The use of this standard is governed by the "Texas Engineering Practice Act." No warranty of any kind of this standard to other formats or for incorrect results or damages resulting from its use.

GENERAL NOTES:
- Designed according to ASABE 3520 Specifications. This standard is shown in this drawing for information only. See Table of Deflections for more information.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- Tolerances on slab thickness is +1", -0" regardless of forming.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
- Reinforcing steel weight is calculated using an approximate factor of 0.5 for bars.
- See standard SBSB-15 for "A" and "Y" values. Increase "Y" value as necessary for any bay or flange vertical curve.
**FABRICATION NOTES**

**GENERAL:**
- See Layout for beam type. See standard sheet SSB-30 for beam size.
- For unbraced structures, use A709 Grade 50 for all steel. For braced structures, use any of the following steels: A709 Grades 50, 50S, or 50W.
- See standard Sheet SBMD for details not shown.

**ROLLED BEAMS:**
- Beam bottom flanges and webs are classified as tension components and are subject to the impact testing requirements of Item 442, "Metal for Structures". Steel components with lengths in excess of 60' shall not be fabricated on site. Bottom flanges and webs at each end of the beam shall be connected to the support block with the appropriate stiffeners and connection details.
- Connection plates at intermediate locations may be omitted or square to the beam. Connection plates at end bearings must be plumbed and level with the beam ends. Bolted end stiffeners, and connection plates at end bearings shall be plane after all dead loads are removed. Tension components shall be connected by full penetration groove welds. See standard Sheet SBSD-30 for stiffeners sizes and connection details.
- Girder bottom flanges and webs are classified as tension components and are subject to the impact testing requirements of Item 442, "Metal for Structures". See standard Sheet SBMD for details not shown. See standard Sheet SBSD-30 for "N" and "X" values.

**OPTIONAL PLATE GIRDERS:**
- Plate girders are classified as tension components and are subject to the impact testing requirements of Item 442, "Metal for Structures". See standard Sheet SBMD for details not shown. See standard Sheet SBSD-30 for "N" and "X" values.

**FABRICATION NOTES:**
- See standard SSB-30 for "N" and "X" values.
- See standard Sheet SBMD for connection plates and bearing stiffener sizes and connection details.
- Connection plates at end bearings shall be level with the beam ends. Bolted end stiffeners, and connection plates at end bearings shall be plane after all dead loads are removed. Tension components shall be connected by full penetration groove welds. See standard Sheet SBSD-30 for stiffeners sizes and connection details.

**CAMBER TOLERANCE TABLE:**

<table>
<thead>
<tr>
<th>Camber Tolerance</th>
<th>Ft</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>+ 1°,-0°</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>+ 1°,-0°</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>+ 1°,-0°</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>+ 1°,-0°</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>+ 1°,-0°</td>
<td></td>
</tr>
</tbody>
</table>

For unpainted structures, use A709 Grade 50 for all steel. For painted structures, use any of the following steels: A709 Grades 50, 50S, or 50W.

**TOLERANCE TABLE:**

<table>
<thead>
<tr>
<th>Tolerance</th>
<th>Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Use one-half the values shown when a sag roadway vertical curve is on the span. Use one-half the values shown when a sag roadway vertical curve is on the span.

**DETAIL "A"**

**BEAM ELEVATION**

**SHOWING OPTIONAL PLATE GIRDER**

**SHOWING ROLLED BEAM**