Based on theoretical beam center, dead load deflections of sea-surface surface treatment and 2" ACP overlay, and a constant grade.

This standard does not provide for changes in roadway cross-slopes within the structure.

See Lateral Connector Details.

The deflections shown are due to two-course surface treatment and 2" ACP overlay only. Theoretical deflections shown are theoretical and actual dimensions may be less. Adjust based on field verifications.

DEAD LOAD DEFLECTION DIAGRAM

MATERIAL NOTES:

Provide Grade 36 or 50 Lateral Connector Rods (LCR).

GENERAL NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications.

See applicable railing details and standard Prestressed Concrete Slab Beams Rail Anchorage Details (DSBRA) for rail anchorage.

This standard does not support the use of transition beams. This standard is shown allowing right hand view. See Bridge Layout for actual skew direction. These details do not accommodate crest of lay roadway vertical curves on the span. It is recommended, with crown cross-slopes, to erect beams adjacent to crest point first. For structures without a crown cross-slope, it is recommended to start the high side of cross-slope first and progress to the low side. Payment for the following is considered subsidiary to the other bid items: packaged non-metallic, non-shrink cementitious grout; corrosion inhibiting bonding agent; fabric underseal; work performed; materials furnished; and curing time.

This standard does not provide for changes in roadway cross-slopes within the structure.

These details do not accommodate crest of sag roadway vertical curves on the span. It is recommended, with crown cross-slopes, to erect beams adjacent to crest point first. For structures without a crown cross-slope, it is recommended to start the high side of cross-slope first and progress to the low side. Payment for the following is considered subsidiary to the other bid items: packaged non-metallic, non-shrink cementitious grout; corrosion inhibiting bonding agent; fabric underseal; work performed; materials furnished; and curing time.

This standard does not provide for changes in roadway cross-slopes within the structure.

See Lateral Connector Details.

DEFLECTION DIAGRAM

Adjust based on field verifications.

Deflections shown are due to two-course surface treatment and 2" ACP overlay only. Theoretical deflections shown are theoretical and actual dimensions may be less. Adjust based on field verifications.
Fabricator must adjust beam lengths for beam slopes as required.

5. Saw and center 1" diameter smooth lateral connector rod (LCR) in the bottom of the flange connector "Vee" prior to welding to minimize grout leakage. Check where necessary between connectors.

6. Coat steel surfaces in contact with grout with a 3-component, water-based, epoxy-modified cement bonding agent including a corrosion inhibitor (Mason Emery 2042, Eurocal Corr-Bond, Sika Corrosion 110 EpoCrete or approved equal). Submit material data sheet to Engineer for approval, prior to use. Apply in accordance with manufacturer's specifications and let dry prior to 12 hours before grout placement.

7. Fill shear keys with grout that meets the requirements of OMS 4673 "General Instructions and Workers for Miscellaneous Applications" and is capable of a compressive strength of 4,000 psi, after 3 days of curing at anticipated temperatures. Surface preparation, mixing and consistency of grout, placing, and curing grout must follow the manufacturer's recommendations. Curing compounds are not allowed. Cure 3 days, minimum, prior to placing surface treatment and overlay. Approximate grout quantity for three beam joints = 0.33 CF of grout per foot of span length.

8. Use forming material between lateral connectors. Maintain a uniform grout depth along length of beams.

9. Lateral connector rods are subsidiary to other pertinent bid items.

10. After the specified cure times for the grout is reached, apply fabric underseal to the joints shown. Use fabric underseal meeting the requirements of Item 356, "Fabric Underseal".

11. Provide joint for roadway width and/or between toe of rails on the superstructure.

12. Place backer rod in joint opening prior to placing binder. Backer rods must be suitable for contact with hot asphalt.

13. Use reinforced fabric joint underseal meeting the requirements of Item 356, "Fabric Underseal". Do not damage the underseal.

14. Provide joint for roadway width and/or between toe of rails on the superstructure.

15. Place backer rod in joint opening prior to placing binder. Backer rods must be suitable for contact with hot asphalt.

16. Use reinforced fabric joint underseal meeting the requirements of Item 356, "Fabric Underseal". Do not damage the underseal.

17. After the asphaltic concrete pavement operations are complete, saw cut through the asphalt at centerline of joint. Make multiple saw cuts to create a 1/8" minimum joint opening. Depth of saw cut will be 1/8" less than total ACP overlay over joint. Do not damage the underseal.

18. Seal the joint opening with a Class I, "Hot Poured Rubber" in accordance with OMS-6310, "Joint Sealants and Fillers." Seal flush with the top of the asphaltic concrete pavement.