GENERAL NOTES:

- Designed according to AASHTO LRFD Specifications.
- Provide Class S concrete (f'c = 4,000 psi) for slab and shear key.
- Provide Class S (HPC) concrete if shown elsewhere in the plans.
- Designed according to AASHTO LRFD Specifications.
- General Details, Standard BBRAS for rail anchorage.
- Dimensions are nominal and actual dimension may be less.
- Deflections may be adjusted based on field observation.
- Deflections shown are due to dead load and a constant grade. The contractor must adjust these values for any vertical curve.
- Based on theoretical beam deflection of 5" Cast-in-place slab, shear key dead load and a constant grade. The contractor must adjust these values for any vertical curve.
- Dead load deflections of 35° Cast-in-place slab, shear key dead load and a constant grade. The contractor must adjust these values for any vertical curve.
- Cast-in-place slab, shear key dead load and a constant grade. The contractor must adjust these values for any vertical curve.
- Cast-in-place slab, shear key dead load and a constant grade. The contractor must adjust these values for any vertical curve.
- Cast-in-place slab, shear key dead load and a constant grade. The contractor must adjust these values for any vertical curve.
- Cast-in-place slab, shear key dead load and a constant grade. The contractor must adjust these values for any vertical curve.

BAR TABLE

<table>
<thead>
<tr>
<th>BAR</th>
<th>DT</th>
<th>NAME</th>
<th>TYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>A</td>
<td>2'-1"</td>
<td>Epoxy coated</td>
</tr>
<tr>
<td>#4</td>
<td>M</td>
<td>1'-5"</td>
<td>Uncoated</td>
</tr>
</tbody>
</table>

Provide reinforcement must be Grade 60.

See railing details and standard BBRAS for rail anchorage.

This sheet does not support the use of Transition Bents.

See railing details and standard BBRAS for rail anchorage.
TYPICAL END DIAPHRAGM SECTIONS

CONTINUOUS SLAB DETAIL

TABLE OF ESTIMATED QUANTITIES

REINFORCEMENT

<table>
<thead>
<tr>
<th>SPAN LENGTH</th>
<th>SLAB</th>
<th>SHEAR</th>
<th>REINF CONC</th>
<th>PRESTRESS CONCRETE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>4,7</td>
<td>970</td>
<td>894,50</td>
<td>119,00</td>
<td>1,940</td>
</tr>
<tr>
<td>35</td>
<td>5,5</td>
<td>1,132</td>
<td>103,50</td>
<td>139,00</td>
<td>2,284</td>
</tr>
<tr>
<td>40</td>
<td>6,3</td>
<td>1,293</td>
<td>118,50</td>
<td>159,00</td>
<td>2,536</td>
</tr>
<tr>
<td>45</td>
<td>7,1</td>
<td>1,455</td>
<td>133,50</td>
<td>179,00</td>
<td>2,910</td>
</tr>
<tr>
<td>50</td>
<td>7,9</td>
<td>1,617</td>
<td>148,50</td>
<td>199,00</td>
<td>3,214</td>
</tr>
<tr>
<td>55</td>
<td>8,7</td>
<td>1,778</td>
<td>163,50</td>
<td>219,00</td>
<td>3,526</td>
</tr>
<tr>
<td>60</td>
<td>9,5</td>
<td>1,940</td>
<td>178,50</td>
<td>239,00</td>
<td>3,852</td>
</tr>
<tr>
<td>65</td>
<td>10,3</td>
<td>2,102</td>
<td>193,50</td>
<td>259,00</td>
<td>4,204</td>
</tr>
</tbody>
</table>

© If using Type A expansion joints, the maximum distance between joints is 100 ft.
© Slab reinforcing omitted for clarity.
© See Bridge Layout for joint type.
© Provide 1/4" end cover to Bars H. After all beams have been placed, weld one Bar H to two Bars D at each end of all beams.
© Lap Bars DT 9" Min with each Beam Bar D at Interior Bents without Expansion Joints. Bars DT shown bent for clarity only.
© Backer rod must be 25% larger than joint opening and must be compatible with the sealant.
© Approximate value. Based on theoretical camber, dead load deflection, constant grade and end diaphragm concrete flow, no vertical curve.
© Fabricator must adjust beam lengths for beam slopes as required.
© Reinforcing steel weight is based on an approximate factor of 2.0 lbs per square foot of slab.

Reinforcing steel weight is based on an approximate factor of 2.0 lbs per square foot of slab.

Reinforcing steel weight is based on an approximate factor of 2.0 lbs per square foot of slab.