This standard does not provide for changes in roadway cross-slopes within the structure. See Lateral Connector Details.

Deflections shown are due to two-course surface treatment and 2" ACP overlay only. Actual deflections shown are theoretical and actual dimension may be less. Adjust based on field verifications.

DEAD LOAD DEFLECTION DIAGRAM

<table>
<thead>
<tr>
<th>TABLE OF VARIABLE VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN LENGTH</td>
</tr>
<tr>
<td>Feet</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

MATERIAL NOTES:
Provide Grade 36 or 50 Lateral Connector Rods (LCR).

GENERAL NOTES:
- Designed according to AASHTO LRFD Bridge Design Specifications.
- See applicable railing details and standards Prestressed Concrete Decked Slab Beams Rail Anchorage Details (DSBRA) for rail anchorages.
- This standard does not support the use of transition bents.
- For rail anchorages, it is recommended to erect beams adjacent to crown point first. For structures without a crown point, it is recommended to erect beams on the high side of cross slope first and progress to the low side.
- Payment for the following is considered subsidiary to the rail anchorages: grout, packing, lateral connectors, grout, surface underseal, bearers, bond breakers, etc.
- Payment for the following is considered subsidiary to the fabrication and installation of bridge railings: grout, grout, surface underseal, bearers, bond breakers, etc.
- This standard does not support the use of transition bents. This standard does not support the use of transition bents.
4. Fabricator must adjust beam lengths for beam slopes as required.
5. Seal and center 1" diameter smooth lateral connector rod (LCR) in the bottom of the flange connection "Vee" prior to welding to minimize grout leakage. Caulk where necessary between LCRs.
6. Caulk sheet surfaces in contact with grout with a 3-component, water-based, easy-modified cementitious grout and a cold-setting mortar (Class 3) to meet the requirements of DMS 4675 "Concrete Joint Sealants and Fillers for Miscellaneous Applications." The minimum joint opening is 3/16". Use a cold-setting mortar that is capable of a compressive strength of 4,200 psi after 3 days of curing at anticipated temperatures. Surface preparation, mixing and consistency of grout, placement, and curing must all follow the manufacturer's recommendations. Curing compounds are not allowed. Cure 3 days, minimum, prior to placing surface treatments and overlay.
7. After the asphaltic concrete pavement operations are complete, saw cut through the asphalt at the centerline of the joint. Make multiple saw cuts to create a "Vee" prior to welding to minimize grout leakage. Caulk where necessary between LCRs.
8. Place backer rod in joint opening prior to placing grout. Backer rods must be suitable for contact with hot asphalt.
9. After the specified cure times for the grout is reached, apply fabric underseal to the limits shown. Use fabric underseal meeting the requirements of Item 356, "Fabric Underseal." Fill shear keys with grout that meets the requirements of DMS 4675 "Cementitious Grouts and Non-Shrink Compounds for Miscellaneous Applications." The grout must meet the requirements of Item 356, "Fabric Underseal." Use forming material between lateral connectors. Maintain a uniform grout depth along length of beams.
10. After the asphaltic concrete pavement operations are complete, saw cut through the asphalt at the centerline of the joint. Make multiple saw cuts to create a "Vee" prior to welding to minimize grout leakage. Caulk where necessary between LCRs.
11. After the joint for roadway width and/or between toe of rails on the superstructure.
12. After the specified cure times for the grout is reached, apply fabric underseal to the limits shown. Use fabric underseal meeting the requirements of Item 356, "Fabric Underseal."
13. Provide joint for roadway width and/or between toe of rails on the superstructure.
15. After the fabric underseal operations are complete, saw cut through the asphalt at the centerline of the joint. Make multiple saw cuts to create a "Vee" prior to welding to minimize grout leakage. Caulk where necessary between LCRs.
16. Use reinforcement fabric joint underseal meeting the requirements of Item 356, "Fabric Underseal." Use forming material between lateral connectors. Maintain a uniform grout depth along length of beams.
17. After the asphaltic concrete pavement operations are complete, saw cut through the asphalt at the centerline of the joint. Make multiple saw cuts to create a "Vee" prior to welding to minimize grout leakage. Caulk where necessary between LCRs.
18. After the specified cure times for the grout is reached, apply fabric underseal to the limits shown. Use fabric underseal meeting the requirements of Item 356, "Fabric Underseal." Fill shear keys with grout that meets the requirements of DMS 4675 "Cementitious Grouts and Non-Shrink Compounds for Miscellaneous Applications." The grout must meet the requirements of Item 356, "Fabric Underseal." Use forming material between lateral connectors. Maintain a uniform grout depth along length of beams.
19. After the Rooftop Concrete pavement operations are complete, saw cut through the asphalt at the centerline of the joint. Make multiple saw cuts to create a "Vee" prior to welding to minimize grout leakage. Caulk where necessary between LCRs.
20. After the specified cure times for the grout is reached, apply fabric underseal to the limits shown. Use fabric underseal meeting the requirements of Item 356, "Fabric Underseal." Fill shear keys with grout that meets the requirements of DMS 4675 "Cementitious Grouts and Non-Shrink Compounds for Miscellaneous Applications." The grout must meet the requirements of Item 356, "Fabric Underseal." Use forming material between lateral connectors. Maintain a uniform grout depth along length of beams.