Compost Education
Presentations, Workshops & Demonstrations

Barrie Cogburn at the compost booth used at conferences such as the 2001 AGC Annual Trade Fair

Scott McCoy gives a PowerPoint presentation during a compost workshop.
Appendix 2

MEMORANDUM

TO:
All Area Engineers, Anadarko Project, Fort Worth, Dallas, Waco, and Austin Field District Engineers

FROM:
Ludwig C. Calhoun, General Services Division

SUBJECT: Implementation of the TAMEP Compost Improver Program

Some text is not visible due to printing quality or resolution, but it appears to be a memorandum discussing a compost improvement program. The date is January 11, 2007.

MEMORANDUM

TO:
Alexis, Austin, Fort Worth, Dallas, Waco, and Austin Field District Engineers

FROM:
Ludwig C. Calhoun, General Services Division

DATE: November 10, 2003

SUBJECT: Implementation of the TAMEP Compost Improver Program

This memo discusses the implementation of a compost improvement program. It mentions that the program will run from November 10, 2003, to the year 2006.

MEMORANDUM

TO:
Staff and Areas/Project Engineers

FROM:
Jay Nelson

DATE: October 18, 2005

SUBJECT: Establishment of Vegetation Use of Compost

This memo discusses the establishment of a vegetation use of compost. It mentions that the use of compost is encouraged to enhance the natural environment and growth of organic matter.

MEMORANDUM

TO:

FROM:

DATE: October 18, 2005

SUBJECT: Establishment of Vegetation Use of Compost

This memo discusses the establishment of a vegetation use of compost. It mentions that the use of compost is encouraged to enhance the natural environment and growth of organic matter.

The text is not completely visible due to the resolution or printing quality of the image, but it appears to be related to environmental conservation and the use of compost for vegetation improvement.

The text contains several paragraphs discussing the implementation of a compost program and its implications for vegetation improvement. It mentions the need for cooperation and coordination among various departments and agencies to ensure the success of the program.
Appendix 3

Compost Information on the TxDOT Website

To find more information about the compost specifications, visit this site to see the actual specifications, pictures of compost demonstrations, and current bid prices:
www.dot.state.tx.us/compost

To find what upcoming TxDOT projects specify compost:
www.dot.state.tx.us/monitoring/chart/.explore/notes/chartview.php
(Click on every project on that month’s lettering and follow the highlighted words, “Item Descriptions” to see if Item 1027 options are specified for that project.)

To find which contractor was the low bidder on a particular project:
www.dot.state.tx.us/monitoring/chart/eval/notes/chartview.php
(Click on the contractor name in blue for addresses and phone numbers.

If you are a supplier and want to be included in the Highway Design Manual’s Supplier Directory (this handy book lists all the contractors as well as material suppliers) such as Mr. Joe McGlothlin with the Whitley & Siddons contracting firm:
Mr. Joe McGlothlin
Whitley & Siddons
Phone: 812-3

Texas Department of Transportation
Design Division - Landscape Design Section - Forest and Prior Compost
http://www.dot.state.tx.us/monitoring/chart/chartview.php

The use of Compost in Highway Construction

The use of compost on roadway construction projects is simply an additional erosion control tool. As topsoil sources have become depleted over the years, we have observed that the most basic part of revegetation, a 4" topsoil seedbed, is actually soil with little or no organic material to sustain plant growth. This has led, in many projects, to severe erosion. If erosion occurs while the project is still under contract, the contractor must rapidly topsoil, seed, fertilize, and mulch/laid or erosion control blankets. In many cases, barbacades are left standing until the contractor achieves sufficient grass growth (per SWPPP Requirements). If erosion results on existing roadway sections, maintenance is left to deal with the resulting problem. Since compost costs are comparable to topsoil, we believe that by adding organic material in the form of compost, poor soils can be amended, revegetation can occur, erosion is avoided and TxDOT saves time and money.

TxDOT can benefit greatly by helping to increase the awareness and acceptance of compost for use on highway right-of-way. By promoting the use of compost, TxDOT can realize the following:

• an effective erosion control solution
• savings of construction expenditures due to quicker vegetation establishment
• a savings of future maintenance expenditures due to erosion avoidance
• the opportunity for our agency to be seen as a partner in the statewide waste reduction effort.

We hope the information provided here will open up additional design options for your projects. This site will be updated periodically to keep it as current as possible. Should you decide to include Special Specifications 1027 or 1034 in your roadway design, please feel free to contact the Landscape Design Section for assistance and the most up to date information.

Compost Factsheet

How can Special Specification Item 1027 “Furnishing & Placing Compost” help to establish vegetation and control erosion?
Because compost actually changes the texture of the soil, poor quality topsoils can be amended with compost to increase chances for seed germination and vegetation establishment. Quick and dense vegetation will significantly reduce the chance for erosion.

Why is the use of compost good for the environment?
Compost is made from organic material that would otherwise be lost. By returning this usable resource to the environment, TxDOT can achieve better vegetation establishment while at the same time help to divert organic material from the waste stream.

What are the references to the “40 CFR Part 503” mean?
These are regulations put forth by the EPA designed to encourage the beneficial use and reuse of beneficial while protecting public health and the environment for composting.

Subchapter B Part 3 important?
The Code defines acceptable industrial and consumer by-products (power plant ash, glass, paper, etc.) to TxDOT. These as are clearly officially forbidden by TNRCC.

So, what’s the bottom line?
A dust has reduced pathogens below 1 for any agricultural use, including having been treated to reduce level from Class A. Class B products are the allowing public access.

Do we need to know what they are? The list is quite long and each item lists several parameters. Each carbon-based material in the content may be necessary for applications.
Appendix 4

Article in BioCycle
February 2001

Compost grant to benefit area dairy producers

By Danny Walsh

Daily producers will be reaping the benefits from Texas' first 10-year grant program that will allow composted manure from dairy operations that include The Rouge River. Although not formally approved as of yet, the $1.2 million (the grant from the Environmental Protection Agency (EPA) will be administered by the Texas Highway Department (TxDOT) in conjunction with the Texas Compost Program (TCP), which is coordinated by the Texas Composting Council (TCC). The project was proposed by the State of Texas to assist in the development of a sustainable program to address the issue of dairy manure management in the state.

The State of Texas, recognizing the need for a more sustainable approach to dairy manure management, has proposed a grant program to support the development of composting facilities that can handle the large volume of dairy manure generated by the state's dairy industry. This grant program is designed to encourage the use of composting as an alternative to land application, which is currently the primary method of manure disposal in the state.

Under the proposed program, dairy producers would be eligible to receive grant funding to cover a portion of the cost of establishing a composting facility or upgrading existing composting facilities. The grant funding would be used to defray the costs of purchasing equipment, building infrastructure, and training staff to operate the composting facility.

The proposed grants would be awarded on a competitive basis, with priority given to projects that meet specific criteria, such as the ability to handle large volumes of manure, the potential for the production of high-quality compost, and the ability to demonstrate financial viability.

The proposed program would also include provisions for monitoring and enforcement to ensure that grant recipients comply with all applicable regulations and standards, and to ensure that the grant funds are used for their intended purpose.

The State of Texas is in the process of developing the specific details of the grant program, including the application process and the criteria for awarding grants. It is expected that the program will be implemented in the near future, and that the first grants will be awarded to eligible dairy producers.

The proposed program is expected to provide significant benefits to the dairy industry in Texas. By promoting the use of composting, the program will help to reduce the environmental impacts of dairy manure disposal, including the risk of nutrient leaching and the potential for odor and air pollution.

In addition, the program will provide valuable economic benefits to dairy producers, by allowing them to recover the value of the compost produced from dairy manure. The program will also provide benefits to the environment by promoting the use of sustainable waste management practices, and by supporting the development of an emerging industry in composting.

The State of Texas is to be commended for taking a proactive approach to addressing the issue of dairy manure management in the state. The proposed grant program is an important step in the development of a more sustainable approach to dairy manure disposal, and it is expected to provide significant benefits to the dairy industry and the environment.
Appendix 5

Article in Texas Contractor
April 16, 2001

Two Ideas Destined to Find Each Other

by Liz Kraipa
with excerpts from papers written by Barrie Copburn and Scott McCoy

Demand

In recent years, logistic costs, limits, and TOOT have been increasing, thereby affecting everything from bag costs to hidden costs associated with Tootoo sanitary landfills. Oregon and Washington have banned food waste from landfills, and the others are planning to follow suit. As volumes become more and more significant, the integration of composting facilities with recycling centers becomes more attractive.

The Light Turned On

Two recent articles, one written by Washington State University's Dr. Robert Copeman and the other by Oregon State University's Dr. Scott McCoy, present new ideas on composting.

The article by Dr. McCoy, published in the April 1999 issue of the Oregon Compost Institute's newsletter, introduces the concept of a "component composting" system. In this system, different composting materials are separated and composted individually, then mixed to create a final product. This approach allows for greater control over the composting process and can result in a more uniform end product.

Initial Successes

In May 1999, the first demonstrations of this system were conducted at the Oregon State University's composting facility. The success of the demonstration led to the formation of a new company, Component Composting, which has since developed a patent-pending process for component composting.

The article by Dr. Copeman, published in the March 2000 issue of the Oregon Compost Institute's newsletter, introduces the concept of a "component composting" system. In this system, different composting materials are separated and composted individually, then mixed to create a final product. This approach allows for greater control over the composting process and can result in a more uniform end product.

The success of the Oregon demonstration project has led to the development of a statewide Tootoo Specialization Program. The program focuses on the collection and composting of food waste from commercial and institutional sources. The program has been successful in reducing the amount of food waste sent to landfills and increasing the amount of compost generated.

The result is that grass seeds planted in our compost fall or wash away before they can germinate, resulting in severe erosion on many projects. Contractors are then required to supply topsoil, seed, mulch, and other materials to make up for lost harvests, which can increase the cost of the project by 20-30%.

With the advent of new filters, the ability to remove fats, oils, and grease (FOG) from wastewater has dramatically improved. These filters are designed to remove particulate matter and are typically attached to the effluent discharge of the clarifier or settling tank. They are designed to remove solids, such as oil, grease, and other organic matter, from the wastewater stream.

The process of composting is a natural biological activity that occurs in a variety of environments, including soil, water, and air. The process is driven by microorganisms, including bacteria, fungi, and algae, that break down organic matter into simpler compounds.

Component Composting

Component composting is a process that involves the separation of different composting materials and composting them individually, then mixing the products to create a final product. This approach allows for greater control over the composting process and can result in a more uniform end product.

Two challenges have surfaced: supply has exceeded demand, but more

14 Texas Contractor • April 16, 2001

LARGEST MOBILE MULCHERS IN TEXAS

To further 11
• Be Real • Be True • Be You • Be What You Want

Fast, Cost Effective

CISA Contractors, Inc. San Antonio, TX
Phone: (210) 651-2000 Fax: (210) 651-2199

Texas Contractor • April 16, 2001