See appropriate rail standard for details and notes not shown.

ROADWAY ELEVATION OF TRAFFIC RAIL ON MOMENT SLAB (TRF80-MS)

(Showing T80SS rail other rails are similar. Reinforcing not shown for clarity)

- **Construction joint**
- **Open joint**
- **Expansion joint**

ROADWAY ELEVATION OF TRAFFIC RAIL ON GRADE BEAM (TRF80-GB)

(Showing T80SS rail other rails are similar. Reinforcing not shown for clarity)

SECTION THRU TRAFFIC RAIL ON MOMENT SLAB (TRF80-MS)

(Showing T80SS rail other rails are similar)

- **Bars MT(#6) spaced longitudinally along moment slab at 12" Max (Spaced 2 ½" longitudinally from outside edge of moment slab).**
- Approximate moment slab concrete = 0.56 CY/LF and reinforcement = 65.4 LB/LF
SECTION OF TRAFFIC RAIL ON TYPICAL GRADE BEAM (TRF80-GB)

Approximate grade beam concrete = 0.16 CY/LF and reinforcement = 14.2 LB/LF.

CONSTRUCTION NOTES:
- Align moment slab (TRF80-MS) or grade beam (TRF80-GB) open joints with rail open joints, centering or less than shown rail length.
- Provide moment slab (TRF80-MS) or grade beam (TRF80-GB) with open joints at no greater than 100' spacing unless otherwise shown on the plans or approved by the Engineer.

MATERIAL NOTES:
- Provide Class "C" concrete. Provide Class "C" (HPC) if required elsewhere.
- Provide Grade 60 reinforcing steel.
- epoxy coat or galvanize all reinforcing steel if required elsewhere.
- Deformed Welded Wire Reinforcement (AWS A89.4) of equal size and spacing may be substituted for Bars S(#4), H(#5), GU1(#5), GU2(#5), GU4(#5) and GU5(#5) unless noted otherwise. Provide the same laps as required for reinforcing bars.
- Provide bar laps, where required.
- Provide bar laps, where required.
- Uncoated or galvanized ~ #5 = 2'-5". Epoxy coated ~ #5 = 1'-10". Epoxy coated ~ #4 = 2'-7"

GENERAL NOTES:
- Use of these details will result in a moment slab (TRF80-MS) or grade beam (TRF80-GB) foundation that is acceptable for traffic rails which are MASH TL-5 compliant.
- The foundation design resistance is based on the current AASHTO bridge railing requirements with the assumption of bars to good soil support conditions. Poor soil conditions will require suitably deeper foundations.
- The associated bridge railing will be paid for by Class "C" concrete or Class "C" (HPC) concrete for rail foundations.
- Payment for moment slab (TRF80-MS) and/or grade beam (TRF80-GB) foundations will be by Class "C" concrete or Class "C" (HPC) for rail foundations.

Provide Grade 60 reinforcing steel.
- Epoxy coat or galvanize all reinforcing steel if required elsewhere.
- Deformed Welded Wire Reinforcement (AWS A89.4) of equal size and spacing may be substituted for Bars S(#4), H(#5), GU1(#5), GU2(#5), GU4(#5) and GU5(#5) unless noted otherwise. Provide the same laps as required for reinforcing bars.
- Provide bar laps, where required.
- Uncoated or galvanized ~ #5 = 2'-5". Epoxy coated ~ #5 = 1'-10". Epoxy coated ~ #4 = 2'-7"

GENERAL NOTES:
- Use of these details will result in a moment slab (TRF80-MS) or grade beam (TRF80-GB) foundation that is acceptable for traffic rails which are MASH TL-5 compliant.
- The foundation design resistance is based on the current AASHTO bridge railing requirements with the assumption of bars to good soil support conditions. Poor soil conditions will require suitably deeper and/or wider foundations.
- See appropriate rail standard for details and notes not shown.
- This detail is intended for use as a guide to unusual railing anchorage situations but may be included in the plans, modified as necessary to apply to specific installations required on the project.
- Payment for moment slab (TRF80-MS) and/or grade beam (TRF80-GB) will be by Class "C" concrete or Class "C" (HPC) concrete for rail foundations.
- The associated bridge railing will be paid for by the linear foot which includes the concrete and reinforcement.
- Examination will be subservient to other items.

RINFORCING BARS ARE SIMILAR. RAIL REINFORCING NOT SHOWN FOR CLARITY.)