TYPE</th>
<th>HL93 LOADING</th>
<th>SHEAR</th>
<th>SLAB</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table of Est Quantities:

<table>
<thead>
<tr>
<th>COUNTY</th>
<th>DIST</th>
<th>FILE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>bbstds19.dgn</td>
</tr>
</tbody>
</table>

December, 2006

Sheet 1 of 2

Prestressed Concrete Box Beam Spans
Type B20
24 RDWY
(with slab)
Typical End Diaphragm Sections

Continuous Slab Detail

Table of Estimated Quantities

Type A Joint Detail