TABLE OF DEAD LOAD DEFLECTIONS

<table>
<thead>
<tr>
<th>TYPE Tx62 GIRDERS</th>
<th>SELECTED LENGTH</th>
<th>SF</th>
<th>&quot;A&quot;</th>
<th>&quot;B&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0.006</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>0.009</td>
<td>0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0.012</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.016</td>
<td>0.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.021</td>
<td>0.029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>0.026</td>
<td>0.037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.033</td>
<td>0.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.047</td>
<td>0.058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.051</td>
<td>0.062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>0.062</td>
<td>0.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>0.071</td>
<td>0.085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>0.087</td>
<td>0.107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>0.107</td>
<td>0.128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0.128</td>
<td>0.149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>0.149</td>
<td>0.204</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEAD LOAD DEFLECTION DIAGRAM

Calculated deflections shown are due to the concrete slab on interior girders only. Special end fitting details should be provided for exterior girders and if optional slab forming is used. These values may require field verification.

GENERAL NOTES:

- Designed according to AASHTO LRFD Bridge Design Specifications.
- Multi-span units, with slab continuous over interior bents, may be formed with the details shown on this sheet and standard DCS.
- Use standard for Thinned Slab End details and quantity adjustments. See PMDF standard for details and quantity adjustments.
- Use PCP(O) and PCP(O)-FAB for prestress anchorage panel details if this option is used.
- Use TIGS standard for miscellaneous details. See applicable rail details for rail anchorage in slab.
- Provide Class S (HPC) concrete if shown elsewhere in the plan.
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
  - Uncoated ~ #4 = 1'-7"
  - Epoxy coated ~ #4 = 2'-5"
- Provide Grade 60 reinforcing steel.
- Designated according to AASHTO LRFD Bridge Design Specifications.
- Multi-span units, with slab continuous over interior bents, may be formed with the details shown on this sheet and standard DCS.
- Use standard for Thinned Slab End details and quantity adjustments.
- Use PCP(O) and PCP(O)-FAB for prestress anchorage panel details if this option is used.
- Use TIGS standard for miscellaneous details. See applicable rail details for rail anchorage in slab.
- Provide Class S (HPC) concrete if shown elsewhere in the plan.
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
  - Uncoated ~ #4 = 1'-7"
  - Epoxy coated ~ #4 = 2'-5"
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
  - Uncoated ~ #4 = 1'-7"
  - Epoxy coated ~ #4 = 2'-5"
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
  - Uncoated ~ #4 = 1'-7"
  - Epoxy coated ~ #4 = 2'-5"
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
  - Uncoated ~ #4 = 1'-7"
  - Epoxy coated ~ #4 = 2'-5"
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
  - Uncoated ~ #4 = 1'-7"
  - Epoxy coated ~ #4 = 2'-5"
- Provide Grade 60 reinforcing steel.
- Provide bar laps, where required, as follows:
  - Uncoated ~ #4 = 1'-7"
  - Epoxy coated ~ #4 = 2'-5"