This standard does not support the use of transition bents. This standard is drawn showing right forward skew. See Bridge Layout for actual skew direction. These details do not accommodate crest of sag roadway vertical curves on the span.

It is recommended, with crown cross-slope, to erect beams adjacent to crown point first. For structures without a crown point, it is recommended to start from the left side of cross-slope first and progress to the low side. Payment for the following is considered subsidiary to the other bid items: packaged non-metallic, non-shrink cementitious grout; corrosion inhibiting bonding agent; fabric underseal; work performed; materials furnished; and curing time.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA).

The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TxDOT for any purpose whatsoever. TxDOT assumes no responsibility for the conversion to other formats or for incorrect results or damages resulting from its use.

DISCLAIMER:

Based on theoretical beam camber, dead load deflections of two-course surface treatment and 2" ACP overlay, and a constant grade, deflections shown are due to two-course surface treatment and 2" ACP overlay only, to two-course surface treatment or 2" ACP overlay; work performed; materials furnished; and curing time.

It is recommended, with crown cross-slope, to erect beams adjacent to crown point first. For structures without a crown point, it is recommended to start from the left side of cross-slope first and progress to the low side. Payment for the following is considered subsidiary to the other bid items: packaged non-metallic, non-shrink cementitious grout; corrosion inhibiting bonding agent; fabric underseal; work performed; materials furnished; and curing time.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA).

Designed according to AASHTO LRFD Bridge Design Specifications.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA). This standard does not accommodate crest of sag roadway vertical curves on the span.

It is recommended, with crown cross-slope, to erect beams adjacent to crown point first. For structures without a crown point, it is recommended to start from the left side of cross-slope first and progress to the low side. Payment for the following is considered subsidiary to the other bid items: packaged non-metallic, non-shrink cementitious grout; corrosion inhibiting bonding agent; fabric underseal; work performed; materials furnished; and curing time.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA).

Designed according to AASHTO LRFD Bridge Design Specifications.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA).

The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TxDOT for any purpose whatsoever. TxDOT assumes no responsibility for the conversion to other formats or for incorrect results or damages resulting from its use.

DISCLAIMER:

Based on theoretical beam camber, dead load deflections of two-course surface treatment and 2" ACP overlay, and a constant grade, deflections shown are due to two-course surface treatment and 2" ACP overlay only, to two-course surface treatment or 2" ACP overlay; work performed; materials furnished; and curing time.

It is recommended, with crown cross-slope, to erect beams adjacent to crown point first. For structures without a crown point, it is recommended to start from the left side of cross-slope first and progress to the low side. Payment for the following is considered subsidiary to the other bid items: packaged non-metallic, non-shrink cementitious grout; corrosion inhibiting bonding agent; fabric underseal; work performed; materials furnished; and curing time.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA).

Designed according to AASHTO LRFD Bridge Design Specifications.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA). This standard does not accommodate crest of sag roadway vertical curves on the span.

It is recommended, with crown cross-slope, to erect beams adjacent to crown point first. For structures without a crown point, it is recommended to start from the left side of cross-slope first and progress to the low side. Payment for the following is considered subsidiary to the other bid items: packaged non-metallic, non-shrink cementitious grout; corrosion inhibiting bonding agent; fabric underseal; work performed; materials furnished; and curing time.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA).

Designed according to AASHTO LRFD Bridge Design Specifications.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA).

The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TxDOT for any purpose whatsoever. TxDOT assumes no responsibility for the conversion to other formats or for incorrect results or damages resulting from its use.

DISCLAIMER:

Based on theoretical beam camber, dead load deflections of two-course surface treatment and 2" ACP overlay, and a constant grade, deflections shown are due to two-course surface treatment and 2" ACP overlay only, to two-course surface treatment or 2" ACP overlay; work performed; materials furnished; and curing time.

It is recommended, with crown cross-slope, to erect beams adjacent to crown point first. For structures without a crown point, it is recommended to start from the left side of cross-slope first and progress to the low side. Payment for the following is considered subsidiary to the other bid items: packaged non-metallic, non-shrink cementitious grout; corrosion inhibiting bonding agent; fabric underseal; work performed; materials furnished; and curing time.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA).

Designed according to AASHTO LRFD Bridge Design Specifications.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA). This standard does not accommodate crest of sag roadway vertical curves on the span.

It is recommended, with crown cross-slope, to erect beams adjacent to crown point first. For structures without a crown point, it is recommended to start from the left side of cross-slope first and progress to the low side. Payment for the following is considered subsidiary to the other bid items: packaged non-metallic, non-shrink cementitious grout; corrosion inhibiting bonding agent; fabric underseal; work performed; materials furnished; and curing time.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA).

Designed according to AASHTO LRFD Bridge Design Specifications.

For rail anchorage, see applicable railing details and standard Prestressed Concrete Decked Slab Beam Rail Anchorage Details (DSBRA).

The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TxDOT for any purpose whatsoever. TxDOT assumes no responsibility for the conversion to other formats or for incorrect results or damages resulting from its use.

DISCLAIMER:
1. Fabricators must adjust beam lengths for beam slopes as required.
2. Seal and center 1" diameter smooth lateral connector rod (LCR) in the bottom of the flange connection "Vee" prior to welding to minimize grout leakage. Check where necessary between connectors.
3. Coat steel surfaces in contact with grout with a 3-component, water-based, epoxy-modified cement bonding agent including a corrosion inhibitor (DMS-6310). Epoxy PAK, Epoxy Cor-Rose, Sika Armaflex 150 Epox or an approved equal. Submit material data sheet to Engineer for approval. Pail size. Adhere in accordance with manufacturer's specifications and not prior to 12 hours.
4. Fill shear keys with grout that meets the requirements of DMS-487 "Concretes for Bridges and Foundations for Miscellaneous Applications" and is capable of a compressive strength of 4000 psi after 3 days of curing at anticipated temperature. Surface preparation, mixing and consistency of grout, placing, and curing must follow the manufacturer's recommendations. Curing compounds are not allowed. Cure 2 days, minimum prior to placing surface treatment and overlay. Approximate grout quantity for three beam joints = 0.53 CF of grout per foot of span length.
5. Use forming material between lateral connectors. Maintain a uniform grout depth along length of beams.
6. Lateral connector rods are subsidiary to other pertinent bid items.
7. After the specified cure times for the grout is reached, apply fabric underseal to the limits shown. Use reinforced fabric meeting the requirements of Item 356, "Fabric Underseal".
8. Tuck fabric 1" into joint opening. Mark location of centerline of joint on curb or barrier as approved.
9. 24" Reinforced fabric joint underseal (Typ) - Use fabric underseal meeting the requirements of Item 356, "Fabric Underseal". Use reinforced fabric joint underseal meeting the requirements of Item 356, "Fabric Underseal". After the asphaltic concrete pavement operations are complete, saw cut through the asphalt at centerline of joint. Make multiple saw cuts to create a 1/4" to 1/2" opening. Depth of saw cut will be 1/2" less than total ACP overlay over joint. Do not damage the underseal.
10. Seal the joint opening with a Class 2, "Hot Poured Rubber" in accordance with DMS-6310, "Joint Sealants and Fillers." Seal flush with the top of the asphaltic concrete pavement.
11. Fabricator must adjust beam lengths for beam slopes as required.
12. Seal and center 1" diameter smooth lateral connector rod (LCR) in the bottom of the flange connection "Vee" prior to welding to minimize grout leakage. Check where necessary between connectors.
13. Coat steel surfaces in contact with grout with a 3-component, water-based, epoxy-modified cement bonding agent including a corrosion inhibitor (DMS-6310). Epoxy PAK, Epoxy Cor-Rose, Sika Armaflex 150 Epox or an approved equal. Submit material data sheet to Engineer for approval. Pail size. Adhere in accordance with manufacturer's specifications and not prior to 12 hours.
14. Fill shear keys with grout that meets the requirements of DMS-487 "Concretes for Bridges and Foundations for Miscellaneous Applications" and is capable of a compressive strength of 4000 psi after 3 days of curing at anticipated temperature. Surface preparation, mixing and consistency of grout, placing, and curing must follow the manufacturer's recommendations. Curing compounds are not allowed. Cure 2 days, minimum prior to placing surface treatment and overlay. Approximate grout quantity for three beam joints = 0.53 CF of grout per foot of span length.
15. Use forming material between lateral connectors. Maintain a uniform grout depth along length of beams.
16. Lateral connector rods are subsidiary to other pertinent bid items.
17. After the specified cure times for the grout is reached, apply fabric underseal to the limits shown. Use reinforced fabric meeting the requirements of Item 356, "Fabric Underseal".
18. Tuck fabric 1" into joint opening. Mark location of centerline of joint on curb or barrier as approved.
19. 24" Reinforced fabric joint underseal (Typ) - Use fabric underseal meeting the requirements of Item 356, "Fabric Underseal". Use reinforced fabric joint underseal meeting the requirements of Item 356, "Fabric Underseal". After the asphaltic concrete pavement operations are complete, saw cut through the asphalt at centerline of joint. Make multiple saw cuts to create a 1/4" to 1/2" opening. Depth of saw cut will be 1/2" less than total ACP overlay over joint. Do not damage the underseal.
20. Seal the joint opening with a Class 2, "Hot Poured Rubber" in accordance with DMS-6310, "Joint Sealants and Fillers." Seal flush with the top of the asphaltic concrete pavement.

TABLE OF ESTIMATED QUANTITIES

<table>
<thead>
<tr>
<th>SPAN LENGTH</th>
<th>TYPE</th>
<th>BEAM</th>
<th>AButting</th>
<th>INTERIOR BENT</th>
<th>INTERIOR BENT</th>
<th>AButting</th>
<th>ABButting</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6DS20</td>
<td>179.42</td>
<td>179.62</td>
<td>179.82</td>
<td>179.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6DS20</td>
<td>179.42</td>
<td>179.62</td>
<td>179.82</td>
<td>179.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6DS20</td>
<td>179.42</td>
<td>179.62</td>
<td>179.82</td>
<td>179.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>6DS20</td>
<td>179.42</td>
<td>179.62</td>
<td>179.82</td>
<td>179.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCLAIMER:

Kind is made by TxDOT for any purpose whatsoever. TxDOT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.