Table of Estimated Quantities

<table>
<thead>
<tr>
<th>Type T×62 Girders</th>
<th>Precast Concrete Slab</th>
<th>Span</th>
<th>Dead Load</th>
<th>Reinforced Concrete Slab</th>
<th>Pre-Stressed Concrete Girders</th>
<th>Total</th>
<th>Combined Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Notes:
- Designed according to AASHTO LRFD Bridge Design Specifications.
- Multi-span units, with slab continuous over interior bents, may be formed with the details shown in this sheet and standard IGCS.
- Use TSS standard for Tensioned Slab End details and quantity adjustments.
- See PLC and PLC-FAB for panel details not shown.
- Provide Class S (HPC) concrete if shown elsewhere.
- Provide Class 5 concrete (f'c = 4,000 psi).
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
 - Uncased = #4 = 2'-7''
 - Deformed Welded Wire Reinforcement (WWR) (ASTM A1064)
 - Epoxy coated = #4 = 2'-5''
- Provide Grade 60 reinforcing steel.
- See Bridge Layout for actual skew direction.
- This standard does not support the use of transition bents.
- Fabricator will adjust lengths for girders as required.
- Reinforcing steel weight is calculated using an approximate factor of 2.3 lbs/ft².

Material Notes:
- Provide Class 5 concrete (f'c = 4,000 psi). Adjust values as required for exterior girders and if optional slab forming is used. These values may require field verification.
- Concrete slab on interior girders only.
- Reinforcing steel weight is calculated using an approximate factor of 2.3 lbs/SF.
- The use of this standard to other formats or for incorrect results or damages resulting from its use is not made by TxDOT for any purpose whatsoever. TxDOT assumes no responsibility for the conversion.
- The use of this standard is governed by the "Texas Engineering Practice Act." No warranty of any kind is made by TxDOT for any purpose whatsoever. TxDOT assumes no responsibility for the conversion.

General Notes:
- Provide Class 5 concrete (f'c = 4,000 psi).
- Multi-span units, with slab continuous over interior bents, may be formed with the details shown on this sheet and standard IGCS.
- Use TSS standard for Tensioned Slab End details and quantity adjustments.
- See PLC and PLC-FAB for panel details not shown.
- Provide Class S (HPC) concrete if shown elsewhere.
- Provide Class 5 concrete (f'c = 4,000 psi).
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
 - Uncased = #4 = 2'-7''
 - Deformed Welded Wire Reinforcement (WWR) (ASTM A1064)
 - Epoxy coated = #4 = 2'-5''
- Provide Grade 60 reinforcing steel.
- See Bridge Layout for actual skew direction.
- This standard does not support the use of transition bents.
- Fabricator will adjust lengths for girders as required.
- Reinforcing steel weight is calculated using an approximate factor of 2.3 lbs/ft².

Material Notes:
- Provide Class 5 concrete (f'c = 4,000 psi).
- Multi-span units, with slab continuous over interior bents, may be formed with the details shown on this sheet and standard IGCS.
- Use TSS standard for Tensioned Slab End details and quantity adjustments.
- See PLC and PLC-FAB for panel details not shown.
- Provide Class S (HPC) concrete if shown elsewhere.
- Provide Class 5 concrete (f'c = 4,000 psi).
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
 - Uncased = #4 = 2'-7''
 - Deformed Welded Wire Reinforcement (WWR) (ASTM A1064)
 - Epoxy coated = #4 = 2'-5''
- Provide Grade 60 reinforcing steel.
- See Bridge Layout for actual skew direction.
- This standard does not support the use of transition bents.
- Fabricator will adjust lengths for girders as required.
- Reinforcing steel weight is calculated using an approximate factor of 2.3 lbs/ft².

General Notes:
- Provide Class 5 concrete (f'c = 4,000 psi).
- Multi-span units, with slab continuous over interior bents, may be formed with the details shown on this sheet and standard IGCS.
- Use TSS standard for Tensioned Slab End details and quantity adjustments.
- See PLC and PLC-FAB for panel details not shown.
- Provide Class S (HPC) concrete if shown elsewhere.
- Provide Class 5 concrete (f'c = 4,000 psi).
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
 - Uncased = #4 = 2'-7''
 - Deformed Welded Wire Reinforcement (WWR) (ASTM A1064)
 - Epoxy coated = #4 = 2'-5''
- Provide Grade 60 reinforcing steel.
- See Bridge Layout for actual skew direction.
- This standard does not support the use of transition bents.
- Fabricator will adjust lengths for girders as required.
- Reinforcing steel weight is calculated using an approximate factor of 2.3 lbs/ft².

Material Notes:
- Provide Class 5 concrete (f'c = 4,000 psi).
- Multi-span units, with slab continuous over interior bents, may be formed with the details shown on this sheet and standard IGCS.
- Use TSS standard for Tensioned Slab End details and quantity adjustments.
- See PLC and PLC-FAB for panel details not shown.
- Provide Class S (HPC) concrete if shown elsewhere.
- Provide Class 5 concrete (f'c = 4,000 psi).
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
 - Uncased = #4 = 2'-7''
 - Deformed Welded Wire Reinforcement (WWR) (ASTM A1064)
 - Epoxy coated = #4 = 2'-5''
- Provide Grade 60 reinforcing steel.
- See Bridge Layout for actual skew direction.
- This standard does not support the use of transition bents.
- Fabricator will adjust lengths for girders as required.
- Reinforcing steel weight is calculated using an approximate factor of 2.3 lbs/ft².