TYPICAL TRANSVERSE SECTION

PRESTRESSED CONCRETE I-GIRDER SPANS

TYPE Tx62

28' ROADWAY

HL93 LOADING

SIG-62-28

BAR TABLE

<table>
<thead>
<tr>
<th>BAR</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>#4</td>
</tr>
<tr>
<td>G</td>
<td>#4</td>
</tr>
<tr>
<td>J</td>
<td>#4</td>
</tr>
<tr>
<td>N</td>
<td>#4</td>
</tr>
<tr>
<td>OA</td>
<td>#4</td>
</tr>
<tr>
<td>OA</td>
<td>#4</td>
</tr>
<tr>
<td>OA</td>
<td>#4</td>
</tr>
</tbody>
</table>

1. If multi-span units with slab continue over intermediate bents, see standard incisions for adjustment to slab reinforcement and quantities.
2. "Y" value shown is based on theoretical girder camber, dead load deflection from an 8" concrete slab, a constant roadway grade, and using precast panels (PCP). The Contractor will adjust this value as necessary for any roadway vertical curve and/or if the precast overhang panel (PCP(O)) option is used.
DEAD LOAD DEFLECTION DIAGRAM

Calculated deflections shown are due to the concrete slab alone for exterior girders only (Ec = 5000 ksi). Adjust values as required for interior girders and optional slab forming if used. These values may require field verification.

TABLE OF DEAD LOAD DEFLECTIONS

<table>
<thead>
<tr>
<th>Type (Length)</th>
<th>60'</th>
<th>75'</th>
<th>90'</th>
<th>105'</th>
<th>120'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.006</td>
<td>0.010</td>
<td>0.014</td>
<td>0.019</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>0.008</td>
<td>0.011</td>
<td>0.014</td>
<td>0.018</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>0.008</td>
<td>0.011</td>
<td>0.014</td>
<td>0.018</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>0.009</td>
<td>0.012</td>
<td>0.015</td>
<td>0.019</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>0.010</td>
<td>0.013</td>
<td>0.017</td>
<td>0.021</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>0.011</td>
<td>0.014</td>
<td>0.018</td>
<td>0.022</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>0.015</td>
<td>0.019</td>
<td>0.023</td>
<td>0.027</td>
</tr>
</tbody>
</table>

TABLE OF ESTIMATED QUANTITIES

<table>
<thead>
<tr>
<th></th>
<th>FT</th>
<th>SF</th>
<th>LF</th>
<th>LF</th>
<th>Lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1,800</td>
<td>238.00</td>
<td>238.00</td>
<td>238.00</td>
<td>4,140</td>
</tr>
<tr>
<td>75</td>
<td>1,950</td>
<td>258.00</td>
<td>258.00</td>
<td>258.00</td>
<td>4,485</td>
</tr>
<tr>
<td>90</td>
<td>2,100</td>
<td>278.00</td>
<td>278.00</td>
<td>278.00</td>
<td>4,830</td>
</tr>
<tr>
<td>105</td>
<td>2,250</td>
<td>298.00</td>
<td>298.00</td>
<td>298.00</td>
<td>5,175</td>
</tr>
<tr>
<td>120</td>
<td>2,400</td>
<td>318.00</td>
<td>318.00</td>
<td>318.00</td>
<td>5,520</td>
</tr>
<tr>
<td>135</td>
<td>2,550</td>
<td>338.00</td>
<td>338.00</td>
<td>338.00</td>
<td>5,865</td>
</tr>
<tr>
<td>150</td>
<td>2,700</td>
<td>358.00</td>
<td>358.00</td>
<td>358.00</td>
<td>6,210</td>
</tr>
<tr>
<td>165</td>
<td>2,850</td>
<td>378.00</td>
<td>378.00</td>
<td>378.00</td>
<td>6,555</td>
</tr>
<tr>
<td>180</td>
<td>3,000</td>
<td>398.00</td>
<td>398.00</td>
<td>398.00</td>
<td>6,900</td>
</tr>
</tbody>
</table>

GENERAL NOTES:

- Designed according to AASHTO LRFD Bridge Design Specifications.
- Multi-span units, with slab continuous over interior bents, may be formed with the details shown on this sheet and standard IGCS.
- The ICS standard for Thickened Slab End details and quantity adjustments.
- See PMDF standard for rail anchorage in slab.
- See applicable rail details for rail anchorage in slab.
- Provide Class S (HPC) concrete if shown elsewhere in the plans.
- Provide Class S concrete (f'c = 4,000 psi).
- Provide stirrups as shown or as required, if this option is used.
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
 - Uncoated ~ #4 = 1'-7".
 - Epoxy Coated ~ #4 = 2'-5".
- See PCP and PCP-FAB for panel details and quantity adjustments.
- See PCP(O) and PCP(O)-FAB for precast overhang panel details, if this option is used.
- See applicable rail details for rail anchorage in slab.
- Provide Class S concrete, unless noted otherwise.
- Multi-span units, with slab continuous over interior bents, may be formed with the details shown on this sheet and standard IGCS.
- See IGMS standard for miscellaneous details.
- See IGTS standard for Thickened Slab End details and quantity adjustments.
- See IGTS standard for Thickened Slab End details and quantity adjustments.
- See PCP(O) and PCP(O)-FAB for precast overhang panel details, if this option is used.
- See PCP and PCP-FAB for panel details not shown.
- Provided in square yards.

MATERIAL NOTES:

- Provide Class S (HPC) concrete if shown elsewhere in the plans.
- Provide stirrups as shown or as required, if this option is used.
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
 - Uncoated ~ #4 = 1'-7".
 - Epoxy Coated ~ #4 = 2'-5".
- Deformed Welded Wire Reinforcement (WWR) (ASTM A1064)
- Initially designed according to AASHTO LRFD Bridge Design Specifications.
- All girder sizes are 10'-0" unless noted otherwise.

PRESTRESSED CONCRETE

I-GIRDER SPANS

(TYPE Tx62)

28' ROADWAY

SIG-62-28

- Designed according to AASHTO LRFD Bridge Design Specifications.
- Multi-span units, with slab continuous over interior bents, may be formed with the details shown on this sheet and standard IGCS.
- The ICS standard for Thickened Slab End details and quantity adjustments.
- See PMDF standard for rail anchorage in slab.
- See applicable rail details for rail anchorage in slab.
- Provide Class S (HPC) concrete if shown elsewhere in the plans.
- Provide Class S concrete (f'c = 4,000 psi).
- Provide stirrups as shown or as required, if this option is used.
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
 - Uncoated ~ #4 = 1'-7".
 - Epoxy Coated ~ #4 = 2'-5".
- Deformed Welded Wire Reinforcement (WWR) (ASTM A1064)
- Initially designed according to AASHTO LRFD Bridge Design Specifications.
- All girder sizes are 10'-0" unless noted otherwise.